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Abstract

Input binarization has shown to be an effective way

for network acceleration. However, previous binarization

scheme could be regarded as simple pixel-wise threshold-

ing operations (i.e., order-one approximation) and suffer-

s a big accuracy loss. In this paper, we propose a high-

order binarization scheme, which achieves more accurate

approximation while still possesses the advantage of binary

operation. In particular, the proposed scheme recursively

performs residual quantization and yields a series of binary

input images with decreasing magnitude scales. Accord-

ingly, we propose high-order binary filtering and gradien-

t propagation operations for both forward and backward

computations. Theoretical analysis shows approximation

error guarantee property of proposed method. Extensive

experimental results demonstrate that the proposed scheme

yields great recognition accuracy while being accelerated.

1. Introduction

Methods to accelerate learning and evaluation of deep

network could be roughly divided into three groups. The

simplest method is to perform network pruning (i.e., by

rounding off near-zero connections) and re-train the pruned

network structure [10, 18, 20]. To achieve more structural

compression rate, structural sparsity approximation tech-

niques are later developed to morph larger sub-Networks

into shallow ones [1, 12, 27]. However, this type of method

is not a general plug-in solution. Namely, for different net-

works with different network structures, expert knowledge

is required to design the corresponding proper approxima-

tion network. Recently, a new set of solutions called net-

work binarization was proposed [4, 5, 21]. The idea be-

hind network binarization is simple: transform the float-

ing weights of network as well as the corresponding for-

ward or backward data flow to binary, therefore both com-

putation and network storage could be reduced. For exam-

ple, BinaryConnect-Network [4] shows great performance
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Figure 1. This figure shows how the High-Order Residual Quan-

tization method operates on a common convolutional layer. X

is the input tensor. Ri(X) is the i-th order residual (defined in

Section 3.2) of X. We use the first-order binary quantization B

and α of weight filter W . The final output Y is the sum of out-

puts in different orders. In a Order-Two Residual Quantization,

Y = Y1 + Y2.

on datasets like CIFAR-10 and SVHN, but does not per-

form well enough on large-scale datasets (e.g., ImageNet).

Binary-Weights-Network (BWN) [21] reduces the network

storage by ∼ 32× and reach a state-of-art result on Ima-

geNet dataset.

To further speed up network computation, input image is

also binarized via thresholding operation. However, while

network evaluation speed is reduced dramatically by a fac-

tor of ∼ 58×, the recognition accuracy on ImageNet drop

from 56.6% to 27.9% (BNN [5]) and 44.2% (XNOR [21]),

due to large approximation error. Motivated by this lim-

itation, in this work, we propose a High-Order Residual

Quantization (HORQ) framework. The basic idea of this

proposed framework is straightforward: previous input bi-

narization operation, which simply performs positive and

negative thresholding, could be considered as a very coarse

quantization of floating numbers. In contrast, we propose

a much more precise binary quantization method via re-

cursive thresholding operation. Namely, after one time of

thresholding operation, we could calculate the residual er-
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ror and then perform a new round of thresholding operation

to further approximate the residual. Thus, we could obtain

a series of binary maps corresponding to different quantiza-

tion scales. Based on these binary input tensors (stacked

binary maps of different magnitude scales), we have de-

veloped efficient binary filtering operations for forward and

backward computation. Experiments well demonstrate that

our new proposed input binary quantization scheme not on-

ly outperforms the original XNOR-Networks [21], but also

possesses great speedup ratio. At the same time, theoretical-

ly, we provide error analysis for our approximation scheme.

The rest of this paper is organized as follows. Some re-

lated works are demonstrated and compared in Section 2.

In Section 3, we propose the High-Order Residual Quanti-

zation method and HORQ-Net. Section 4 covers the exper-

iment part and analysis on storage and computation.

2. Related Work

Standard implementation of DCNNs is inefficient in

memory storage and consumes considerable computation-

al resources. Many works tried to accelerate and simplify

DCNN. We divide these works into three categories:

Parameter Pruning It is believed many deep learning

models are over-parameterized with significant redundan-

cy [6]. To simplify DCNN, a widely used method is to re-

move parameters with little information. An early method

called weight decay [20] is firstly used in pruning a network.

OBD (Optimal Brain Damage [18]) provides a method us-

ing second-derivative information to remove the unimpor-

tant weights from a neural network under the assumption

that the Hessian matrix of the problem is diagonal. OB-

S (Optimal Brain Surgeon [10]) furthers the idea of OBD

and achieves a better experimental results. However, their

methods need to compute the second-derivatives, which in-

creases the computational complexity significantly.

Collins et al. [3] proposed a method using sparsity-

inducing regularizer during the training of CNNs. Then

Han et al. [9] proposed an approach to apply parameter

pruning to a memory-efficient structure. Related approach-

es can be found in [25] and [28]. They firstly find similar

neurons during the training process and then combine or

remove these neurons. These methods are based on a pre-

trained neural network. Our High-Order Residual Quantiza-

tion method does not rely on a pre-trained network. There-

for, our method has an advantage of easy training.

Model Compression Another approach to simplify neu-

ral networks is called model compression [1]. The original

idea of model compression is to train a compact artificial

neural network to mimic a full-version pre-trained complex

model. The full-version model is used to label the large

unlabeled data set and the compact network is trained on

this ensemble labeled data set. Compared with other com-

pression methods, this method simply trains a network with

fewer hidden units, thus the performance is limited.

Some other methods also consider the similar approach

but develop many other skills. Jaderberg et al. [12] pro-

posed a method for accelerating convolutional networks in

linear case and later, Zhang et al. [27] proposed a method

for accelerating convolutional networks in nonlinear case.

These two methods minimize the reconstruction error of the

responses (linear and nonlinear respectively) under the as-

sumption that the convolutional filters can be low-rank ap-

proximated along certain dimensions. Methods in [22], [7]

and [13] approximate a weight filter with a set of separa-

ble smaller filters. These methods rely on the low-rank as-

sumption and also need a pre-trained network. They are

network-dependent. In contrast, our method is general and

is a plug-in solution.

Network Quantization This part is most related to our

method. It is obvious that operations in high precision are

much more time-consuming than those in binary values (eg.

+1,−1). Training a DCNN with binary weights can signif-

icantly accelerate the computation since if the weight fil-

ters are replaced with binary values, the convolutional op-

eration can be simply replaced by additions and subtrac-

tions. EPB (Expectation BackPropagation [24]) shows that

network with binary weights and binary activations is ca-

pable of achieving high performance. BC (BinaryConnec-

t [4]) extends the idea of EBP and later, Courbariaux et

al. [5] proposed BinaryNet (BN) which is a further ex-

tension of BC. BC constrains weights to +1 and −1 and

BN further constrains activations to +1 and −1 thus the

input (except the first layer) and the output of each lay-

er are all binary values. They both achieve a state-of-art

result in small-scale data sets (eg. MNIST and CIFAR-

10). According to Rastegari et al. [21], BC and BN are not

very successful on large-scale data set. Therefore, Raste-

gari et al. [21] proposed Binary-Weights-Networks (BWN)

and XNOR-Networks, which use a different binary method

compared with BC and BN. The most innovative point of

their method is to compute the scaling factor. BWN uses

binary weights and shows better performance than BC on

ImageNet. XNOR, using both binary weights and binary in-

put, further improves the efficiency of the computation. The

accuracy of this network drops largely due to the informa-

tion loss during input quantization. This inspires us to pro-

pose the High-Order Residual Quantization method, which

reduces the information loss during quantization. We com-

pare our HORQ method with XNOR and BN. Our method

outperforms these previous methods.

3. HORQ Network

In this chapter, we propose a new binary quantization

method named High-order Residual Quantization (HORQ)

which realizes the binarization of both input and weights

in a neural network. The most innovative point of HORQ
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is that we recursively make use of the residual (defined in

Section 3.2). Then we can obtain a series of binary inputs

in different magnitude scales. We perform convolution op-

eration on input in different scales and combine the results.

This method manages to reduce the information loss during

binary quantization.

We start with some notations. We use 〈I,W, ∗〉 to rep-

resent a convolutional neural network where I represents

the set of input tensors, W represents the set of weight fil-

ters and ∗ represents the convolution operation. We use

Il ∈ I to represent the input tensor of the lth layer and

Wl ∈ W to represent the weight filters of the lth layer. We

use c, w, h to represent channel, width and height so that

Il ∈ R
cin×win×hin and Wl ∈ R

cout×cin×w×h.

3.1. XNOR-Network Revisited

In this section, we will briefly revisit the method pro-

posed by Rastegari et al. [21]. They proposed two kinds

of binary-neural-Networks named BWN and XNOR. BWN

uses binary weights to speed up the computation. XNOR is

based on BWN and realizes the binarization of input data

in a convolutional layer. Here is a brief explanation of the

quantization method used in XNOR and BWN:

Consider one convolution layer of the neural network

with I ∈ I being the input tensor and W ∈ W being a

weight filter. The core operation of this layer can be repre-

sented as I ∗W . The idea of BWN is to constrain a convolu-

tional neural network with binary weights. Rastegari used

αB to approximate W where α ∈ R
+ is a scaling factor

and B ∈ {−1,+1}c×w×h is a binary filter:

I ∗W ≈ (I ⊕B)α (1)

Here, ⊕ represents a binary convolution operation with no

multiplication. To find suitable α and B, Rastegari [21]

solved the following optimization problem:

α∗, B∗ = argmin
α,B

J(B,α) = argmin
α,B

‖W − αB‖2 (2)

It is easy to find the solution to Equation 2:
⎧
⎨
⎩

B∗ = sign(W )

α∗ =
1

n
‖W‖l1

(3)

Using the optimal estimation (Equation 3), one can train the

CNN according to Algorithm 1 proposed by [21].

The idea of XNOR is based on BWN. BWN only re-

places real value weights with binary values while XNOR

is designed to replace real value inputs with binary values in

addition to binary weights. XNOR uses βH to approximate

the input tensor X: X ≈ βH and they solve the following

optimization problem:

α∗, B∗, β∗, H∗ = argmin
α,B,β,H

‖X 
W − αβH 
B‖2 (4)

Algorithm 1 Training an L-layers CNN with binary weight-

s:

Input: A minibatch of inputs and targets (I, Y ), cost func-

tion C(Y, Ŷ ), current weight Wt and current learning rate

ηt

Output: Updated weight Wt+1 and updated learning rate

ηt+1

1: Binarizing weight filters:

2: for l = 1 to L do

3: for k = 1 to cout do

4: Alk = 1
n
‖Wt

lk‖lk
5: Blk = sign(Wt

lk)

6: W̃lk = AlkBlk

7: Ŷ =BinaryForward(I, B,A)

8:
∂C

∂W̃
=BinaryBackward( ∂C

∂Ŷ
, W̃)

9: Wt+1 =UpdateParameters(Wt, ∂C

∂W̃
, ηt)

10: ηt+1 =UpdateLearningrate(ηt, t)

As showed in [21], an approximate solution to this problem

is: ⎧
⎪⎨
⎪⎩

β∗H∗ =
1

n
‖X‖l1sign(H)

α∗B∗ =
1

n
‖W‖l1sign(W )

(5)

We can use an algorithm similar to Algorithm 1 to train

XNOR. More details about the training process of BWN

and XNOR can be found in [21]. The experiments in [21]

show that XNOR further accelerates the speed but the accu-

racy drops largely compared with BWN. Thus our purpose

is to propose a improved neural networks of which both

weights and inputs are binary values and the performance

remains a relatively high level both in speed and accura-

cy. Based on this idea, in the next section, we propose the

High-Order Residual Quantization method (HORQ).

3.2. High-Order Residual Quantization

In this section, we will explain the HORQ method to

quantize the input of a convolutional layer. Using H∗ and

β∗ in Equation 5 is not precise enough. Our HORQ method

calculates the residual error and then performs a new round

of thresholding operation to further approximate the resid-

ual. This binary approximation of the residual can be con-

sidered as a higher-order binary input. We can recursively

perform the above operations and finally we can obtain a se-

ries of binary maps corresponding to different quantization

scales. Based on these binary input tensors, we develop ef-

ficient binary filtering operations for forward and backward

computation.

The input of a convolution layer is a 4-dimension tensor.

If we reshape the input tensor and the corresponding weight

filters into matrices, the convolution operation can be con-
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sidered as a matrix multiplication. The process of tensor re-

shape will be demonstrated in Section 3.3. Each elemental

operation within the matrix production can be considered as

a vector inner product operation. Thus we firstly consider

the input as a vector:

Suppose there is an input vector X ∈ R
n and we quan-

tize the X following the process of XNOR:

X ≈ β1H1 (6)

where β1 ∈ R and H1 ∈ {+1,−1}n. We can get the result

by solving the following optimization problem:

β∗

1 , H
∗

1 = argmin
β1,H1

J(β1, H1)

= argmin
β1,H1

‖X − β1H1‖
2

(7)

The analytical solution to this problem is:

⎧
⎨
⎩

H∗

1 = sign(X)

β∗

1 =
1

n
‖X‖l1

(8)

Equation 6 can be considered as an order-one binary quan-

tization(i.e., simple thresholding). Thus we can define the

first-order residual tensor R1(X) by computing the differ-

ence between the real input and first-order binary quantiza-

tion:

R1(X) = X − β1H1 (9)

Since β1 and H1 can both be determined by X from Equa-

tion 8, R1(X) can also be determined by X . We can use

R1(X) to represent the information loss due to approxima-

tion using Equation 6. Notice that R1(X) is a real value

tensor and we can further quantize R1(X) as follow:

R1(X) ≈ β2H2 (10)

where β2 ∈ R, H2 ∈ {+1,−1}n, then we can get the

Order-Two Residual Quantization of the input:

X = β1H1 +R1(X) ≈ β1H1 + β2H2 (11)

where β1, β2 are real value scalars and H1, H2 are binary

value tensors. β1H1 is called the first-order binary input

while β2H2 is called the second-order binary input. Using

the similar way that we solve the Equation 6, we can solve

approximation problem of Equation 11:

Firstly, we solve the corresponding optimization problem:

β∗

2 , H
∗

2 = argmin
β2,H2

‖R1(X)− β2H2‖
2 (12)

and the solution to Problem 12 is:
⎧
⎨
⎩

H∗

2 = sign(R1(X))

β∗

2 =
1

n
‖R1(X)‖l1

(13)

We can show that our binary approximation method of us-

ing Equation 11 is much better than the original method by

using Equation 6 both theoretically and experimentally.

We can compare the information loss between these t-

wo binary approximation methods. Remember we define

R1(X) as the residual tensor of approximation using Equa-

tion 6. Then it’s natural to define the residual tensor of ap-

proximation by Equation 11:

R2(X) = X − β1H1 − β2H2

= R1(X)− β2H2

(14)

Notice that H∗
2 and β∗

2 minimize ‖R1(X)−β2H2‖
2, there-

fore:
‖R2(X)|β2=β∗

2
,H2=H∗

2
‖2

=‖(R1(X)− β2H2)‖
2|β2=β∗

2
,H2=H∗

2

=‖(R1(X)− β2H2)‖
2
min

�‖(R1(X)− β2H2)‖
2|β2=0

=‖R1(X)‖2

(15)

Thus if we use the L2 − norm of the residual tensor to

represent the information loss, from the above derivation,

we can prove that our Order-Two Residual Quantization by

Equation 11 reduces the information loss compared with the

approximation using Equation 6 in [21].

It’s straightforward to develop the Order-Two Residual

Quantization using Equation 11 into a Order-K Residual

Quantization:

X ≈

K∑

i=1

βiHi (16)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0(X) = X

Ri−1(X) = X −
i−1∑

j=1

βjHj i = 2, 3, ...,K

Hi = sign(Ri−1(X)) i = 1, 2, ...,K

βi =
1

n
‖Ri−1(X)‖l1 i = 1, 2, ...,K

(17)

We can recursively calculate the residual tensor to get a

higher-order input. In fact, if the order becomes higher, the

information loss will be more less, while the computational

cost will also increase. We find that Order-Two and Order

-Three residual quantization are good enough to approxi-

mate the input in terms of information loss. In the nex-

t section, we will introduce the HORQ network using our

Order-Two Residual quantization method.

3.3. The HORQ Network

In this section, we proposed HORQ-Net which takes the

HORQ binary input and performs high order binary filtering
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for forward and backward computation. As for the convo-

lutional layer, suppose the input X ∈ R
cin×win×hin and

the convolutional filter W ∈ R
cout×cin×w×h of this convo-

lution layer are two tensors. Then if we reshape the input

tensor and weight tensor into two matrices respectively, the

convolution operation can be considered as a matrix multi-

plication.

Tensor Reshape To reshape the weight tensor W , we

can straighten each filter to a vector shape of 1 × (cin ×
w × h). There are cout filters thus the weight tensor W is

reshaped to a matrix Wr shape of cout × (cin × w × h).
If we use Y to denote the output of the convolution lay-

er 〈X,W, ∗〉 then Y ∈ R
cout×wout×hout , where wout =

(win+2∗p−w)/s+1 and hout = (hin+2∗p−h)/s+1,

p and s represent the pad and stride parameter respective-

ly. To reshape the input tensor X , we can straighten each

sub-tensor in X with the same size of a filter to a vector

and combine these vectors to a matrix Xr. In fact, there

are wout × hout sub-tensors in X , thus Xr is in the shape

of (cin × w × h) × (wout × hout). Then we can use a

matrix production Yr = WrXr to replace the convolution

operation between X and W where Yr is a matrix shape

of (cout) × (wout × hout). Then we reshape Yr to Y to

complete the whole computation.
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כ

×

=
=
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݄௜௡…
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ܿ௢௨௧ …

Weight Reshape Input Reshape Output Reshape

Figure 2. This figure shows the tensor reshape process.

Convolution Using Order-Two Residual Quantiza-

tion After the Tensor Reshape process, we get the input Xr

and the weight Wr in matrix form. In this part, we show

how to use Order-Two Residual Quantization to compute

the matrix production between Wr and Xr. We firstly quan-

tize the weight matrix Wr:

Wr(i) ≈ αiBi (i = 1, 2, ..., cout) (18)

⎧
⎨
⎩

Bi = sign(Wr(i))

α =
1

cin × w × h
‖Wr(i)‖l1

(19)

where Wr(i) is the i-th row of Wr; Wr(i), Bi ∈

R
1×(cin×w×h); α ∈ R.

Algorithm 2 OrderTwoBinaryConvolution(X,W )

Input: Input tensor X ∈ R
cin×win×hin , Weight tensor

W ∈ R
cout×cin×w×h and convolutional parameters include

pad and stride.

Output: The convolutional result Y using method of

second-order binary approximation.

1: Reshape weight tensor and input tensor:

2: Wr=ReshapeWeight(W )

3: Xr=ReshapeInput(X,W )

4: Binarizing weight matrix:

5: for k = 1 to cout do

6: Ak = 1
cn×w×h

‖Wr(k)(t)‖l1
7: Mk = sign(Wr(k))

8: W̃r(k) = AkMk

9: Binarizing input matrix:

10: for k = 1 to wout × hout do

11: B1k = 1
cn×w×h

‖Xr(k)‖l1
12: N1k = sign(Xr(k))
13: R1(Xr(k)) = Xr(k) −B1kN1k

14: B2k = 1
cn×w×h

‖R1(Xr(k))‖l1
15: N2k = sign(R1(Xr(k)))

16: X̃r(k) = B1kN1k +B2kN2k

17: Yr =BinaryProduction(X̃r(k), W̃r(k))
18: Y =ReshapeOutput(Yr)

Then, we quantize the input matrix Xr using Order-Two

Residual Quantization:

Xr(i) ≈ β1(i)H1(i)+β2(i)H2(i) (i = 1, 2, ..., wout×hout)
(20)⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(i) = sign(Xr(i))

β1(i) =
1

cin × w × h
‖Xr(i)‖l1

R1(Xr(i)) = Xr(i) − β1(i)H1(i)

H2(i) = sign(R1(Xr(i)))

β2(i) =
1

cin × w × h
‖R1(Xr(i))‖l1

(21)

where Xr(i) is the i-th column of Xr; Xr(i), H1(i), H2(i) ∈

R
(cin×w×h)×1; β1(i), β2(i) ∈ R. Thus we can compute the

binary convolution via Algorithm 2.

Training HORQ Network Algorithm 3 demonstrates

the procedure for training a HORQ network using our

Order-Two Residual Quantization method. The ordinary

procedure includes Forward, Backward and Parameter-

Update. We use the binary value of inputs and weights dur-

ing the Forward and Backward process. For convenience,

we only include convolution layers in the Forward process

in Algorithm 3. In fact, our High-Order Residual Quantiza-

tion method can be easily applied to fully-connected layers

because the fully connected layer only involves vector inner
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product and we can use our HORQ method directly without

the Tensor Reshape process.

Algorithm 3 Traning an L-layers HORQ network:

Input: A minibatch of inputs and targets (X,Y ), cost

function L(Y, Ŷ ), current weight W(t) = {W l(t)}l=1,...,L

and current learning rate η(t)
Output: Updated weight Wt+1 and updated learning rate

ηt+1

1: for l = 1 to L do

2: Ŷ l(t)=OrderTwoBinaryConvolution(X l(t),W l(t))

3:
∂L

∂W̃
=BinaryBackward( ∂L

∂Ŷ
, W̃)

4: W(t+ 1) =UpdateParameters(W(t), ∂L

∂W̃
, η(t))

5: η(t+ 1) =UpdateLearningrate(η(t), t)

To train a HORQ-Net, we quantize the input and weight

filters and compute the binary convolution layer by layer.

The binary convolution is detailed in Algorithm 2. After

the Forward-pass, we use the binary weight W̃ and binary

input X̃ to do the back propagation. We also use the same

way as Courbariaux et al. [5] does to compute the gradien-

t for the sign function sign(·). We should notice that we

use the real-value weights and inputs when updating the pa-

rameters. The reason is that the parameter update is quite

small in each iteration. If we update with binary weights,

these updates may be eliminated during the binary opera-

tion in the next iteration and therefore the network will not

be efficiently trained. The similar strategy is also applied

in [4, 5, 21]

4. Experiments

In this section, we will show two main comparison ex-

periments on MNIST and CIFAR-10. We compare HORQ-

Net with some of the previous methods. Experiments show

that HORQ-Net possesses better performance on image

classification tasks.

4.1. MNIST

We test our HORQ-Net on MNIST dataset, which is a

benchmark image classification dataset [17] of handwritten

digits from 0 to 9. To make this experiment comparable

with BC [4] and BNN [5], we also use a MLP with a sim-

ilar structure. This MLP consists of 3 hidden layers with

4096 Order-Two Residual Quantized connections and a L2-

SVM layer with the Hinge loss (Lee et al. [19] showed that

L2-SVM is better than Softmax in this dataset). To train this

MLP, we do not use any convolution, preprocessing, data-

augmentation or pre-training skills. We use ADAM adap-

tive learning rate method [15]. We use Batch Normalization

with a minibatch of size 200 to speed up the training.

We also train a same MLP with only order-one bina-

ry connections (XNOR) to compare the final test accuracy.

HORQ  vs  XNOR on MNIST

HORQ

XNOR

Number of epochs

A
cc

ur
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y 
(%

)

Figure 3. This figure shows the classification accuracy of HORQ-

Network and XNOR-Network on MNIST.

HORQ  vs  XNOR on MNIST

HORQ

XNOR

Number of epochs

H
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Figure 4. This figure shows the hinge loss of HORQ-Network and

XNOR-Network on MNIST.

Method Binary Input Binary Weight Test error

BEB No Yes 2.12%

BC No Yes 1.18%

BN No Yes 0.96%

BNN Yes Yes 1.33%

XNOR Yes Yes 1.96%

HORQ Yes Yes 1.25%

Table 1. This Table shows the Test error rate of different bina-

ry method on MNIST: BEB (Binary expectation backpropaga-

tion [2]), BC (BinaryConnect [4]), BN (BinaryNet [5]), BNN

(Bitwise Neural Networks [14]), XNOR (XNOR-Networks [21]),

HORQ (This work).

The results are shown in Figure 3 and Figure 4. We use

the same network structure above to train XNOR-Net and

HORQ-Net and find that HORQ-Net outperforms XNOR-

Net by 0.71% in accuracy. From Figure 3, we also observe

that HORQ-Net converges within fewer epochs. Figure 4

shows the hinge loss changes over epoch. Both HORQ-Net

and XNOR-Net can converge to a relatively small loss but

the hinge loss curve of XNOR-Net is not as smooth as the

loss curve of HORQ-Net. Most previous works (showed
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Figure 5. This figure shows the classification accuracy of HORQ-

Network and XNOR-Network on CIFAR-10 on a shallow CNN.

in Table 2) used binary weights and float-precision input-

s. XNOR-Net [21] and our HORQ-Net use both binary

weights and binary inputs. This experiment shows HORQ-

Net can realize the acceleration of neural networks with lit-

tle performance degradation.

4.2. CIFAR-10

We also test our HORQ-Network on CIFAR-10 dataset

containing 50000 training images and 10000 testing images.

We do not use any preprocessing or data-augmentation

skills (which is showed to be a game changer in this data

set [8]). In order to show the difference between the per-

formance of methods using Order-Two Residual Quantiza-

tion (HORQ) and order-one binary approximation (XNOR),

firstly we use a shallow convolution neural network. The

structure of our CNN is:

(32)C5− S −MP3−N − (32)C5− S −MP3−

N − (64)C5− S −AP3− 10FC − SOFTMAX
(22)

Where C5 is a 5 × 5 convolution layer, S is a sigmoid ac-

tivation layer, MP3 is a max-pooling layer with kernel size

3 and stride 2, AP3 is a average-pooling layer with kernel

size 3 and stride 2, N is a LRN layers, FC is a fully connect-

ed layer and SOFTMAX is a softmax loss layer. To train

this CNN, we set the size of the minibatch to 50 to speed up

the training. We also centralize and standardize the training

data.

Since our CNN structure is not as complex as Con-

vNet [4] (ConvNet has six convolutional layers and two

fully connected layers and each layer has more perception-

s), our baseline (without using any binary approximation)

accuracy is not as high as theirs. But this shallow net-

work makes it easier to compare the performance between

HORQ and XNOR under the same initialization, parame-

ter setting and training strategy. We report the final perfor-

mance in Figure 5 and Figure 6. Using the same network

structure, HORQ-Net converges with accuracy drop within

HORQ  vs  XNOR on CIFAR-10

Baseline

HORQ

XNOR

Number of epochs

So
ftm

ax
lo

ss

Figure 6. This figure shows the softmax loss of HORQ-Network

and XNOR-Network on CIFAR-10 on a shallow CNN.

2% compared with our baseline. The accuracy drops ∼ 5%
in XNOR-Net. Besides, HORQ-Net and XNOR-Net con-

verges in a similar speed. Hence this experiment also shows

the better performance of HORQ-Net.

4.3. Storage Space Analysis

Generally speaking, our high-order binarization can be

applied to any DCNN models. Models with binary weights

will take up less storage memory than models with dou-

ble precision weights. A very deep convolutional neural

networks, for example, VGG-16, will occupy nearly 400M

storage space using float precision. Figure 7 shows the s-

torage cost of some widely used models with double and

binary precision weights.

Binary precision

Float precision

Model size comparison: Binary vs Float

M
od

el
 si

ze
(M

B)

Figure 7. This figure lists some models(Vgg-16 [23], Alexnet [16],

Googlenet [26], Convnet [4], Lenet [11]) shows the Comparison of

storage space of several models between float precision and binary

precision.

4.4. Computation Analysis

Consider a convolution operation (I,W, ∗), where input

I ∈ R
cin×win×hin , Weight tensor W ∈ R

cout×cin×w×h,

the total number of operation is cout × cin ×wh×winhin.

Using the current generation CPU, which is capable of per-
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Figure 8. This figure shows the relationship between (a)speedup

ratio and filter size, (b)speedup ratio and channels, (c)speedup ra-

tio and order of quantization.

forming 64 binary operations within one cycle clock, our

method of High-Order Residual Quantization of order K

needs K×cout×cin×wh×winhin+(K+1)×winhin =
KNp + (K + 1)Nn operations. Among these operations,

KNp operations are binary-precision operations, which can

be sped up, while the other (K+1)Nn operations are float-

precision operations, which cannot be sped up. Thus the

speedup ratio can be computed as:

η =
coutcinwhwinhin

1
64 (Kcoutcinwhwinhin) + (K + 1)winhin

=
64coutcinwh

Kcoutcinwh+ 64(K + 1)

(23)

For the case of Order-Two, we can compute the speedup

ratio:

η =
coutcinwhwinhin

1
64 (2coutcinwhwinhin) + 3winhin

=
64coutcinwh

2coutcinwh+ 192

(24)

Method Speedup ratio

Order-One Residual Quantization(XNOR) 58×
Order-Two Residual Quantization 30×
Order-Three Residual Quantization 20×
Order-Four Residual Quantization 15×

Table 2. This table shows speedup ratio using HORQ method in d-

ifferent orders. XNOR-Net can be considered as Order-One Resid-

ual Quantization.

As we can see in Equation 24, the speedup ratio does not

depend on the width or the height of the input tensor but

on the filter size: wh and the number of channels: cincout.
Firstly, we fix the number of channels: cincout = 10×10 to

see how filter size influence speedup ratio. Secondly, we fix

the filter size : w×h = 3×3 and input channels cin = 3 to

see how output channels influence speedup ratio. As we can

see from Figure 8, the speedup will not be remarkable if the

number of channels and filter size is two small. Thus when

we apply the binary method to DCNN, we should avoid

quantizing layers with few channels (e.g. first layer with

3 channels). If we set cincout = 64× 256, w × h = 3× 3,

our Order-Two Residual Quantization can reach 31.98×
speedup. But in practice, the speedup ratio may be a little

bit lower due to the process of memory read and data pre-

processing. From Figure 8, we observe that Order-Two and

Order-Three Residual Quantization still remain a relatively

high speed up ratio (> 20×). Thus our HORQ method of

order-two and order-three are very powerful in accelerating

the neural network with performance guaranteed.

5. Conclusion

In this paper, we propose an efficient and accurate binary

approximation method called High-Order Residual Quanti-

zation. We introduce the concept of residual to represen-

t the information loss and recursively compute the quan-

tized residual to reduce the information loss. Using bi-

nary weights, the size of network is reduced by ∼ 32×
and this method provides ∼ 30× speed up. This also pro-

vides the possibility of running the inference of deep con-

volutional network on CPU. Our experiments show that

the performance of HORQ-net is guaranteed. HORQ-Net

outperforms XNOR-Net in MNIST(0.71%) and in CIFAR-

10(∼ 3%).
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