
BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting

the 3D Poses of Challenging Objects without Using Depth

Mahdi Rad1 Vincent Lepetit1, 2

1Institute for Computer Graphics and Vision, Graz University of Technology, Austria
2 Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, Bordeaux, France
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Abstract

We introduce a novel method for 3D object detection and

pose estimation from color images only. We first use seg-

mentation to detect the objects of interest in 2D even in

presence of partial occlusions and cluttered background.

By contrast with recent patch-based methods, we rely on

a “holistic” approach: We apply to the detected objects

a Convolutional Neural Network (CNN) trained to predict

their 3D poses in the form of 2D projections of the cor-

ners of their 3D bounding boxes. This, however, is not suf-

ficient for handling objects from the recent T-LESS dataset:

These objects exhibit an axis of rotational symmetry, and

the similarity of two images of such an object under two

different poses makes training the CNN challenging. We

solve this problem by restricting the range of poses used

for training, and by introducing a classifier to identify the

range of a pose at run-time before estimating it. We also

use an optional additional step that refines the predicted

poses. We improve the state-of-the-art on the LINEMOD

dataset from 73.7% [2] to 89.3% of correctly registered

RGB frames. We are also the first to report results on the

Occlusion dataset [1] using color images only. We obtain

54% of frames passing the Pose 6D criterion on average

on several sequences of the T-LESS dataset, compared to

the 67% of the state-of-the-art [10] on the same sequences

which uses both color and depth. The full approach is also

scalable, as a single network can be trained for multiple

objects simultaneously.

1. Introduction

3D pose estimation of object instances has recently be-

come a popular problem again, because of its application

in robotics, virtual and augmented reality. Many recent

approaches rely on depth maps, sometimes in conjunction

with color images [5, 4, 9, 14, 7, 1, 21, 13, 3, 10]. However,

it is not always possible to use depth cameras, as they fail

(a) (b)

(c) (d)

Figure 1. Zooms on estimated poses for (a) the Ape of the

LINEMOD dataset [7], (b) the Driller of the Occlusion dataset

[1], (c) and (d) three objects of the T-LESS [10] dataset. The green

bounding boxes correspond to the ground truth poses, and the blue

bounding boxes to the poses estimated with our method. The two

boxes often overlap almost perfectly, showing the accuracy of our

estimated poses. The parts of the bounding boxes occluded by the

object were removed using the object mask rendered from our es-

timated pose. In (b), we can still obtain a good pose despite the

large occlusion by the bench vise. In (c) and (d), we also obtain

very good estimates despite large occlusions, the similarities be-

tween the objects, and the fact that the symmetries challenge the

learning algorithms.

outdoor or on specular objects. In addition, they drain the

batteries of mobile devices, being an active sensor.

It is therefore desirable to rely only on color images for

3D pose estimation, even if it is more challenging. Recent
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methods [1, 13, 2] work by identifying the ’object coordi-

nates’ of the pixels, which are the pixels’ 3D coordinates

in a coordinate system related to the object [19]. The ob-

ject 3D pose can then be estimated using a PnP algorithm

from these 2D-3D correspondences. [3] obtain similar cor-

respondences by associating some pixels in selected parts of

the object with virtual 3D points. However, obtaining these

2D-3D correspondences from local patches is difficult and

the output is typically very noisy for these methods. A ro-

bust optimization is then needed to estimate the pose.

In this paper, we argue for a “holistic” approach, in the

sense that we predict the pose of an object directly from

its appearance, instead of identifying its individual surface

points. As we will show, this approach provides signifi-

cantly better results.

We first detect the target objects in 2D. We show that us-

ing object segmentation performs better for this task com-

pared to a standard sliding window detector, in particular

in presence of partial occlusion. We then apply a CNN to

predict the 3D pose of the detected objects. While the pre-

dicted 3D pose can be represented directly by a translation

and a rotation, we achieve better accuracy by using a rep-

resentation similar to the one used in [3] for object parts:

We predict the 2D projections of the corners of the object’s

bounding box, and compute the 3D pose from these 2D-3D

correspondences with a PnP algorithm. Compared to the

object coordinate approaches the predictions are typically

outlier-free, and no robust estimation is thus needed. Com-

pared to the direct prediction of the pose, this also avoids

the need for a meta-parameter to balance the translation and

rotation terms.

Unfortunately, this simple approach performs badly on

the recent and challenging T-LESS dataset. This dataset is

made of manufactured objects that are not only similar to

each other, but also have one axis of rotational symmetry.

For example, the squared box of Fig. 1(c) has an angle of

symmetry of 90◦ and the other object has an angle of sym-

metry of 0◦ since it is an object of revolution; Object #5 in

Fig. 1(d) is not perfectly symmetrical but only because of

the small screw on the top face.

The approach described above fails on these objects be-

cause it tries to learn a mapping from the image space to the

pose space. Since two images of a symmetrical object un-

der two different poses look identical, the image-pose cor-

respondence is in fact a one-to-many relationship. This is-

sue is actually not restricted to our approach. For example,

[2], which relies on object coordinates, does not provide re-

sults on the Bowl object of the LINEMOD dataset, an object

with an axis of symmetry: It is not clear which coordinates

should be assigned to the 3D points of this object, as all the

points on a circle orthogonal to the axis of symmetry have

the same appearance.

To solve this problem, we train the method described

above using images of the object under rotation in a re-

stricted range, such that the training set does not contain

ambiguous images. In order to recover the object pose un-

der a larger range of rotation, we train a classifer to tell

under which range the object rotation is. Again, this is easy

to do with a “holistic” approach, and this classifier takes

an image of the entire object as input. As we will explain

in more details, we can then always use the CNN trained

on the restricted range to estimate any pose. In addition, we

will show how to adapt this idea to handle “approximatively

symmetrical” objects like Object #5. This approach allows

us to obtain good performance on the T-LESS dataset.

Finally, we show that we can add an optional last step to

refine the pose estimates by using the “feedback loop” pro-

posed in [17] for hand detection in depth images: We train

a network to improve the prediction of the 2D projections

by comparing the input image and a rendering of the object

for the initial pose estimate. This allows us to improve even

more our results on the LINEMOD and Occlusion datasets.

Our full approach, which we call BB8, for the 8 corners

of the bounding box, is also very fast, as it only requires to

apply Deep Networks to the input image a few times. In

the remainder of the paper, we first discuss related work,

describe our approach, and compare it against the state-of-

the-art on the three available datasets.

2. Related Work

The literature on 3D object detection is very large, thus

we will focus only on recent works. Keypoint-based meth-

ods [16, 23] were popular for a long time and perform well

but only on very textured objects. The apparition of inex-

pensive 3D cameras favored the development of methods

suitable for untextured objects: [5, 9] rely on depth data

only and use votes from pairs of 3D points and their nor-

mals to detect 3D objects. [14] uses a decision tree applied

to RGB-D images to simultaneously recognize the objects

and predict their poses. [7, 24] consider a template-based

representation computed from RGB-D or RGB data, which

allows for large scale detection [11]. However, this template

approach is sensitive to partial occlusions.

To tackle clutter and partial occlusions, [1] and [21]

rely on local patches recognition performed with Random

Forests. In particular, [1] considers ’3D object coordinates’:

A Random Forest is trained to predict the 3D location in

the object coordinate system of each image location. The

prediction of this forest is integrated in an energy function

together with a term that compares the depth map with a

rendering of the object and a term that penalizes pixels that

lie on the object rendering but predicted by the forest to not

be an object point. This energy function is optimized by

a RANSAC procedure. [13] replaces this energy function

by an energy computed from the output of a CNN trained

to compare observed image features and features computed
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from a 3D rendering of the potentially detected object. This

makes the approach very robust to partial occlusions.

These works, however, are designed for RGB-D data.

[2] extends this work and relies on RGB data only, as we

do. They use Auto-Context [22] to obtain better predic-

tions from the Random Forests, estimate a distribute over

the object coordinates to handle the prediction uncertain-

ties better, and propose a more sophisticated RANSAC-like

method that scales with the number of objects. This results

in an efficient and accurate method, however, robustness to

partial occlusions are not demonstrated.

[3] is related to [1, 21, 2] but focuses on providing sparse

2D-3D correspondences from reliable object parts. Unfor-

tunately, it provides results on its own dataset only, not on

more broadly available datasets.

Like us, [12] relies on a CNN to directly predict a 3D

pose, but in the form of a translation and a rotation. It

considers camera relocalisation in urban environment rather

than 3D object detection, and uses the full image as input to

the CNN. By predicting the 2D projections of the corners of

the bounding box, we avoid the need for a meta-parameter

to balance the position and orientation errors. As shown in

our experiments, the pose appears to be more accurate when

predicted in this form. Intuitively, this should not be surpris-

ing, as predicting 2D locations from a color images seems

easier than predicting a 3D translation and a quaternion, for

example.

[6] also uses a CNN to predict the 3D pose of generic ob-

jects but from RGB-D data. It first segments the objects of

interest to avoid the influence of clutter. We tried segment-

ing the objects before predicting the pose as well, however,

this performed poorly on the LINEMOD dataset, because

the segmented silhouttes were not very accurate, even with

state-of-the-art segmentation methods.

In summary, our method appears to be one of the first

to deal with RGB data only to detect 3D objects and esti-

mate their poses on recent datasets. As we will show in the

experiments, it outperforms the accuracy of the state-of-the-

art [2] by a large margin.

3. Proposed Approach

In our approach, we first find the objects in 2D, we obtain

a first estimate of the 3D poses, including objects with a

rotational symmetry, and we finally refine the initial pose

estimates. We describe each step in this section.

3.1. Localizing the Objects in 2D

We first identify the 2D centers of the objects of inter-

est in the input images. We could use a standard 2D ob-

ject detector, but we developed an approach based on seg-

mentation that resulted in better performance as it can pro-

vide accurate locations even under partial occlusions. Com-

pared to our initial tests using a sliding window, this ap-

(a) (b)

(c) (d)

Figure 2. Object localization using our segmentation approach:

(a) The input image is resized to 512× 384 and split into regions

of size 128× 128. (b) Each region is first segmented into a binary

mask of 8 × 8 for each possible object o. (c) Only the largest

component is kept if several components are present, the active

locations are segmented more finely. (d) The centroid of the final

segmentation is used as the 2D object center.

proach improved our 2D detection results from about 75%

to 98.8% correct detection rate based on a IoU of 0.5. We

only need a low resolution segmentation and thus do not

need a hourglass-shaped architecture [15], which makes our

segmentation more efficient.

As shown in Fig. 2, our approach performs a two-level

coarse-to-fine object segmentation. For each level, we train

a single network for all the objects. The first network is

obtained by replacing the last layer of VGG [20] by a fully

connected layer with the required number of output required

by each step, and fine-tune it. The second network has a

simple, ad hoc architecture.

More exactly, the first network is trained to provide a

very low resolution binary segmentation of the objects given

an image region J of size 128 × 128 by minimizing the

following objective function:

∑

(J,S,o)∈Ts

‖(f1
φ(J))[o]− S‖2 , (1)

where Ts is a training set made of image regions J , and

the corresponding segmentations S for object o, (f1
φ(J))[o]

is the output of network f1
φ for region J and object o. φ

denotes the network’s parameters, optimized during train-

ing. For the LINEMOD and Occlusion datasets, there is at

most one object for a given region J , but more objects can

be present for the T-LESS dataset. At run-time, to get the

segmentations, we compute:

s1,o(J) = (f1
φ(J))[o] > τ1 , (2)
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where s1,o is a 8× 8 binary segmentation of J for object o,

and τ1 is a threshold used to binarize the network’s output.

To obtain a binary segmentation for the full input image, we

split this image into regions and compute the s1,o for each

region.

This gives us one binary segmentation S1,o for the full

input image, and each possible object. This usually results

in a single connected component per visible object; if sev-

eral components are present, we keep only the largest one

for each object. If the largest component in a segmentation

S1,o is small, object o is likely not visible. For the remain-

ing object(s), we refine the shape of the largest component

by applying a second network to each 16× 16 image patch

P that corresponds to an active location in S1:

s2,o(P ) = (f2
ψ(P ))[o] > τ2 , (3)

using notations similar to the ones in Eq. (2). Since the

input to f2
ψ(P ) has a low resolution, we do not need a com-

plex network such as VGG [20], and we use a much simpler

architecture with 2 convolutional layers and 2 pooling lay-

ers. We finally obtain a segmentation S2,o with resolution

64 × 48 for the full input image and each visible object o.

We therefore get the identities o of the visible object(s), and

for these objects, we use the segmentation centroids as their

2D centers, to compute the 3D poses of the objects as de-

scribed below.

3.2. Predicting the 3D Pose

We predict the 3D pose of an object by applying a Deep

Network to an image window W centered on the 2D object

center estimated as described in the previous section. As for

the segmentation, we use VGG [20] as a basis for this net-

work. This allows us to handle all the objects of the target

dataset with a single network.

It is possible to directly predict the pose in the form of

a 3-vector and an exponential map for example, as in [12].

However, a more accurate approach was proposed in [3] for

predicting the poses of object parts. To apply it here, we

minimize the following cost function over the parameters Θ
of network gΘ:

∑

(W,e,t,o)∈T

∑

i

‖Proj
e,t(M

o
i )−mi((gΘ(W ))[o])‖2 , (4)

where T is a training set made of image windows W con-

taining object o under a pose defined by an exponential map

e and a 3-vector t. The M
o
i are the 3D coordinates of the

corners of the bounding box of object o in the object coor-

dinate system. Proj
e,t(M) projects the 3D point M on the

image from the pose defined by e and t. mi((gΘ(W ))[o])
returns the two components of the output of gΘ correspond-

ing to the predicted 2D coordinates of the i-th corner for

object o.

(a) (b) (c)

(d) (e) (f)

Figure 3. Handling Objects with a symmetry of rotation: Object

#5 of T-LESS has an angle of symmetry α of 180◦, if we ignore the

small screw and electrical contact. If we restrict the range of poses

in the training set between 0
◦ (a) and 180

◦ (b), pose estimation still

fails for test samples with an angle of rotation close to 0
◦ modulo

180
◦ (c). Our solution is to restrict the range during training to

be between 0
◦ and 90

◦. We use a classifier to detect if the pose

in an input image is between 90
◦ and 180

◦. If this is the case

(d), we mirror the input image (e), and mirror back the predicted

projections for the corners (f).

At run-time, the segmentation gives the identity and the

2D locations of the visible object(s) o. The 3D pose can

then be estimated for the correspondences between the 3D

points Mo
i and the predicted mi((gΘ(W ))[o]) using a PnP

algorithm. Other 3D points could be used here, however,

the corners of the bounding box are a natural choice as they

frame the object and are well spread in space 1.

3.3. Handling Objects with an Axis of Symmetry

If we apply the method described so far to the T-LESS

dataset, the performances are significantly lower than the

performances on the LINEMOD dataset. As mentioned

in the introduction, this is because training images W in

Eq. (4) for the objects of this dataset can be identical while

having very different expected predictions Proj
e,t(M

o
i ), be-

cause of the rotational symmetry of the objects.

We first remark that for an object with an angle of sym-

metry α, its 3D rotation around its axis of symmetry can be

defined only modulo α, not 2π. For an object with an an-

gle of symmetry α, we can therefore restrict the poses used

for training to the poses where the angle of rotation around

the symmetry axis is within the range [0;α[, to avoid the

ambiguity between images. However, this solves our prob-

lem only partially: Images at one extremity of this range

1The bounding boxes shown in the figures of this paper were obtained

by projecting the 3D bounding box given the recovered poses, not directly

from the output of gΘ.
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of poses and the images at the other extremity, while not

identical, still look very similar. As a result, for input im-

ages with an angle of rotation close to 0 modulo α, the pose

prediction can still be very bad, as illustrated in Fig. 3.

To explain our solution, let us first denote by β the ro-

tation angle, and introduce the intervals r1 = [0;α/2[ and

r2 = [α/2;α[. To avoid ambiguity, we restrict β to be in

r1 for the training images used in the optimization problem

of Eq. (4). The drawback is of course that, without doing

anything else, we would not be able to estimate the poses

when β is in r2.

We therefore introduce a CNN classifier k(·) to predict at

run-time if β is in r1 or r2: If β is in r1, we can estimate the

pose as before; If β is in r2, one option would be to apply

another gΘ(·) network trained for this range.

However, it is actually possible to use the same network

gΘ(·) for both r1 and r2, as follows. If the classifier predicts

that β in in r2, we mirror the input image W : As illustrated

in Fig. 3(e), the object appears in the mirror image with a

rotation angle equal to α− β, which is in r1. Therefore we

can apply gΘ(·) to the mirrored W . To obtain the correct

pose, we finally mirror back the projections of the corners

predicted by gΘ(·). We currently consider the case where

the axis of symmetry is more or less vertical in the image,

and mirror the image from left to right. When the axis is

closer to be horizontal, we should mirror the image from

top to bottom.

Objects of revolution are a special and simpler case:

since their angle of symmetry is 0◦, we predict their poses

under the same angle of rotation. For training the pose pre-

dictor gΘ(·), we use the original training images with angles

of rotation in r1, and mirror the training images with angles

of rotation in r2.

Handling Objects that are ’Not Exactly Symmetrical’

As mentioned in the introduction, some objects of the T-

LESS dataset are only approximately symmetrical, such as

Object #5 in Fig. 1(d). The small details that make the ob-

ject not perfectly symmetrical, however, do not help the op-

timization problem of Eq. (4), but we would still like to

predict the pose of this object.

In the case of Object #5, we consider 4 regions instead

of 2: r1 = [0;π/2[, r1 = [π/2;π[, r3 = [π; 3π/2[, and

r4 = [3π/2; 2π[, and we train the classifier k(·) to predict

in which of these four regions the angle of rotation β is. If

β ∈ r2 or β ∈ r4, we mirror the image before computing

the pose as before. Then, if β ∈ r3 or β ∈ r4, we still have

to add π to the angle of rotation of the recovered pose to get

an angle between 0 and 2π.

3.4. Refining the Pose

We also introduce an optional additional stage to im-

prove the accuracy of the pose estimates inspired by [17].

(a) (b) (c) (d)

Figure 4. Refining the pose. Given a first pose estimate, shown by

the blue bounding box (a), we generate a binary mask (b) or a color

rendering (c) of the object. Given the input image and this mask or

rendering, we can predict an update that improves the object pose,

shown by the red bounding box (d).

As illustrated in Fig. 4, we train another CNN that predicts

an update to improve the pose. Because this CNN takes 4 or

6 channels as input, it is not clear how we can use VGG, as

we did for the previously introduced networks, and we use

here one CNN per object. However, this stage is optional,

and without it, we already outperform the-state-of-the-art.

The first image is the image window W as for gΘ(·). The

second image depends on the current estimate of the pose:

While [17] generates a depth map with a deep network, we

render (using OpenGL) either a binary mask or a color ren-

dering of the target object as seen from this current estimate.

More formally we train this CNN by minimizing:

∑

(W,e,t)∈T

∑

(ê,t̂)∈N (e,t)

∑

i

‖Proj
e,t(M

o
i )− Proj

ê,t̂(M
o
i )−

mi(hµ(W,Render(ê, t̂)))‖2 ,
(5)

where hµ denotes the CNN, µ its parameters; N (e, t) is a

set of poses sampled around pose (e, t), and Render(e, t) a

function that returns a binary mask, or a color rendering, of

the target object seen from pose (e, t).
At run-time, given a current estimate of the object

pose represented by the projections of the corners v̂ =
[. . . m̂i

⊤ . . .]⊤, and the corresponding parameterisation

(ê, t̂), we can update this estimate by invoking hµ(·):

v̂← v̂ + hµ(W,Render(ê, t̂)) . (6)

3.5. Generating Training Images

In Section 4, we will compare our method to the state-

of-the art for 3D object detection in color images [2], and

like them, for each of 15 objects of the LINEMOD dataset,

we use 15% of the images for training and use the rest for

testing. The training images are selected as in [2], such that

relative orientation between them should be larger than a

threshold. We also tried a random selection, and there was

only a slight drop in performance, for some objects only.

The selection method thus does not seem critical. The T-

LESS dataset provides regularly sampled training images.

As shown in Fig. 5, we also use a similar method as [2]

to augment the training set: We extract the objects’ silhou-

ettes from these images, which can be done as the ground
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Figure 5. Two generated training images for different objects from

the LINEMOD dataset [7]. The object is shifted from the center to

handle the inaccuracy of the detection method, and the background

is random to make sure that the network gΘ cannot exploit the

context specific to the dataset.

truth poses and the objects’ 3D models are available. Note

that this means the results are not influenced by the scene

context, which makes the pose estimation more difficult.

To be robust to clutter and scale changes, we scale

the segmented objects by a factor of s ∈ [0.8, 1.2], and

change the background by a patch extracted from a ran-

domly picked image from the ImageNet dataset [18]. More-

over, the object is shifted by some pixels from the center of

the image window in both x and y directions. This helps

us to handle small object localization errors made during

detection.

4. Experiments

In this section, we present and discuss the results of our

evaluation. We first describe the three evaluation metrics

used in the literature and in this paper. We evaluate our

method on all the possible datasets with color images for

instance 3D detection and pose estimation we are aware

of: the LINEMOD [7], Occlusion [1], and T-LESS [10]

datasets.

4.1. Evaluation Metrics

As in [2], we use the percentage of correctly predicted

poses for each sequence and each object, where a pose is

considered correct if it passes the tests presented below.

2D Projections [2] This is a metric suited for applications

such as augmented reality. A pose is considered correct if

the average of the 2D distances between the projections of

the object’s vertices from the estimated pose and the ground

truth pose is less than 5 pixels.

6D Pose [8] With this metric, a pose is considered correct

if the average of the 3D distances between the transformed

of the object’s vertices

1

|V|

∑

M∈V

‖Tr
ê,t̂(M)− Trē,t̄(M)‖2 (7)

Sequence Direct BB Mask Ref. RGB Ref.

Ape (*) 91.2 96.2 97.5 97.7

Bench Vise 61.3 80.2 90.1 91.5

Camera 43.1 82.8 82.5 86.3

Can 62.5 85.8 90.2 91.5

Cat (*) 93.1 97.2 98.6 98.6

Driller (*) 46.5 77.6 83.4 83.6

Duck 67.9 84.6 94.0 94.1

Egg Box 68.2 90.1 92.0 93.2

Glue 69.3 93.5 94.2 95.8

Hole Puncher 78.2 91.7 95.2 97.4

Iron 64.5 79.0 79.5 85.0

Lamp 50.4 79.9 83.6 83.5

Phone 46.9 80.0 85.6 88.9

average 64.9 85.4 89.7 91.3

Table 1. Evaluation using the 2D Projections metric of using the

2D projections of the bounding box (’BB’), compared to the direct

prediction of the pose (’Direct’), and of the refinement methods.

For this evaluation, we used the ground truth 2D object center to

avoid the influence of the detection. For the objects marked with

a (*), we optimize the value of the weight balancing the rotation

and translation terms on the test set, giving an advantage to the

’Direct’ pose method. For the other objects, we used the value

that is optimal for both the Ape and the Driller.

is less than 10% of the object’s diameter. V is the set of

the object’s vertices, (ê, t̂) the estimated pose and (ē, t̄) the

ground truth pose, and Tre,t(·) a rigid transformation by

rotation e, translation t. For the objects with ambigious

poses due to symmetries, [8] replaces this measure by:

1

|V|

∑

M1∈V

min
M2∈V

‖Tr
ê,t̂(M1)− Trē,t̄(M2)‖2 . (8)

5cm 5◦ Metric [19] With this metric, a pose is considered

correct if the translation and rotation errors are below 5cm

and 5◦ respectively.

4.2. Contributions of the Different Steps

The columns ’BB’, ’Mask Ref.’, and ’RGB Ref.’ of Ta-

ble 1 compare the results of our method before and after

two iterations of refinement, using either a binary mask or

a color rendering. For this evaluation, we used the ground

truth 2D object center to avoid the influence of the detec-

tion. Using refinement improves the results on average by

4.5% and 6.3% for the mask and color rendering respec-

tively. Using a color rendering systematically yields the best

results, but using the binary mask yields already a signifi-

cant improvement, showing that an untextured model can

be used.
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Metric 2D Projection 6D Pose 5cm 5◦

Sequence [2] w/o w/Ref. [2] w/Ref. [2] w/Ref.

Ape 85.2 95.3 96.6 33.2 40.4 34.4 80.2

Bench Vi. 67.9 80.0 90.1 64.8 91.8 40.6 81.5

Camera 58.7 80.9 86.0 38.4 55.7 30.5 60.0

Can 70.8 84.1 91.2 62.9 64.1 48.4 76.8

Cat 84.2 97.0 98.8 42.7 62.6 34.6 79.9

Driller 73.9 74.1 80.9 61.9 74.4 54.5 69.6

Duck 73.1 81.2 92.2 30.2 44.3 22.0 53.2

Egg Box 83.1 87.9 91.0 49.9 57.8 57.1 81.3

Glue 74.2 89.0 92.3 31.2 41.2 23.6 54.0

Hole P. 78.9 90.5 95.3 52.8 67.2 47.3 73.1

Iron 83.6 78.9 84.8 80.0 84.7 58.7 61.1

Lamp 64.0 74.4 75.8 67.0 76.5 49.3 67.5

Phone 60.6 77.6 85.3 38.1 54.0 26.8 58.6

average 73.7 83.9 89.3 50.2 62.7 40.6 69.0

Bowl - 97.0 98.9 - 60.0 - 90.9

Cup - 93.4 94.8 - 45.6 - 58.4

Table 2. Comparison between [2] and our method without and with

RGB Refinement using our segmentation-based method to obtain

the 2D object centers on the LINEMOD dataset. [2] does not pro-

vide results for the Bowl and the Cup, hence for the sake of com-

parison the average is taken over the first 13 objects.

4.3. The LINEMOD Dataset: Comparison with [2]

Table 2 compares our BB8 method with and without

RGB refinement against the one presented in [2] on the

LINEMOD dataset. Because of lack of space, we provide

the results without refinement only for the 2D Projection

metric, however, the results for the other metrics are compa-

rable. For this evaluation, we used the results of our detec-

tion method presented in Section 3.1, not the ground truth

2D object center. Our method outperforms [2] by a large

margin: 15.6% for 2D Projection, 12.6% for 6D Pose and

28.4% for the 5cm 5◦ metric.

Fig. 7 shows qualitative results for our method on this

dataset. For most of the images, the two bounding boxes,

for the ground truth pose and for the pose we estimate, over-

lap almost perfectly.

4.4. The Occlusion Dataset: Robustness to Partial
Occlusions

The Occlusion dataset was created by [1] from the

LINEMOD dataset. The partial occlusions make it signifi-

cantly more difficult, and to the best of our knowledge, the

only published results use both color and depth data. [2]

provide results using only color images, but limited to 2D

detection, not 3D pose estimation.

We only use images from the LINEMOD dataset to gen-

erate our training images by using the approach explained

in Section 3.5, except that we also randomly superimpose

objects extracted from the other sequences to the target ob-
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Figure 6. Performance on the Occlusion dataset [1]. Top: Per-

centages of correctly estimated poses as a function of the distance

threshold of the 2D projections metric for ’BB8’ on the Occlusion

dataset. For a 15px threshold, about 80% of the frames are cor-

rectly registered, and about 90% for a 20px threshold. Bottom:

Two registered frames for the Driller with a 15px and 20px error

respectively.

ject to be robust to occlusions. We do not use any image of

the test sequence to avoid having occlusions similar to the

ones presented in the test sequence.

Although all the poses in the test sets are not visible in

the training sequences, we can estimate accurate poses with

a 2D Projection error lower than 15px for about 80% of the

frames for these seven objects. We do not report the per-

formance of our method for the Eggbox, as more than 70%

of close poses are not seen in the training sequence. Some

qualitative results are shown in the second row of Fig. 7. To

the best of our knowledge, we are the first to present results

on this dataset using color images only.

4.5. The TLESS Dataset: Handling Objects with
an Axis of Symmetry

The test sequences of the T-LESS dataset are very chal-

lenging, with sometimes multiple instances of the same ob-

jects and a high amount of clutter and occlusion. We consid-

ered only Scenes #1, #2, #4, #5, and #7 in our experiments.

It is also difficult to compare against the only published

work on T-LESS [10], as it provides the 6D pose metric

averaged per object or per scene, computed using RGB-D

data, while, to the best of our knowledge, we are the first

to report results on the T-LESS dataset using RGB images
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Figure 7. Some qualitative results. First row: LINEMOD dataset; Second row: Occlusion dataset; Third row: T-LESS dataset (for objects

of revolution, we represent the pose with a cylinder rather than a box); Last row: Some failure cases. From left to right: An example of a

pose rejected by the 2D Projections metric, a failure due to the lack of corresponding poses in the training set, two examples from T-LESS

rejected by the 6D pose metric, and one failure due to the fact that some objects are made of several instances of another object.

Scene ID: [Obj. IDs] 6D Pose Average

1: [2, 30] 50.8, 55.4 53.1

2: [5, 6] 56.5, 55.6 56.1

4: [5, 26, 28] 68.7, 53.3, 40.6 54.3

5: [1, 10, 27] 39.6, 69.9, 50.1 53.2

7: [1, 3, 13, 14, ... 42.0, 61.7, 64.5, 40.7, ...

7: ... 15, 16, 17, 18] ...39.7, 45.7, 50.2, 83.7 53.5

Table 3. Our quantitative results on T-LESS [10]. Most of the er-

rors are along the z axis of the camera, as we rely on color images.

only. Similarly to [10], we evaluate the poses with more

than 10% of the object surface visible in the ground truth

poses. As shown in Table 3, the 6D Pose average per scene

with our method is 54%. The object 3D orientation and

translation along the x and y axes of the camera are typi-

cally very well estimated, and most of the error is along the

z axis, which should not be surprising for a method using

color images only.

4.6. Computation Times

Our implementation takes 140 ms for the segmentation,

130 ms for the pose prediction, and 21 ms for each refine-

ment iteration, on an Intel Core i7-5820K 3.30 GHz desk-

top with a GeForce TITAN X. If there is only one object

of interest, we can replace VGG by a specific network with

a simpler architecture, the computation times then become

20 ms for the segmentation and 12 ms for the pose predic-

tion, with similar accuracy.

5. Conclusion

Our “holistic” approach, made possible by the remark-

able abilities of Deep Networks for regression, allowed us

to significantly advance the state-of-the-art on 3D pose esti-

mation from color images, even on challenging objects from

the T-LESS dataset.
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