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Abstract

In this paper, we consider the low-bit quantization prob-

lem of face recognition (FR) under the open-set protocol.

Different from well explored low-bit quantization on closed-

set image classification task, the open-set task is more sen-

sitive to quantization errors (QEs). We redefine the QEs in

angular space and disentangle it into class error and indi-

vidual error. These two parts correspond to inter-class sep-

arability and intra-class compactness, respectively. Instead

of eliminating the entire QEs, we propose the rotation con-

sistent margin (RCM) loss to minimize the individual error,

which is more essential to feature discriminative power. Ex-

tensive experiments on popular benchmark datasets such as

MegaFace Challenge, Youtube Faces (YTF), Labeled Face

in the Wild (LFW) and IJB-C show the superiority of pro-

posed loss in low-bit (e.g., 4-, 3-bit) FR quantization tasks.

1. Introduction

The problem of face recognition (FR) has been well in-

vestigated [41, 42, 12, 4, 25, 8, 46, 54] in recent years.

Among them, the deep FR technique, which leverages

hierarchical and heavy-weight network architectures [43,

34, 38, 14, 16], has significantly improved the state-of-

the-art performance and fostered wide-spread applications.

Whereas excessive memory and computational consump-

tion make it impractical to deploy massive networks on mo-

bile or embedded devices.

Quantization technique [6, 5, 31, 55, 56, 10] emerges

as an elegant compression solution to address this prob-

lem. The core idea of this method is to reduce bit-width

of weights and activations by mapping continuous values

to discrete integers, which can not only reduce the memory

footprint but also accelerate the inference directly. Despite

the attractive benefits, low bit-width may degrade accuracy

due to quantization errors (QEs). To minimize QEs, many

methods have been proposed [53, 36, 2, 1], and have been

demonstrated successful in the fields of closed-set computer
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Figure 1: Difference between closed-set and open-set quantiza-

tion. (a) sketches the quantization processes of closed and open-

set, respectively. W i is the i-th column of the weight of the last

fully connected layer (i-th class weight). Gray circle represents

unknown face categories in test set, and the green dotted line de-

notes decision boundary. (b) compares the degradation of top1

accuracy and TPR after quantization. FP refers to full precision.

(c) illustrates the increase of angles between positive pairs caused

by quantization.

vision problems1, such as image classification and object

detection [23]. However, for real-world FR, it is common

that the testing identities (IDs) are disjoint from the training

set, which makes open-set FR2 problems more challenging

and practical [25, 11]. In this study, we show that FR is

much more sensitive to the QEs than closed-set classifica-

tion tasks, thus novel sophisticated techniques are required

to address this issue.

Essentially, FR is a typical scenario of metric learning

where features of different IDs are expected to have dis-

criminative large-margins rather than just be separable, as

illustrated in Fig. 1a. To demonstrate the difficulty in open-

set model quantization, we conduct a toy experiment. For

1For closed-set protocol, all testing classes are predefined in the train-

ing set [25].
2In this paper, “open-set FR” and “FR” can be used interchangeably.
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closed-set protocol, we select 100 categories from CASIA-

WebFace [52], and then choose 70% of all the data as train-

ing set and the rest as the test set. For open-set protocol,

10 additional categories are collected as open test set. We

train a ResNet18 [14] and quantize it into 4-bit. As shown

in Fig. 1b, the top1 accuracy of classification keeps almost

unchanged after quantization, while the true positive ratio

(TPR) of FR decreases more than 20%, especially on the

open test set. Angles between positive pairs (two samples

belong to the same id) also increase significantly after quan-

tization (Fig. 1c), which indicates the reduced intra-class

compactness.

Previous methods for closed-set classification quantiza-

tion training attempt to completely eliminate the QEs by

well-designed quantizers [53, 1, 2] or knowledge distilla-

tion (KD) [31]. In this paper, we argue that improving per-

formance of low-bit FR models is not entirely equivalent to

reducing the QEs, and propose a novel rotation consistent

margin (RCM) loss function for efficient low-bit FR quan-

tization. We define the QEs of face feature representation

as the angle between its full precision (FP) feature and its

quantized feature, named “A-QE”. For a single sample, A-

QE can be disentangled into two parts: class error and indi-

vidual error. The class error refers to the overall rotation of

a class caused by quantization. We observe that although it

is enormous in low-bit models, it does not weaken the inter-

class separability. On the other hand, individual error refers

to the within-class deviation of each sample. It represents

intra-class structural changes, which affect the performance

of the quantized FR models essentially. Therefore, in this

study, we attempt to minimize the individual error instead

of the entire entangled A-QE by introducing it into cosine-

based softmax loss function as an angular margin, which we

call rotation consistent margin (RCM).

It is known that the embedding features of FR dis-

tribute on a fixed radius hypersphere [35, 8, 46, 45, 54].

Thus, QEs can be considered as rotation over the origi-

nal distribution. Rotation consistent means that intra-class

compactness remains unchanged regardless of class rota-

tions, which can maintain same feature discrimination as

the FP model. The proposed method rebuilds intra-class

compactness efficiently by focusing on minimizing individ-

ual error. Meanwhile, rotation consistent is more realistic

and easier to achieve because QEs are intrinsical and can-

not be eliminated completely. Extensive experiments on

MegaFace [21], LFW [17], YTF [51] and IJB-C [28] show

that RCM loss function significantly improves the perfor-

mance of low-bit FR models. Moreover, our method can be

combined with other quantization methods and boost their

performance.

To sum up, our contributions could be summarized into

three parts:

• We redefine the QEs of FR in angular space, and dis-

entangle QEs into class error and individual error. The

former modifies inter-classes distribution, and the later

determines the change of intra-class compactness.
• We rethink the essence of improving quantized FR

models, and propose a novel loss function named as ro-

tation consistent margin (RCM) loss for efficient low-

bit FR model training by minimizing individual errors.
• To the best of our knowledge, we are the first to ex-

plore the quantization of FR. Extensive experiments

on several accessible benchmark datasets demonstrate

that our method effectively improves the performance

of different low-bit FR models.

2. Related Work

2.1. Large­scale face recognition

Practical applications of FR are usually under the open-

set protocol, where test categories are different from train-

ing categories. Therefore, FR is regarded as a typical

metric learning task [33, 40, 47, 25, 46], whose objec-

tive is to increase the intra-class compactness and inter-

class discrepancy. To this end, many loss functions have

been proposed. Sun et al. [41, 42] and Wang et al. [50]

combine softmax loss with contrast loss or center loss, re-

spectively, to explicitly increase the margin between differ-

ent classes or reduce the distance between positive sam-

ple pairs. FaceNet [38] adopts triplet loss to optimize the

embedding features directly, and greatly boost the perfor-

mance. Recent works [26, 25, 46, 8, 45] propose the cosine-

based softmax loss function and incorporate with margin to

enhance the feature discriminative power. In these methods,

features and class weights are normalized to a fixed scale,

and the hypersphere manifold distribution hypothesis arises

correspondingly and is widely recognized due to the con-

cise geometric interpretation and impressive performance

achieved by those loss functions.

2.2. Network quantization

Network quantization is a technique of network com-

pression that works as an analog-to-digital converter: quan-

tizing FP weights and activations into low precision fixed-

point integers. Through efficient bit operation or integer-

only arithmetic, it can both reduce the storage overhead and

accelerate the inference significantly. Common quantiza-

tion types include binary/ternary [5, 6, 18, 22, 57], uni-

form [58, 31, 29, 55, 20, 48] and non-uniform [56, 44,

3, 53, 13] quantization. Both uniform and binary/ternary

quantizers are hardware-friendly that can enjoy acceleration

directly on off-the-shelf hardware [20, 19, 9, 30]. Post-

training quantization and quantization-aware training are

two typical quantization schemes. The former solves the

value ranges without re-training. The later finetunes the op-

timized FP model in a simulated quantization scheme and

usually yields higher accuracy.
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3. Preliminaries

3.1. Cosine­based softmax loss function

In original deep FR methods [43, 41], models are trained

using softmax cross-entropy loss function 3,

Lsoftmax = − log
ezi,j

∑n

j=1 e
zi,j

, (1)

where zi,j = W T
j f i is the logit of j-th class. W j ∈ R

d is

the j-th column of weights of last fully connected layer, and

bias is omitted for simplicity, f i ∈ R
d refers to the feature

of i-th sample.

Recently, it is argued that the vanilla softmax loss can-

not force features to have higher discriminative power,

and cosine-based softmax incorporated with margin is pro-

posed [8, 54, 46], where W T
j f i is reformulated as s ·

cos θi,j , and θi,j is the angle between W j and f i, and s is

a scale hyperparameter. ArcFace [8] uses additive angular

margin zi,j = s · cos (θi,j + ✶{j = yi} ·m), CosFace [46]

uses additive cosine margin zi,j = s · (cos θi,j − ✶{j =
yi} · m), and SphereFace [25] uses multiplicative angular

margin zi,j = s · cos(✶{j = yi} · m · θi,j). The indicator

function ✶{j = yi} returns 1 when j = yi and 0 otherwise.

All of them achieve significant improvement.

3.2. Quantization process

Generally, weights and activations of deep models are

represented in FP values with 32-bit. Network quantiza-

tion represents them in fixed-point integers with lower bit-

width (e.g., 8-, 4-bit etc.). Among popular quantizers, the

binary and uniform quantizers are hardware-friendly, which

enables us to accelerate the inference directly on off-the-

shelf hardwares [20, 19, 9, 30]. Therefore, the following

discussions are all under the uniform protocol.

For n-bit uniform quantization, the process can be de-

fined as:

xQ = round

(

clamp(xmin, xmax, x)− xmin

∆

)

, (2)

where xQ is the integer number in n-bit width, and xmin,

xmax is the lower and upper bound of FP values. For per-

layer quantization scheme, an entire layer shares the same

(xmin, xmax), and for per-channel scheme, each channel

has different boundaries. ∆ = xmax−xmin

2n−1 is the interval

length.

4. Proposed Approach

4.1. Angle based quantization errors in FR

Generally, when the bit-width goes down, the accuracy

of quantized models degrades dramatically due to QEs. QEs

refer to the rounding and truncation errors introduced by

3We denote it as “softmax loss” for short in the following sections.

representing continuous values in n-bit fixed-point number.

For a single value x, QE defines as follows,

QE(x) = x−Q(x) (3)

where Q(x) is de-quantization FP value of xQ. For n-bit

uniform quantization, the de-quantization operation is:

Q(x) = xmin + xQ ∗∆. (4)

In previous works [53, 1], QE of the d-dimension feature

or tensor is defined as the average error of each dimension,

QE(f i) =
1

d

d
∑

l=1

(f l
i −Q(f l

i ))
2 , (5)

where f l
i is the l-th dimension of feature f i. As for FR,

features are angularly distributed, i.e., on the surface of a

fixed radius hypersphere, and the angle or cosine similar-

ity models the interrelation between samples. Reasonably,

we redefine the QE of face feature as the angle between its

quantized feature and its FP feature,

A-QE(f i) = arccos

(〈

f i

||f i||2
,

Q̂(f i)

||Q̂(f i)||2

〉)

, (6)

where Q̂(f i) is the feature of quantized model. Compared

with the vanilla mean-square error definition, A-QE has

a more clear geometric interpretation and is also more in-

tuitive in FR. It intuitively reflects the rotation caused by

quantization.

4.2. Disentangling A­QE

In this subsection, we investigate the effects of A-QE on

FR by theoretical analysis and empirical experiments, and

then propose to disentangle the A-QE of a single sample

into class error and individual error.

Initially, we represent the class center as the mean of all

sample features:

cyi
=

1

n

n
∑

i=0

f i, s.t.f i ∈ Cyi
, (7)

where Cyi
is the yi-th class set. For f i ∈ Cyi

, we denote the

QE of l-dimension as δl, then the center of the quantized

class,

qclyi
=

1

n

∑

Q̂(f l
i )

=
1

n

∑

(f l
i + δli)

=
1

n

∑

f l
i +

1

n

∑

δli ,

(8)

where qcyi
denotes the center of the quantized class. If

we assume that δl is a Gaussian distribution, i.e. δl ∼
N (µyi

, σ2
yi
), then qclyi

= clyi
+ µl

yi
. The rotation angle

of class center after quantization is

θcyi = arccos

(

∑d

l=0 c
l
yi
· (clyi

+ µl
yi
)

‖cyi
‖2 ·

∥

∥qcyi

∥

∥

2

)

. (9)
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Figure 2: QEs analysis of FR model. We train a ResNet18 [14]

on CASIA-WebFace [52] dataset and quantize it into 8-, 6-, 4-

bit, respectively. (a) plots the rotation angles of class centers of

different bit-width models. (b) illustrates the angles between all

class center pairs (inter-class angles). (c) demonstrates the within-

class angles.

To reveal the actual rotation angles in FR, we conduct ex-

periments on the CASIA-WebFace [52] and plot the distri-

bution of A-QE of each class center in Fig. 2a. Specifically,

we train an FP ResNet18 [14] model using Arcface [8] and

quantize it into 8-, 6-, 4-bit, respectively. To avoid modify-

ing model weights, we adopt the post-training quantization

scheme.

Observation #1. As shown in Fig. 2a, the rotation angles

of class centers are significant and increase dramatically as

the bit-width decreases. We name this rotation caused by

quantization, i.e., A-QE(cyi
), as class error.

Analysis. The significant class error indicates that the

A-QEs of samples in the same category are not completely

random; samples are rotated in a common direction. Ac-

cordingly, the entire class is rotated. Repeat experiments

are performed on MobileNetV2 [37], VGG [39] to exclude

the effect of network architectures, and the same phenom-

ena are observed.

The distribution of classes mainly determines the inter-

class separability. To further investigate, we use the angles

between class center pairs (inter-class angles) to demon-

strate the overall inter-class separability of different bit-

width models. The distributions are shown in Fig. 2b.

Observation #2. Compared with the original FP model,

there is no obvious change of the inter-class angles after

quantization: most remain around π
2 . This observation

holds when the bit-width is reduced.

Analysis. The stationary inter-class angle means the

inter-class discrepancy keeps stable after quantization.

Based on the above two observations, we can briefly sum-

marize that although QEs rotate classes sorely, the discrim-

inative power between classes has not been weakened.

On the other hand, we also investigate the change of

intra-class compactness after quantization. The original

definition of within-class scatter is based on the distance

between samples and class centers 4. We replace the Eu-

clidean distance by angle and show within-class angles in

Fig. 2c.

Observation #3. The within-class angles increase sig-

nificantly after quantization, which means that the intra-

class compactness is noticeably reduced, especially in low-

bit models. The within-class angles are about 30◦ in the FP

model, whereas they surge to 90◦ when quantized to 4-bit.

Analysis. We can empirically conclude that QEs weaken

the intra-class compactness, and as the bit width decreases,

the degree of weakening increases.

Based the on above investigations, we propose to decom-

pose A-QE of a sample into class error and individual error

two parts,

A-QE(f i) = A-QE(cyi
) + I(f i) , (10)

where I(f i) refers to the individual error. From the per-

spective of a single sample, its rotation caused by quan-

tization can be considered to follow the class center and

then deflect within the class. The within-class deflection de-

grades the original stable intra-class compactness and leads

to inferior performance. The dissection is sketched in Fig.3.

Figure 3: Dissection of A-QE. The left showcases a class of FP

model, and the right illustrates that class after quantization. Cir-

cles and stars refer to the class centers and individual samples, re-

spectively. The green solid line represents the entire A-QE of the

sample, blue represents class error and orange represents the in-

dividual error. For a clear illustration, we use euclidean distances

instead of vector angles to denote errors.

4.3. Rotation consistent margin

Initially, quantization methods [20, 49, 18] ignore QEs

by taking quantizers as general operators and directly use

task loss to tune models in quantization aware training. Af-

terward, several methods attempt to minimize the entire

QEs by well-designed quantizers [53, 1, 2] or knowledge

distillation [31], and usually yield higher performance. In

spite of the improvement brought by reducing the entire

QEs, a question worth thinking about is: Is improving the

4The within-class scatter matrix is defined as Sw =
∑n

i=1(xi −

µyi
)(xi − µyi

)T , where µyi
is the mean of all samples in class yi.
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Figure 4: Training process for low-bit FR models supervised by RCM loss function LA. Firstly, θyi in quantized class is calculated. Then

we employ two class centers (before and after quantization, represented in big circles) as anchors to obtain the class error (θ1). The entire

A-QE of samples (represented in stars) is also calculated, i.e., θ2 = arccos
(〈

fi

||fi||2
,

Q̂(fi)

||Q̂(fi)||2

〉)

, and individual error is |θ1 − θ2|. We

use the θ∗ = θyi + λ|θ1 − θ2|+m as the final angle to calculate logits. The logits then go through the softmax function and contribute to

the cross-entropy loss. The FP feature f i is extracted off-line before training.

accuracy of quantized models exactly equivalent to re-

ducing all the quantization errors?

Our answer is “not for FR”, the essence of improving

low-bit FR models is to rebuild the intra-class compactness

and the inter-class separability. By dissecting A-QE, we

disentangle the QE of a sample into class error and individ-

ual error. The class error is the common part of all class

samples (class-wise) which rotates class as a whole. Al-

though it is considerable, it dose not impair inter-class dis-

crepancy. Actually, due to the sparsity of high-dimensional

class weights, the inter-class angles keep around π
2 during

the whole training process, and this phenomenon has also

been validated in other works [58, 15]. We validate that this

phenomenon also exists in the low-bit scenario. It indicates

that during training, the objective of inter-class separabil-

ity maintains as a regularization other than pushing class

weights further apart in whether FP or low-bit models. In

contrast, the individual error is a unique part of each sam-

ple (sample-wise), and it changes the intra-class structure.

As shown in Fig. 2c, the within-class scatter increases sig-

nificantly after quantization, which implies the individual

error cracks the intra-class compactness. Therefore, we ar-

gue that improving the accuracy of quantized FR models is

not completely equivalent to reducing all the quantization

error. If we directly minimize the entire A-QE, supervi-

sion of class error would drive the model to pull the class

towards the FP position instead of rebuilding the impaired

intra-class compactness.

Alternatively, we propose to only minimize the individ-

ual error. We introduce the individual error into the popular

cosine-based softmax loss function as an additive angular

margin, named rotation consistent margin (RCM),

LA = − log
es·cos (θi,j+✶·m+✶·λθQ)

∑

es·cos (θi,j+✶·m+✶·λθQ)
, (11)

where λ is the scaling parameter, and we write ✶{j = yi} as

✶ for the clear demonstration. As the original cosine-based

softmax loss function is not the focus of our discussion, for

simplicity and fairness, we choose currently the competi-

tive loss function, ArcFace [8], as our baseline. We keep

the original additive margin m. The individual error is cal-

culated as follows,

θQ = |A-QE(f i)−A-QE(cyi
)| . (12)

The complete training pipeline supervised by LA is illus-

trated in Fig. 4.

Rotation consistent means that intra-class compactness

stays stable regardless of the huge rotation of the classes,

and the performance is improved even though the class er-

rors are still huge, which is validated in Sec 5.2. By mini-

mizing the individual error, the proposed loss can enhance

the impaired compactness efficiently. Meanwhile, inter-

class distribution is tuned appropriately via classification

loss rather than being pulled towards the original position.

4.4. Discussions

Why angle margin. Besides incorporating individual

error to cosine-based softmax as an angular margin, com-

bining by weighted sum is also an intuitive way to reduce

individual error,

Lsum = Lcos + λθQ , (13)

where Lcos refers to the cosine-based softmax loss function.

The reasons for adopting the angular margin are two-folds.

On the one hand, angular margin brings more clear geomet-

ric interpretation and directly links to the discrimination on

the hypersphere manifold. On the other hand, incorporat-

ing as an angular margin has stronger supervision on most

medium hard samples, and produces superior optimization

by weakening the influence of too simple and hard samples.
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The gradient of LA respect to θQ is,

dLA

dθQ
= λs2

∑C

j=1,j 6=i e
zi,j

∑C

j=1,j 6=i e
zi,j + es·cos (θ

∗)
· sin(θ∗) , (14)

where θ∗ = θ + m + λθQ and C is the class number. For

non-corresponding classes j 6= i, θi,j always stays around
π

2
during training, thus we assume ezi,j ≈ 1 as in [54].

We plot dLA

dθQ
= λs2 C

C−1+es·cos (θ∗) sin(θ
∗) with different

C in Fig. 5. At around θ∗ =
π

2
, the gradient has a maxi-

mum value. By appropriate λ, LA can have stronger super-

vision at the medium hard samples instead of equal supervi-

sion for too simple or too hard samples. Too hard samples

can be noise, which is common in large scale FR training

datasets, and too simple samples are hard to be further op-

timized whereas would dominate the training and result in

inferior models [24].

Decision boundary. Considering a binary-classes sce-

nario, the decision boundaries of the proposed loss function

is defined by,

cos(θ1 +m+ λθQ) = cos(θ2) . (15)

For c1, it requires θ1 < θ2 − m − λθQ. In ArcFace, the

margin m is immutable and identical for all samples, and

the decision boundary also stays the same during training

(Fig. 6a). Whereas the rotation consistent margin of the

proposed approach is sample-wise and dynamically shrinks

during the training (Fig. 6b). In the beginning, signifi-

cant individual errors generate strong supervision to rebuild

intra-class compactness efficiently. At the later stages of

training, the rotation consistent margin becomes steady, and

optimization turns to learn customized model weights in

discrete parameter space.

/2
+m+ Q ( )

0

1

2

3

4

dLA
d Q

×103

C=101
C=102
C=103
C=104
C=105

Figure 5: The gradient of LA respect to θQ of different class num-

ber C. s is set to 64 as in ArcFace [8] and λ is set to 1.

5. Experiment

5.1. Experiments setting

Datasets. For datasets, we separately employ publicly

available CASIA-WebFace [52] and MS1MV1 [7] cleaned

by deepglint as training datasets. The CASIA-WebFace

dataset contains 0.49M images of 10,575 face identities.
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Figure 6: The comparison of decision boundaries. (a): Decision

boundary of ArcFace, which is the same for all samples and im-

mutable during training. (b): Decision boundary of LA. It is

sample-wise and dynamically changing during training.

Cleaned MS1MV1 is a large scale dataset that consists

of 3.9M images from 87K face identities. We exten-

sively evaluate the performance of our approach on sev-

eral most widely used benchmark face datasets, includ-

ing MegaFace [21], Labeled Face in the Wild (LFW) [17],

Youtube Faces (YTF) [51] and IJB-C [28].

Training. We employ the widely used CNN architec-

tures, ResNet18 [14] and MobileNetV2 [37]. Following [8],

BN-Dropout-FC-BN structure is adopted to get the final

256−D features. We use the SGD algorithm with a momen-

tum of 0.9 and set weight decay 0.0005. Eight GPUs are

used with a single batch size of 64. For training on CASIA-

WebFace, the learning rate is initially 0.1 and divided by

10 at the 20K, 28K iterations, and the training finished at

32K iterations. For large scale dataset MS1MV1, the learn-

ing rate dropped at 100k, 160k iterations, and terminates at

180K.

Quantization setting. In this paper, we employ the

asymmetric uniform quantizer, which is hardware-friendly.

As per-channel quantization scheme usually yields higher

accuracy, we adopt it for weights. As for activations, the

per-layer scheme is used because per-channel would com-

plicate the inner product computation at the core of conv

and matmul operations [20]. All convolution and fully-

connected layers except the first and last one are quantized.

We adopt quantization-aware training and initialize quan-

tized weights from FP models.

5.2. Ablation studies on RCM loss

Selection of λ and formulas. There are three potential

positions for margin in cosine-based softmax, like additive

angle margin in ArcFace [8] (i.e.,LA), additive cosine mar-

gin in CosFace [46] and multiplicative angular margin in

SphereFace [25]. We denote another two feasible formulas

as

LB = − log
es·(cos (θi,j+✶·m)−✶·λθQ)

∑

es·(cos (θi,j+✶·m)−✶·λθQ)

and

LC = − log
es·cos ((✶·λθQ+1)θi,j+✶·m)

∑

es·cos ((✶·λθQ+1)θi,j+✶·m)
.

In this part, we explore the effect of the scaling parameter

λ and the performance of different formulas. To this end,
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we train an FP ResNet18 on CASIA-WebFace. Then we

quantize the resulting model into 4-bit using three different

formulas with λ varying from 1 to 7. Performance is evalu-

ated on MegaFace and illustrated in Fig. 7a. We can see that

the performance of LA outperforms the other two formulas

slightly. For LA, the performance gets saturated at λ = 5.0,

thus we use LA with λ = 5.0 in the subsequent experiments

of this study.
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Figure 7: Ablation studies on rotation consistent margin loss. (a)

accuracy(%) of 4-bit ResNet18 with different formulas and vari-

ous λ on MegaFace. (b) change of individual error of LA with

different λ during the training. (c) class errors of 4-bit ResNet18

trained by ArcFace, ArcFace+Mimic and LA. The errors are in

angle.

Change of RCM during training. In this part, we will

show the change of RCM θQ of LA loss during training.

Fig. 7b illustrates θQ of different λ settings. As we can see,

the margin gradually decreases as training, and the larger

λ brings stronger supervision, which leads to a smaller θQ.

Whereas when the λ increases to 5, the RCM becomes sta-

ble and hard to be further compressed. Meanwhile, the ac-

curacy also reaches the inflection point, and the larger λ

would degrade the accuracy. It is due to that λ balances

the supervision of classification and minimizing individ-

ual error, excessively increasing λ cannot consistently im-

prove intra-class compactness but weakens the supervision

of classification.

Comparison of class errors. To investigate the result-

ing class errors, we train 4-bit ResNet18 using ArcFace, Ar-

cFace+Mimic and LA, respectively. Directly supervised by

ArcFace ignores the QEs and takes quantizers as general

operators. Combining with mimic or knowledge distillation

(KD) not only finetunes the models according to the classi-

fication loss but also pulls the features towards the original

position by extra supervision from FP models. Empirical

evidence [27] shows that mimicking the feature layer brings

more improvements for FR than KD. Thus we use Arc-

loss
Size of MegaFace Distractor

101 102 103 104 105 106

FP 98.13 95.75 92.10 86.96 80.72 73.35

ArcFace 97.73 94.52 90.28 84.29 76.37 67.75

+Mimic 97.93 94.88 90.65 84.78 77.39 69.04

LA 97.85 95.32 91.46 86.33 79.37 71.57

Table 1: Identification accuracy (%) of rank-1 of 4-bit ResNet18

on the MegaFace dataset. “+Mimic” refers to ArcFace+Mimic.

Face+Mimic instead of ArcFace+KD. The performance on

MegaFace and resulting class errors are illustrated in Tab. 1

and Fig. 7c. Compared with ArcFace, ArcFace+Mimic re-

sults in smaller class errors, meanwhile, improves perfor-

mance. Whereas, our approach achieves higher accuracy

than ArcFace+Mimic with larger class errors. The exper-

imental phenomenon supports our hypothesis that improv-

ing the accuracy of quantized FR models is not precisely

equivalent to reducing all the QEs, and minimizing only in-

dividual errors can bring more improvement.

5.3. Results on LFW and YTF

LFW [17] is a standard face verification testing dataset

in unconstrained conditions, and all images are collected

from the website. It contains 13,233 face images from 5,749

identities with a total of 6,000 ground-truth matches. Half

of the matches are positive, while the other half are negative

ones. YTF [51] consists of 3,425 videos from 1,595 differ-

ent people. All the videos are collected from YouTube. In

this paper, evaluation results are reported strictly following

the standard protocol of unrestricted with labeled outside

data.

We train ResNet18 on CASIA-WebFace dataset and re-

port performance of 4-bit and 3-bit quantized models su-

pervised by several accessible loss functions in Tab. 2. On

LFW and YTF, the proposed RCM loss achieves 98.91%

and 94.98% at 4-bit, and 98.73% and 94.56% at 3-bit. The

results outperform all compared loss functions.

Method
LFW YTF

4-bit 3-bit 4-bit 3-bit

FP 98.93 94.97

SoftMax 98.60 98.26 94.28 93.49

l2-Softmax [35] 98.55 97.85 94.01 93.51

CosFace [46] 98.66 97.88 94.36 93.28

CosFace+Mimic 98.76 98.18 94.37 93.53

ArcFace [8] 98.63 98.55 94.62 93.50

ArcFace+Mimic 98.68 98.46 94.76 93.95

LA 98.91 98.73 94.95 94.56

Table 2: Verification accuracy (%) on the LFW and the YTF

datasets. The model ResNet18 is trained on WebFace.
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Model Method
Accuracy(%)

ResNet18

4-bit 3-bit

FP 93.71

Softmax 82.43 27.22

CosFace [46] 87.04 60.41

CosFace+Mimic 87.73 57.68

ArcFace [8] 87.31 67.83

ArcFace+Mimic 87.74 72.84

LA 88.56 74.34

MobileNetV2

FP 91.31

Softmax 69.21 24.11

l2-Softmax [35] 71.68 47.5

CosFace [46] 74.99 57.00

CosFace+Mimic 74.05 59.44

ArcFace [8] 77.73 56.79

ArcFace+Mimic 77.90 59.59

LA 80.12 62.58

Table 3: Identification accuracy (%) of rank-1 on MegaFace

dataset. The size of distractor is 1M.
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Figure 8: TPR on IJB-C benchmark with FPR varying from 10−1

to 10−5. The model is 4-bit ResNet18 and trained on MS1MV1.

5.4. Results on MegaFace

The MegaFace dataset [21] is a very challenging large-

scale testing benchmark. It contains 1M images from 690K

different individuals as the gallery set and 100K photos of

530 unique individuals from FaceScrub [32] as the probe

set. We follow the testing protocol of ArcFace [8]. All the

models are trained on the MS1MV1 dataset.

The rank-1 identification accuracies with 1M distractors

are summarized in Tab. 3. Our RCM approach shows its

superiority on both the ResNet18 and MobileNetV2 with

a clear margin. For ResNet18, RCM achieves 88.56%

and 74.34% on 4- and 3-bit and outperforms other losses.

MobileNetV2 has excellent speed-accuracy trade-off and is

hard to quantize, and RCM loss boosts the accuracy signif-

icantly. Whereas the gap with FP model still exists, which

needs further investigations.

5.5. Results on IJB­C

The IJB-C dataset [28] contains about 3,500 identities,

with a total of 31,334 still facial images and 117,542 un-

constrained video frames. In the 1:1 verification, there are

a total of 19,557 positive pairs and 15.6M negative pairs.

We employ the MS1MV1 dataset as training data and

report TPR of 4-bit ResNet18 in Fig. 8. Compared with

other popular loss functions, our proposed RCM achieves

state-of-the-art performance at different FPR.

5.6. Compatibility with other quantization base­
lines

The proposed RCM loss improves the performance of

the low-bit model from the perspective of the discrimina-

tive essence of open-set tasks. It can be combined with

previous methods to boost their performance further. Here,

we re-implement the recent two state-of-the-art quantiza-

tion methods Dorefa-Net [55] and DSQ [10] as quantization

baselines and combine them with different loss functions.

We report the evaluation results of 4-bit ResNet18 on

MegaFace. As shown in Tab. 4, both Dorefa-Net and DSQ

can improve the baseline of different loss functions, and

combining with RCM achieves the best accuracy. It demon-

strates our approach is compatible with different quantiza-

tion methods and can further boost their performance.

Basic Method Accuracy(%)

Dorefa-Net [55]

+CosFace 87.11

+CosFace+Mimic 90.59

+ArcFace 88.27

+ArcFace+Mimic 89.63

+LA 91.55

DSQ [10]

+CosFace 87.07

+CosFace+Mimic 88.98

+ArcFace 87.79

+ArcFace+Mimic 88.42

+LA 89.46

Table 4: Identification accuracy (%) of rank-1 4-bit ResNet18 on

the MegaFace dataset. The size of distractor is 1M and the FP

models are trained on MS1MV1.

6. Conclusion

In this work, we investigate the effect of quantization er-

rors on FR and propose rotation consistent margin loss for

efficient low-bit FR training. Competitive results on several

popular face benchmarks demonstrate the superiority and

great potentials of our approach. It is hoped that our sub-

stantial explorations will inspire more researches on quan-

tization problems for the open-set scenario.
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