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Abstract

Binary neural networks have attracted tremendous at-

tention due to the efficiency for deploying them on mobile

devices. Since the weak expression ability of binary weights

and features, their accuracy is usually much lower than that

of full-precision (i.e. 32-bit) models. Here we present a new

frame work for automatically searching for compact but ac-

curate binary neural networks. In practice, number of chan-

nels in each layer will be encoded into the search space and

optimized using the evolutionary algorithm. Experiments

conducted on benchmark datasets and neural architectures

demonstrate that our searched binary networks can achieve

the performance of full-precision models with acceptable

increments on model sizes and calculations.

1. Introduction

Convolutional neural networks (CNNs) have been

widely used in various computer vision tasks, such as im-

age classification [9], object detection [19] and visual seg-

mentation [15]. These neural networks are often of heavy

design with massive parameters and computational costs,

which cannot be directly deployed on portable devices with-

out model compressing techniques, e.g. pruning [8], knowl-

edge distillation [10], compact model design [11, 22], and

quantization [18, 25].

Wherein, 1-bit quantization has been recently received

a great attention, which represents the weights and activa-

tions in the network using only two values, e.g. −1 and

+1. Thus, binarized networks could be efficiently applied

in a series of real-world applications (e.g. camera and mo-

bile phone). Nevertheless, the performance of binary neural

networks (BNNs) are still far worse than that of their origi-

nal models. Figure 1 summarizes the performance of state-

of-the-art binarization methods [16, 13, 18, 25, 14, 5] on

the ImageNet benchmark [3], including XNOR-Net [18],

Bi-Real Net [14], PCNN [5], etc. Although they have

made tremendous efforts for enhancing the performance of

BNNs, the highest top-1 accuracy obtained by PCNN [5] is

about 12.0% lower than that of the baseline ResNet-18 [9].

Figure 1. Performance of state-of-the-art methods for binarizing

ResNet-18 on the ImageNet dataset.

The severe accuracy drop mentioned in Figure 1 greatly

limits the practicality of BNNs, considering that there are

a number of computer vision taks with very high precision

requirements such as face recognition [21] and person re-

identification [6]. The main reason could be derived from

the fact that discrimination of binary features cannot match

that of the full-precision features with the same dimension-

ality. Therefore, it is necessary to find a trade-off approach

for establishing compact binary networks with acceptable

model sizes by increasing the number of channels in each

convolutional layer. Motivated by the recent neural archi-

tecture search (NAS [1, 4, 23]) hotspot, we present to appro-

priately modify channel numbers of binarized networks and

search a new architecture with different channel numbers

but high precision. In practice, expansion ratios of all layers

in the desired binary network will be encoded to form the

search space, and the evolutionary algorithm will be utilized

for effectively find the lower bound of BNNs for achiev-

ing the same performance as that of their full-precision ver-

sions.

We conduct experiments on the CIFAR and ImageNet

datasets using VGGNet [20] and ResNet [9] architectures.

Results on these benchmarks show that the proposed ap-

proach is able to find excellent binary neural architectures

for obtaining high precision with as few computation costs

as possible.



2. Approach

Binarization Method. Following the widely-used

DoReFa-Net [25], in the binary layer, the floating-point

weights w is approximated by binary weights wb and a

floating-point scalar, while the floating-point activations x

are represented by binary values xb. The feed-forward in

DoReFa-Net is defined as:

wb = sign(w)× E(|w|),

xb = round(clip(x, 0, 1)),
(1)

where E(| · |) calculates the mean of absolute value. In the

back-propagation process, we adapt the “Straight-Through

Estimator” method [2] to estimate the corresponding gra-

dients. During the quantization process, we restrain the

weights and activations of all convolution layers and fully-

connected layers to only 1-bit except the first and last layer,

following the existing works [25, 14].

The extremely binary quantization brings enormous

computation acceleration and memory reduction. How-

ever, most of the state-of-the-art binary networks cannot

match the accuracy of the full-precision counterpart mod-

els. Recently, the uniform width expansion proposed by

WRPN [17] expands all the layers with only one hyper-

parameter for multi-bit quantization networks to pursue this

goal.

Although widened binary networks can obtain accept-

able performance, such a uniform expansion strategy will

obviously increase the required memory and computational

complexities, e.g. the binary network after expanding 4×
is 16× larger than the original one. In fact, there is often

strong redundancy in deep neural architectures, we do not

need to expand all layers for achieving the desired perfor-

mance. Thus, we propose to define a binary neural archi-

tecture search problem and utilize evolutionary algorithm

to search the optimal architectures.

Search Space. For the search space, we only focus on the

search for network width, i.e. the number of the channels

of each layer. For a given network architecture which has

n layers, we define a ∈ R
n to encode the expansion ra-

tio hyper-parameter of each layer. Our goal is to search a

for higher accuracy with less FLOPs. All the other hyper-

parameters and network settings like stride, kernel size,

layer order, remain the same as the original full-precision

models.

In the uniform width expansion experiments as shown in

Table 2, we observe that by only expanding channels by 4
times, binary neural networks can obtain comparable per-

formance to that of their full-precision model on the Im-

ageNet classification task. Thus we assume that 4 is the

empirical upper bound of expansion ratio to achieve full-

precision accuracy. We set 4 as the largest expansion ratio,

and use some smaller ratio to expand or even reduce chan-

nels. In practice, we have 6 expansion ratio candidates in a

which is defined as follows:

a = [a1, ..., an], ∀ ai ∈ {0.25, 0.5, 1, 2, 3, 4}. (2)

Search Algorithm. As discussed above, we expect to

search an optimal architecture with the expansion ratio set

a
∗ for making the accuracy of the binarized neural networks

similar to that of its full-precision models with as few pa-

rameters and floating-number opeartions (FLOPS) as pos-

sible. Therefore, the overall optimization can be described

as:
max

a

f(w∗(a),a),

s.t. w
∗ = argmin

w

Ltrain(w,a),
(3)

where f(·) is the fitness function in evolutionary algorithm

and Ltrain is loss on train set, w∗(a) is the corresponding

trained weight with expansion ratio set a. We first find an

optimal a∗ through evolutionary algorithm on a train sub-

set. Then we train the corresponding binary network on full

train set to obtain the final model.

Specifically, in every generation during evolution, we

maintain a population of K individuals, i.e. {a1, ...,aK},

each of which denotes a bianry neural architecture accord-

ing to a certain expansion ratio code satisfying Eq. 2. These

individuals will be continuously updated with pre-designed

operations (e.g. corssover and mutation) to have greater fit-

ness. Here we have two objects: high performance on the

specific task, e.g. classification accuracy, and low computa-

tion costs, e.g. FLOPs. Thus, the fitness f(ak) of an indi-

vidual ak is defined as:

f(ak) = max(Acc − λ× FLOPs, 0) (4)

where Acc and FLOPs are the Top-1 validation accuracy

and FLOPs of the corresponding widened networks of the

individual ak, λ is the trade-off parameter.

Compared with full-precision layers, the FLOPs of bi-

nary layers are divided by 64 as suggested in Bi-Real

Net [14]. In the calculation of fitness in Eq. 4, we divide the

FLOPs of the candidate models by the FLOPs of original

binary network to get the same order of magnitude of accu-

racy. After defining the search space and fitness function,

the evolutionary algorithm can effectively select excellent

individuals with higher fitness during the evolution process

until convergence.

3. Experiments

In this section, we conduct experiments to explore the

empirical width lower bound of each layer in binary neu-

ral networks on several benchmark datasets, i.e. CIFAR-

10 [12], and ImageNet [3]. We use two widely used network

structures as baselines, VGG-small [24] and ResNet-18 [9].



3.1. Experimental Settings

For the evolution search process, we search for 50 gener-

ations with 32 individuals in each generation. We train each

candidate model for 10 epochs on the trainset and obtain the

accuracy on validation set as the accuracy used in Eq. 4. For

the trade-off parameter λ, we set it to 4 to keep the value of

accuracy and FLOPs comparable.

CIFAR-10 In CIFAR-10 dataset, it takes about 12 hours

on 8 V100 GPUs. Then we train 200 epochs for full CIFAR-

10 training. The learning rate starts as 0.1 and multiply by

0.1 in the epochs of 60, 120 and 180. We simply follow the

same hyper-parameter setup as that in [24].

ImageNet As the ImageNet ILSVRC2012 dataset is very

large, we do not use the whole train dataset in evolution

process. We randomly sample a subset of 50,000 images

from the original full trainset which belongs to 1000 classes

with 50 images for each class in the evolution process and it

takes about 180 hours on 8 V100 GPUs. Then we train 150

epochs to check if searched models reaches full-precision

accuracy. The learning rate starts from 0.1 and decays by

0.1 in the epochs of 50, 100 and 135. We simply follow the

same hyper-parameter setup as that in [9].

Initialization When evaluating each candidate, we train

10 epochs on a small subset in ImageNet dataset, the accu-

racy of candidate models is especially low and makes it dif-

ficult to distinguish the better models from the worse ones.

Therefore, we train the model uniformly widened by 4×
on the subset with 150 epochs and use it to initialize all

the candidate models which we simply intercept first corre-

sponding channels values.

Table 1. Comparison of widened binary networks of VGG-small

architecture on CIFAR-10.
Models FLOPs Speedup Memory Top-1(%)

Full-Precision 608M - 149M 93.48

Uniform-1× 13.2M 46.1× 7.3M 90.24

Uniform-2× 45.3M 13.4× 23.7M 91.65

Uniform-3× 96.2M 6.3× 49.3M 91.87

Uniform-4× 166M 3.7× 84.1M 92.56

VGG-Auto-A 11.3M 53.6× 5.1M 92.17

VGG-Auto-B 59.3M 10.3× 23.4M 93.06

3.2. Results and Analysis

VGG-small on CIFAR-10 VGG-small [24] is a variant

network of the original VGG-Net [20] designed for CIFAR-

10. We compare the searched models, i.e. Automatic-A, B,

with uniformly widened models in Table 1. The standard

binarized VGG-Small decreases accuracy only by about

3%. As we uniformly increase the width, the accuracy in-

creases subsequently. However with 4× widened, the accu-

racy of binarized network still does not achieve that of full-

precision network. Our Automatic-B model achieves higher

accuracy than the Uniform-4× with about 1/4 FLOPs and

memory. It has the smallest accuracy gap with the full-

precision model. Although our Automatic-A model even

has less channels than the original Uniform-1× model, it

achieves higher accuracy with about 2% improvement. This

phenomenon confirms our original intention in designing

the search space, that some layers need to be expanded and

some layers need to be narrowed.

Table 2. Comparison of widened binary networks and other bina-

rization methods of ResNet-18 architecture on ImageNet dataset.

Models FLOPs Speedup Top-1(%) Top-5(%)

Full-Precision 1820M - 69.6 89.2

PCNN 169M 10.8× 57.3 80.0

ABC{5/3} 520M 3.5× 62.5 84.2

ABC{5/3} 785M 2.3× 65.0 85.9

Uniform-1× 149M 12.2× 52.77 76.85

Uniform-2× 352M 5.2× 64.0 85.45

Uniform-3× 607M 3.0× 68.51 88.25

Uniform-4× 915M 2.0× 70.35 89.27

Res18-Auto-A 495M 3.7× 68.64 88.46

Res18-Auto-B 660M 2.8× 69.65 89.08

ResNet-18 on ImageNet We also conduct experiments on

the large-scale ImageNet dataset. In the uniform expan-

sion experiments, as the width increases, the top-1 accuracy

can gradually approach that of the original full-precision

model. From the results in Table 2, our Automatic-B bina-

rized model can obtain the the same performance with the

full-precision model with less than 1/3 computational cost.

With similar FLOPs, Automatic-B outperform Uniform-

3× by 1.1% in terms of Top-1 accuracy and 0.8% Top-5

accuracy. Our evolutionary search finds a more accurate

widened models with as less FLOPs as possible.

We also compare our models with some state-of-the-art

binarization methods in Table 2. PCNN [5] does not quan-

tize the downsample layer and adds additional shortcut con-

nections which could inevitably increase end-to-end infer-

ence time. In the comparison of ABC-Net with multiple

bases, which 5/3 means 5 binary bases for weight and 3

bases for activations, Our Uniform and Automatic models

consistently performs better than ABC-Net by a large mar-

gin.

Searched Architecture To further analyze the searched

network architecture, we show the number of output chan-

nels in each layer of two binary networks with similar accu-

racy, i.e. Res18-Auto-A and Uniform-3× in Table 2. From

Fig. 2, we observe that compared with Uniform-3×, the



Figure 2. Number of channels in each layer of widened ResNet-18.

searched architecture Res18-Auto-A has fewer output chan-

nels in the 1st, 2nd and last stages. In addition, Res18-Auto-

A needs more channels for the middle feature maps inside

each block. These observations could inspire us to design

blocks or architectures for more efficient convolutional neu-

ral networks.

4. Conclusion

To establish binary neural networks with higher preci-

sion and lower computational costs, this paper studies the

binary neural architecture search problem. Based on the

empirical study on uniform width expansion, we define a

novel search space and utilize evolutionary algorithm to ad-

just the number of channels in each convolutional layer after

binarizing. Experiments on benchmark datasets and neural

architectures show that the proposed method can produce

binary networks with acceptable parameters increment and

the same performance as that of the full-precision original

network.
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