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Abstract

We present a novel and high-performance 3D object de-

tection framework, named PointVoxel-RCNN (PV-RCNN),

for accurate 3D object detection from point clouds. Our

proposed method deeply integrates both 3D voxel Convolu-

tional Neural Network (CNN) and PointNet-based set ab-

straction to learn more discriminative point cloud features.

It takes advantages of efficient learning and high-quality

proposals of the 3D voxel CNN and the flexible receptive

fields of the PointNet-based networks. Specifically, the pro-

posed framework summarizes the 3D scene with a 3D voxel

CNN into a small set of keypoints via a novel voxel set ab-

straction module to save follow-up computations and also

to encode representative scene features. Given the high-

quality 3D proposals generated by the voxel CNN, the RoI-

grid pooling is proposed to abstract proposal-specific fea-

tures from the keypoints to the RoI-grid points via keypoint

set abstraction. Compared with conventional pooling op-

erations, the RoI-grid feature points encode much richer

context information for accurately estimating object con-

fidences and locations. Extensive experiments on both the

KITTI dataset and the Waymo Open dataset show that our

proposed PV-RCNN surpasses state-of-the-art 3D detection

methods with remarkable margins.

1. Introduction

3D object detection has been receiving increasing atten-

tion from both industry and academia thanks to its wide ap-

plications in various fields such as autonomous driving and

robotics. LiDAR sensors are widely adopted in autonomous

driving vehicles and robots for capturing 3D scene informa-

tion as sparse and irregular point clouds, which provide vital

cues for 3D scene perception and understanding. In this pa-

per, we propose to achieve high performance 3D object de-

tection by designing novel point-voxel integrated networks

to learn better 3D features from irregular point clouds.
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Figure 1. Our proposed PV-RCNN framework deeply integrates

both the voxel-based and the PointNet-based networks via a two-

step strategy including the voxel-to-keypoint 3D scene encoding

and the keypoint-to-grid RoI feature abstraction for improving the

performance of 3D object detection.

Most existing 3D detection methods could be classified

into two categories in terms of point cloud representations,

i.e., the grid-based methods and the point-based methods.

The grid-based methods generally transform the irregular

point clouds to regular representations such as 3D voxels

[29, 45, 37, 2, 28] or 2D bird-view maps [1, 12, 39, 18, 38,

13, 17, 41], which could be efficiently processed by 3D or

2D Convolutional Neural Networks (CNN) to learn point

features for 3D detection. Powered by the pioneer work,

PointNet and its variants [25, 26], the point-based methods

[24, 27, 35, 40, 22] directly extract discriminative features

from raw point clouds for 3D detection. Generally, the grid-

based methods are more computationally efficient but the

inevitable information loss degrades the fine-grained local-

ization accuracy, while the point-based methods have higher

computation cost but could easily achieve larger receptive

field by the point set abstraction [26]. However, we show

that a unified framework could integrate the best of the two

types of methods, and surpass the prior state-of-the-art 3D

detection methods with remarkable margins.

We propose a novel 3D object detection framework, PV-

RCNN (Illustrated in Fig. 1), which boosts the 3D detec-

tion performance by incorporating the advantages from both

the Point-based and Voxel-based feature learning meth-

ods. The principle of PV-RCNN lies in the fact that the

voxel-based operation efficiently encodes multi-scale fea-

ture representations and can generate high-quality 3D pro-

posals, while the PointNet-based set abstraction operation
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preserves accurate location information with flexible recep-

tive fields. We argue that the integration of these two types

of feature learning frameworks can help learn more discrim-

inative features for accurate fine-grained box refinement.

The main challenge would be how to effectively com-

bine the two types of feature learning schemes, specifi-

cally the 3D voxel CNN with sparse convolutions [6, 5]

and the PointNet-based set abstraction [26], into a unified

framework. An intuitive solution would be uniformly sam-

pling several grid points within each 3D proposal, and adopt

the set abstraction to aggregate 3D voxel-wise features sur-

rounding these grid points for proposal refinement. How-

ever, this strategy is highly memory-intensive since both the

number of voxels and the number of grid points could be

quite large to achieve satisfactory performance.

Therefore, to better integrate these two types of point

cloud feature learning networks, we propose a two-step

strategy with the first voxel-to-keypoint scene encoding

step and the second keypoint-to-grid RoI feature abstraction

step. Specifically, a voxel CNN with 3D sparse convolution

is adopted for voxel-wise feature learning and accurate pro-

posal generation. To mitigate the above mentioned issue of

requiring too many voxels for encoding the whole scene, a

small set of keypoints are selected by the furtherest point

sampling (FPS) to summarize the overall 3D information

from the voxel-wise features. The features of each key-

point is aggregated by grouping the neighboring voxel-wise

features via PointNet-based set abstraction for summarizing

multi-scale point cloud information. In this way, the overall

scene can be effectively and efficiently encoded by a small

number of keypoints with associated multi-scale features.

For the second keypoint-to-grid RoI feature abstraction

step, given each box proposal with its grid point locations,

a RoI-grid pooling module is proposed, where a keypoint

set abstraction layer with multiple radii is adopted for each

grid point to aggregate the features from the keypoints with

multi-scale context. All grid points’ aggregated features can

then be jointly used for the succeeding confidence predic-

tion and fine-grained box refinement.

Our contributions can be summarized into four-fold. (1)

We propose PV-RCNN framework which effectively takes

advantages of both the voxel-based and point-based meth-

ods for 3D point-cloud feature learning, leading to im-

proved performance of 3D object detection with manage-

able memory consumption. (2) We propose the voxel-

to-keypoint scene encoding scheme, which encodes multi-

scale voxel features of the whole scene to a small set of

keypoints by the voxel set abstraction layer. These key-

point features not only preserve accurate location but also

encode rich scene context, which boosts the 3D detection

performance significantly. (3) We propose a multi-scale

RoI feature abstraction layer for grid points in each pro-

posal, which aggregates richer context information from the

scene for accurate box refinement and confidence predic-

tion. (4) Our proposed method PV-RCNN outperforms all

previous methods with remarkable margins and ranks 1st

on the highly competitive KITTI 3D detection benchmark

[11], and also surpasses previous methods on the large-scale

Waymo Open dataset with a large margin.

2. Related Work

3D Object Detection with Grid-based Methods. To

tackle the irregular data format of point clouds, most ex-

isting works project the point clouds to regular grids to be

processed by 2D or 3D CNN. The pioneer work MV3D [1]

projects the point clouds to 2D bird view grids and places

lots of predefined 3D anchors for generating 3D bounding

boxes, and the following works [12, 18, 17] develop better

strategies for multi-sensor fusion while [39, 38, 13] propose

more efficient frameworks with bird view representation.

Some other works [29, 45] divide the point clouds into 3D

voxels to be processed by 3D CNN, and 3D sparse convo-

lution [5] is introduced [37] for efficient 3D voxel process-

ing. [33, 46] utilizes multiple detection heads while [28]

explores the object part locations for improving the perfor-

mance. These grid-based methods are generally efficient for

accurate 3D proposal generation but the receptive fields are

constraint by the kernel size of 2D/3D convolutions.

3D Object Detection with Point-based Methods. F-

PointNet [24] first proposes to apply PointNet [25, 26] for

3D detection from the cropped point clouds based on the 2D

image bounding boxes. PointRCNN [27] generates 3D pro-

posals directly from the whole point clouds instead of 2D

images for 3D detection with point clouds only, and the fol-

lowing work STD [40] proposes the sparse to dense strategy

for better proposal refinement. [23] proposes the hough vot-

ing strategy for better object feature grouping. These point-

based methods are mostly based on the PointNet series, es-

pecially the set abstraction operation [26], which enables

flexible receptive fields for point cloud feature learning.

Representation Learning on Point Clouds. Representa-

tion learning on point clouds has drawn lots of attention on

improving the performance of point cloud classification and

segmentation [25, 26, 45, 34, 7, 42, 16, 30, 36, 8, 32, 10, 21,

3]. In terms of 3D detection, previous methods generally

project the point clouds to regular bird view grids [1, 39] or

3D voxels [45, 2] for processing point clouds with 2D/3D

CNN. 3D sparse convolution [6, 5] are adopted in [37, 28] to

effectively learn sparse voxel-wise features from the point

clouds. Qi et al. [25, 26] proposes the PointNet to directly

learn point-wise features from the raw point clouds, where

set abstraction operation enables flexible receptive fields by

setting different search radii. [20] combines both voxel-

based CNN and point-based SharedMLP for efficient point

cloud feature learning. In comparison, our proposed PV-

RCNN takes advantages from both the voxel-based feature
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Figure 2. The overall architecture of our proposed PV-RCNN. The raw point clouds are first voxelized to feed into the 3D sparse convolution

based encoder to learn multi-scale semantic features and generate 3D object proposals. Then the learned voxel-wise feature volumes at

multiple neural layers are summarized into a small set of key points via the novel voxel set abstraction module. Finally the keypoint features

are aggregated to the RoI-grid points to learn proposal specific features for fine-grained proposal refinement and confidence prediction.

learning (i.e., 3D sparse convolution) and PointNet-based

feature learning (i.e., set abstraction operation) to enable

both high-quality 3D proposal generation and flexible re-

ceptive fields for improving the 3D detection performance.

3. PV-RCNN for Point Cloud Object Detection

In this paper, we propose the PV-RCNN, a two-stage 3D

detection framework aiming at more accurate 3D object de-

tection from point clouds. State-of-the-art 3D detection ap-

proaches are based on either 3D voxel CNN with sparse

convolution or PointNet-based networks as the backbone.

Generally, the 3D voxel sparse CNNs are more efficient

[37, 28] and are able to generate high-quality 3D proposals,

while the PointNet-based methods can capture more accu-

rate contextual information with flexible receptive fields.

Our PV-RCNN deeply integrates the advantages of two

types of networks. As illustrated in Fig. 2, the PV-RCNN

consists of a 3D voxel CNN with sparse convolution as the

backbone for efficient feature encoding and proposal gener-

ation. Given each 3D proposal, to effectively pool its corre-

sponding features from the scene, we propose two novel op-

erations: the voxel-to-keypoint scene encoding, which sum-

marizes all the voxels of the overall scene feature volumes

into a small number of feature keypoints, and the point-to-

grid RoI feature abstraction, which effectively aggregates

the scene keypoint features to RoI grids for proposal confi-

dence prediction and location refinement.

3.1. 3D Voxel CNN for Efficient Feature Encoding
and Proposal Generation

Voxel CNN with 3D sparse convolution [6, 5, 37, 28] is

a popular choice by state-of-the-art 3D detectors for effi-

ciently converting the point clouds into sparse 3D feature

volumes. Because of its high efficiency and accuracy, we

adopt it as the backbone of our framework for feature en-

coding and 3D proposal generation.

3D voxel CNN. The input points P are first divided into

small voxels with spatial resolution of L ×W ×H , where

the features of the non-empty voxels are directly calculated

as the mean of point-wise features (i.e., 3D coordinates, re-

flectance intensities) of all inside points. The network uti-

lizes a series of 3×3×3 3D sparse convolution to gradually

convert the point clouds into feature volumes with 1×, 2×,

4×, 8× downsampled sizes. Such sparse feature volumes

could be viewed as a set of voxel-wise feature vectors.

3D proposal generation. By converting the encoded 8×
downsampled 3D feature volumes into 2D bird-view fea-

ture maps, high-quality 3D proposals are generated follow-

ing the anchor-based approaches [37, 13]. Specifically, we

stack the 3D feature volume along the Z axis to obtain the
L
8 × W

8 bird-view feature maps. Each class has 2× L
8 × W

8
3D anchor boxes which adopt the average 3D object sizes

of this class, and two anchors of 0◦, 90◦ orientations are

evaluated for each pixel of the bird-view feature maps. As

shown in Table 4, the adopted 3D voxel CNN backbone

with anchor-based scheme achieves higher recall perfor-

mance than the PointNet-based approaches [27, 40].

Discussions. State-of-the-art detectors mostly adopt

two-stage frameworks. They require pooling RoI specific

features from the resulting 3D feature volumes or 2D maps

for further proposal refinement. However, these 3D feature

volumes from the 3D voxel CNN have major limitations in

the following aspects. (i) These feature volumes are gen-

erally of low spatial resolution as they are downsampled by

up to 8 times, which hinders accurate localization of objects

in the input scene. (ii) Even if one can upsample to obtain

feature volumes/maps of larger spatial sizes, they are gener-

ally still quite sparse. The commonly used trilinear or bilin-

10531



ear interpolation in the RoIPooling/RoIAlign operations can

only extract features from very small neighborhoods (i.e., 4

and 8 nearest neighbors for bilinear and trilinear interpo-

lation respectively). The conventional pooling approaches

would therefore obtain features with mostly zeros and waste

much computation and memory for stage-2 refinement.

On the other hand, the set abstraction operation proposed

in the variants of PointNet [25, 26] has shown the strong

capability of encoding feature points from a neighborhood

of an arbitrary size. We therefore propose to integrate a 3D

voxel CNN with a series of set abstraction operations for

conducting accurate and robust stage-2 proposal refinement.

A naive solution of using the set abstraction operation

for pooling the scene feature voxels would be directly ag-

gregating the multi-scale feature volume to the RoI grids.

However, this intuitive strategy simply occupies much GPU

memory for calculating the pairwise distances in the set ab-

stractions due to the large number of sparse voxels.

To tackle this issue, we propose a two-step approach to

first encode voxels at different neural layers of the entire

scene into a small number of keypoints and then aggregate

keypoint features to RoI grids for box proposal refinement.

3.2. Voxel­to­keypoint Scene Encoding via Voxel Set
Abstraction

Our framework first aggregates the multi-scale feature

voxels representing the entire scene into a small number of

keypoints, which serve as a bridge between the 3D voxel

CNN feature encoder and the proposal refinement network.

Keypoints Sampling. Specifically, we adopt the Furthest-

Point-Sampling (FPS) algorithm to sample a small number

of n keypoints K = {p1, · · · , pn} from the point clouds P,

where n = 2, 048 for the KITTI dataset and n = 4, 096
for the Waymo dataset. Such a strategy encourages that the

keypoints are uniformly distributed around non-empty vox-

els and can be representative to the overall scene.

Voxel Set Abstraction Module. We propose the Voxel Set

Abstraction (VSA) module to encode the multi-scale se-

mantic features from the 3D CNN feature volumes to the

keypoints. The set abstraction operation proposed by [26] is

adopted for the aggregation of voxel-wise feature volumes.

The surrounding points of keypoints are now regular voxels

with multi-scale semantic features encoded by the 3D voxel

CNN from the multiple layers, instead of the neighboring

raw points with features learned from PointNet as in [26].

Specifically, denote F (lk) = {f
(lk)
1 , · · · , f

(lk)
Nk

} as the
set of voxel-wise feature vectors in the k-th level of 3D
voxel CNN, V(lk) = {v

(lk)
1 , · · · , v

(lk)
Nk

} as their 3D coordi-
nates calculated by the voxel indices and actual voxel sizes
of the k-th level, where Nk is the number of non-empty vox-
els in the k-th level. For each keypoint pi, we first identify
its neighboring non-empty voxels at the k-th level within a

radius rk to retrieve the set of voxel-wise feature vectors as

S
(lk)
i =















[

f
(lk)
j ; v

(lk)
j − pi

]T

∣

∣

∣

∣

∣

∣

∣

∣

∥

∥

∥
v
(lk)
j − pi

∥

∥

∥

2

< rk,

∀v
(lk)
j ∈ V(lk),

∀f
(lk)
j ∈ F (lk)















, (1)

where we concatenate the local relative coordinates v
(lk)
j

−pi to indicate the relative location of semantic voxel fea-

ture f
(lk)
j . The voxel-wise features within the neighboring

voxel set S
(lk)
i of pi are then transformed by a PointNet-

block [25] to generate the feature for the key point pi as

f
(pvk)
i = max

{

G
(

M
(

S
(lk)
i

))}

, (2)

where M(·) denotes randomly sampling at most Tk vox-

els from the neighboring set S
(lk)
i for saving computations,

G(·) denotes a multi-layer perceptron network to encode

the voxel-wise features and relative locations. Although the

number of neighboring voxels varies across different key-

points, the along-channel max-pooling operation max(·)
maps the diverse number of neighboring voxel feature vec-

tors to a feature vector f
(pvk)
i for the key point pi. Gener-

ally, we also set multiple radii rk at the k-th level to aggre-

gate local voxel-wise features with different receptive fields

for capturing richer multi-scale contextual information.

The above strategy is performed at different levels of the

3D voxel CNN, and the aggregated features from different

levels can be concatenated to generate the multi-scale se-

mantic feature for the key point pi

f
(pv)
i =

[

f
(pv1)
i , f

(pv2)
i , f

(pv3)
i , f

(pv4)
i

]

, for i = 1, · · · , n,

(3)

where the generated feature f
(pv)
i incorporates both the 3D

voxel CNN-based feature learning from voxel-wise feature

f
(lk)
j and the PointNet-based features from voxel set ab-

straction as Eq. (2). Besides, the 3D coordinate of pi also

preserves accurate location information.

Extended VSA Module. We extend the VSA module by

further enriching the keypoint features from the raw point

clouds P and the 8× downsampled bird-view feature maps,

where the raw point clouds partially make up the quantiza-

tion loss of the point-cloud voxelization while the 2D bird-

view maps have larger receptive fields along the Z axis.

The raw point-cloud feature f
(raw)
i is also aggregated as

in Eq. (2), while bird-view feature f
(bev)
i of keypoint pi are

obtained by bilinear interpolation on the bird-view feature

maps. Hence, the keypoint feature for pi is further enriched

by concatenating all its associated features

f
(p)
i =

[

f
(pv)
i , f

(raw)
i , f

(bev)
i

]

, for i = 1, · · · , n, (4)

which have strong capability of preserving 3D structural in-

formation of the entire scene to boost the final performance.
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Figure 3. Illustration of Predicted Keypoint Weighting module.

Predicted Keypoint Weighting. After the overall scene

is encoded by a small number of keypoints, they would be

further utilized by the succeeding stage for conducting pro-

posal refinement. The keypoints are chosen by the Further

Point Sampling strategy and some of them might only repre-

sent the background regions. Intuitively, keypoints belong-

ing to the foreground objects should contribute more to the

accurate refinement of the proposals, while the ones from

the background regions should contribute less.

Hence, we propose a Predicted Keypoint Weighting

(PKW) module (see Fig. 3) to re-weight the keypoint fea-

tures with extra supervisions from point-cloud segmenta-

tion. The segmentation labels can be directly generated by

the 3D detection box annotations, i.e. by checking whether

each keypoint is inside or outside of a ground-truth 3D box.

The predicted feature weighting for each keypoint’s feature

f̃
(p)
i can be formulated as

f̃
(p)
i = A(f

(p)
i ) · f

(p)
i , (5)

where A(·) is a three-layer MLP network with a sigmoid

function to predict foreground confidence between [0, 1].
The PKW module is trained by focal loss [19] with de-

fault hyper-parameters for handling the unbalanced number

of foreground/background points in the training set.

3.3. Keypoint­to­grid RoI Feature Abstraction for
Proposal Refinement

In the previous step, the whole scene is summarized into

a small number of keypoints with multi-scale semantic fea-

tures. Given each 3D proposal (RoI) generated by the 3D

voxel CNN, the features of each RoI need to be aggre-

gated from the keypoint features F̃ = {f̃
(p)
1 , · · · , f̃

(p)
n } for

accurate and robust proposal refinement. We propose the

keypoint-to-grid RoI feature abstraction based on the set ab-

straction operation for multi-scale RoI feature encoding.
RoI-grid Pooling via Set Abstraction. Given each 3D
RoI, as shown in Fig. 4, we propose the RoI-grid pooling
module to aggregate the keypoint features to the RoI-grid
points with multiple receptive fields. We uniformly sample
6 × 6 × 6 grid points within each 3D proposal, which are
denoted as G = {g1, · · · , g216}. The set abstraction opera-
tion is adopted to aggregate the features of grid points from
the keypoint features. Specifically, we firstly identify the
neighboring keypoints of grid point gi within a radius r̃ as

RoI-grid Point Features

Grid Point Key Point Raw Point

Figure 4. Illustration of RoI-grid pooling module. Rich context

information of each 3D RoI is aggregated by the set abstraction

operation with multiple receptive fields.

Ψ̃ =

{

[

f̃
(p)
j ; pj − gi

]T

∣

∣

∣

∣

∣

‖pj − gi‖
2
< r̃,

∀pj ∈ K, ∀f̃
(p)
j ∈ F̃

}

, (6)

where pj − gi is appended to indicate the local relative lo-

cation of features f̃
(p)
j from keypoint pj . Then a PointNet-

block [25] is adopted to aggregate the neighboring keypoint

feature set Ψ̃ to generate the feature for grid point gi as

f̃
(g)
i = max

{

G
(

M
(

Ψ̃
))}

, (7)

where M(·) and G(·) are defined as the same in Eq. (2).

We set multiple radii r̃ and aggregate keypoint features with

different receptive fields, which are concatenated together

for capturing richer multi-scale contextual information.

After obtaining each grid’s aggregated features from its

surrounding keypoints, all RoI-grid features of the same RoI

can be vectorized and transformed by a two-layer MLP with

256 feature dimensions to represent the overall proposal.

Compared with the point cloud 3D RoI pooling opera-

tions in previous works [27, 40, 28], our proposed RoI-grid

pooling operation targeting the keypoints is able to cap-

ture much richer contextual information with flexible re-

ceptive fields, where the receptive fields are even beyond

the RoI boundaries for capturing the surrounding keypoint

features outside the 3D RoI, while the previous state-of-the-

art methods either simply average all point-wise features

within the proposal as the RoI feature [27], or pool many

uninformative zeros as the RoI features [28, 40].

3D Proposal Refinement and Confidence Predic-

tion. Given the RoI feature of each box proposal, the pro-

posal refinement network learns to predict the size and lo-

cation (i.e., center, size and orientation) residuals relative to

the input 3D proposal. The refinement network adopts a 2-

layer MLP and has two branches for confidence prediction

and box refinement respectively.

For the confidence prediction branch, we follow [15, 9,

28] to adopt the 3D Intersection-over-Union (IoU) between

the 3D RoIs and their corresponding ground-truth boxes as

the training targets. For the k-th 3D RoI, its confidence

training target yk is normalized to be between [0, 1] as

yk = min (1, max (0, 2IoUk − 0.5)) , (8)
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where IoUk is the IoU of the k-th RoI w.r.t. its ground-truth

box, and this confidence branch is optimized with the binary

cross entropy loss. Our experiments in Table 8 show that

this quality-aware confidence prediction strategy achieves

better performance than the traditional classification targets.

The box regression targets of the box refinement branch

are encoded by the traditional residual-based method as in

[37, 28] and are optimized by smooth-L1 loss function.

4. Experiments

In this section, we introduce the implementation de-

tails of our PV-RCNN (Sec. 4.1) and compare with pre-

vious state-of-the-art methods on both the highly compet-

itive KITTI dataset [4] (Sec. 4.2) and the newly introduced

large-scale Waymo Open Dataset [31, 22, 44] (Sec. 4.3). In

Sec. 4.4, we conduct extensive ablation studies to investi-

gate each component of PV-RCNN to validate our design.

4.1. Experimental Setup

Datasets. KITTI Dataset [4] is one of the most popular

dataset of 3D detection for autonomous driving. There are

7, 481 training samples and 7, 518 test samples, where the

training samples are generally divided into the train split

(3, 712 samples) and the val split (3, 769 samples).

Waymo Open Dataset is a recently released and currently

the largest dataset of 3D detection for autonomous driv-

ing. There are totally 798 training sequences with around

158, 361 LiDAR samples, and 202 validation sequences

with 40, 077 LiDAR samples. It annotated the objects in

the full 360◦ field instead of 90◦ in KITTI dataset. We eval-

uate our model on this large-scale dataset to further validate

the effectiveness of our proposed method.

Network Architecture. As shown in Fig. 2, the 3D voxel

CNN has four levels with feature dimensions 16, 32, 64, 64,

respectively. Their two neighboring radii rk of each level

in the VSA module are set as (0.4m, 0.8m), (0.8m, 1.2m),
(1.2m, 2.4m), (2.4m, 4.8m), and the neighborhood radii of

set abstraction for raw points are (0.4m, 0.8m). For the

proposed RoI-grid pooling operation, we uniformly sam-

ple 6 × 6 × 6 grid points in each 3D proposal and the two

neighboring radii r̃ of each grid point are (0.8m, 1.6m).
For the KITTI dataset, the detection range is within

[0, 70.4]m for the X axis, [−40, 40]m for the Y axis and

[−3, 1]m for the Z axis, which is voxelized with the voxel

size (0.05m, 0.05m, 0.1m) in each axis. For the Waymo

Open dataset, the detection range is [−75.2, 75.2]m for the

X and Y axes and [−2, 4]m for the Z axis, and we set the

voxel size to (0.1m, 0.1m, 0.15m).
Training and Inference Details. Our PV-RCNN frame-

work is trained from scratch in an end-to-end manner with

the ADAM optimizer. For the KITTI dataset, we train the

entire network with the batch size 24, learning rate 0.01 for

80 epochs on 8 GTX 1080 Ti GPUs, which takes around

5 hours. For the Waymo Open Dataset, we train the entire

network with batch size 64, learning rate 0.01 for 50 epochs

on 32 GTX 1080 Ti GPUs, which takes around 25 hours.

The cosine annealing learning rate strategy is adopted for

the learning rate decay. For the proposal refinement stage,

we randomly sample 128 proposals with 1:1 ratio for posi-

tive and negative proposals, where a proposal is considered

as a positive proposal for box refinement branch if it has at

least 0.55 3D IoU with the ground-truth boxes, otherwise it

is treated as a negative proposal.

During training, we utilize the widely adopted data aug-

mentation strategy of 3D object detection, including ran-

dom flipping along the X axis, global scaling with a ran-

dom scaling factor sampled from [0.95, 1.05], global rota-

tion around the Z axis with a random angle sampled from

[−π
4 ,

π
4 ]. We also conduct the ground-truth sampling aug-

mentation [37] to randomly “paste” some new ground-truth

objects from other scenes to the current training scenes, for

simulating objects in various environments.

For inference, we keep the top-100 proposals generated

from the 3D voxel CNN with a 3D IoU threshold of 0.7
for non-maximum-suppression (NMS). These proposals are

further refined in the proposal refinement stage with aggre-

gated keypoint features. We finally use an NMS threshold

of 0.01 to remove the redundant boxes.

4.2. 3D Detection on the KITTI Dataset

To evaluate the proposed model’s performance on the

KITTI val split, we train our model on the train set and

report the results on the val set. To conduct evaluation on

the test set with the KITTI official test server, the model

is trained with 80% of all available train+val data and the

remaining 20% data is used for validation.

Evaluation Metric. All results are evaluated by the mean

average precision with a rotated IoU threshold 0.7 for cars

and 0.5 for pedestrian and cyclists. The mean average

precisions on the test set are calculated with 40 recall posi-

tions on the official KITTI test server [11]. The results on

the val set in Table 2 are calculated with 11 recall positions

to compare with the results by the previous works.

Comparison with state-of-the-art methods. Table 1

shows the performance of PV-RCNN on the KITTI test set

from the official online leaderboard. For the most impor-

tant 3D object detection benchmark of the car class, our

method outperforms previous state-of-the-art methods with

remarkable margins, i.e. increasing the mAP by 1.58%,

1.72%, 1.73% on easy, moderate and hard difficulty levels,

respectively. For the bird-view detection of the car class,

our method also achieves new state-of-the-art performance

on the easy and moderate difficulty levels while dropping

slightly on the hard difficulty level. For the performance of

pedestrian and cyclist, our method achieves better or com-

parable results on all the moderate and hard difficulty levels
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Method Modality
Car - 3D Detection Car - BEV Detection Ped. - 3D Detection Ped. - BEV Detection Cyc. - 3D Detection Cyc. - BEV Detection

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MV3D [1] RGB + LiDAR 74.97 63.63 54.00 86.62 78.93 69.80 - - - - - - - - - - - -

ContFuse [18] RGB + LiDAR 83.68 68.78 61.67 94.07 85.35 75.88 - - - - - - - - - - - -

AVOD-FPN [12] RGB + LiDAR 83.07 71.76 65.73 90.99 84.82 79.62 50.46 42.27 39.04 58.49 50.32 46.98 63.76 50.55 44.93 69.39 57.12 51.09

F-PointNet [24] RGB + LiDAR 82.19 69.79 60.59 91.17 84.67 74.77 50.53 42.15 38.08 57.13 49.57 45.48 72.27 56.12 49.01 77.26 61.37 53.78

F-ConvNet [35] RGB + LiDAR 87.36 76.39 66.69 91.51 85.84 76.11 52.16 43.38 38.80 57.04 48.96 44.33 81.98 65.07 56.54 84.16 68.88 60.05

UberATG-MMF [17] RGB + LiDAR 88.40 77.43 70.22 93.67 88.21 81.99 - - - - - - - - - - - -

SECOND-V1.5 [37] LiDAR only 84.65 75.96 68.71 91.81 86.37 81.04 - - - - - - - - - - - -

PointPillars [13] LiDAR only 82.58 74.31 68.99 90.07 86.56 82.81 51.45 41.92 38.89 57.60 48.64 45.78 77.10 58.65 51.92 79.90 62.73 55.58

PointRCNN [27] LiDAR only 86.96 75.64 70.70 92.13 87.39 82.72 47.98 39.37 36.01 54.77 46.13 42.84 74.96 58.82 52.53 82.56 67.24 60.28

3D IoU Loss [43] LiDAR only 86.16 76.50 71.39 91.36 86.22 81.20 - - - - - - - - - - - -

Fast Point R-CNN [2] LiDAR only 85.29 77.40 70.24 90.87 87.84 80.52 - - - - - - - - - - - -

STD [40] LiDAR only 87.95 79.71 75.09 94.74 89.19 86.42 53.29 42.47 38.35 60.02 48.72 44.55 78.69 61.59 55.30 81.36 67.23 59.35

Patches [14] LiDAR only 88.67 77.20 71.82 92.72 88.39 83.19 - - - - - - - - - - - -

Part-A2 [28] LiDAR only 87.81 78.49 73.51 91.70 87.79 84.61 53.10 43.35 40.06 59.04 49.81 45.92 79.17 63.52 56.93 83.43 68.73 61.85

PV-RCNN (Ours) LiDAR only 90.25 81.43 76.82 94.98 90.65 86.14 52.17 43.29 40.29 59.86 50.57 46.74 78.60 63.71 57.65 82.49 68.89 62.41

Improvement - +1.58 +1.72 +1.73 +0.24 +1.46 -0.28 -1.12 -0.06 +0.23 -0.16 +0.76 +0.82 -0.57 +0.19 +0.72 -0.94 +0.16 +0.56

Table 1. Performance comparison on the KITTI test set. The results are evaluated by the mean Average Precision with 40 recall positions.

Method Reference Modality 3D mAP

MV3D [1] CVPR 2017 RGB + LiDAR 62.68

ContFuse[18] ECCV 2018 RGB + LiDAR 73.25

AVOD-FPN [12] IROS 2018 RGB + LiDAR 74.44

F-PointNet [24] CVPR 2018 RGB + LiDAR 70.92

VoxelNet [45] CVPR 2018 LiDAR only 65.46

SECOND [37] Sensors 2018 LiDAR only 76.48

PointRCNN [27] CVPR 2019 LiDAR only 78.63

Fast Point R-CNN [2] ICCV 2019 LiDAR only 79.00

STD [40] ICCV 2019 LiDAR only 79.80

PV-RCNN (Ours) - LiDAR only 83.90

Table 2. Performance comparison on the moderate level car class

of KITTI val split with mAP calculated by 11 recall positions.

IoU

Thresh.

3D mAP BEV mAP

Easy Moderate Hard Easy Moderate Hard

0.7 92.57 84.83 82.69 95.76 91.11 88.93

Table 3. Performance on the KITTI val split set with mAP calcu-

lated by 40 recall positions for car class.

Method PointRCNN [27] STD [40] PV-RCNN (Ours)

Recall (IoU=0.7) 74.8 76.8 85.5

Table 4. Recall of different proposal generation networks on the

car class at moderate difficulty level of the KITTI val split set.

while achieving slightly worse results on the easy difficulty

levels, where we think the limited number of keypoints may

harm the performance of the objects with small sizes.

As of Nov. 15th, 2019, our method ranks 1st on the car

3D detection leaderboard among all methods including both

the RGB+LiDAR methods and LiDAR-only methods, and

ranks 1st on the cyclist 3D detection leaderboard among all

published LiDAR-only methods. The significant improve-

ments manifest the effectiveness of the PV-RCNN.

We also report the performance of the most important car

class on the KITTI val split with mAP from R11. Similarly,

as shown in Table 2, our method outperforms previous state-

of-the-art methods with large margins. The performance

with R40 are also provided in Table 3 for reference.

4.3. 3D Detection on the Waymo Open Dataset

To further validate the effectiveness of our proposed PV-

RCNN, we evaluate the performance of PV-RCNN on the

newly released large-scale Waymo Open Dataset.

Evaluation Metric. We adopt the official released eval-

uation tools for evaluating our method, where the mean

average precision (mAP) and the mean average precision

weighted by heading (mAPH) are used for evaluation. The

rotated IoU threshold is set as 0.7 for vehicle. The test data

are split in two ways. The first way is based on objects’ dif-

ferent distances to the sensor: 0 − 30m, 30 − 50m and >

50m. The second way is to split the data into two difficulty

levels, where the LEVEL 1 denotes the ground-truth ob-

jects with more than 5 inside points while the LEVEL 2 de-

notes the ground-truth objects with at least 1 inside points.

Comparison with state-of-the-art methods. Table 5

shows that our method outperforms previous state-of-the-

art [44] significantly with a 7.37% mAP gain for the 3D

object detection and a 2.56% mAP gain for the bird-view

object detection. The results show that our method achieves

remarkably better mAP on all distance ranges of interest,

where the maximum gain is 9.19% for the 3D detection in

the range of 30 − 50m, which validates that our proposed

multi-scale point-voxel integration strategy is able to effec-

tively capture more accurate contextual information for im-

proving the 3D detection performance. As shown in Ta-

ble 5, our method also achieves superior performance in

terms of mAPH, which demonstrates that our model pre-

dicted accurate heading direction for the vehicles. The re-

sults on the LEVEL 2 difficult level are also reported in

Table 5 for reference, and we could see that our method

performs well even for the objects with fewer than 5 inside

points. The experimental results on the large-scale Waymo

Open dataset further validate the generalization ability of

our proposed framework on various datasets.

4.4. Ablation Studies

In this section, we conduct extensive ablation experi-

ments to analyze individual components of our proposed

method. All models are trained on the train split and evalu-

ated on the val split for the car class of KITTI dataset [4].

Effects of voxel-to-keypoint scene encoding. We vali-

date the effectiveness of voxel-to-keypoint scene encoding

strategy by comparing with the native solution that directly
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Difficulty Method
3D mAP (IoU=0.7) 3D mAPH (IoU=0.7) BEV mAP (IoU=0.7) BEV mAPH (IoU=0.7)

Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf

LEVEL 1

PointPillar [13] 56.62 81.01 51.75 27.94 - - - - 75.57 92.1 74.06 55.47 - - - -

MVF [44] 62.93 86.30 60.02 36.02 - - - - 80.40 93.59 79.21 63.09 - - - -

PV-RCNN (Ours) 70.30 91.92 69.21 42.17 69.69 91.34 68.53 41.31 82.96 97.35 82.99 64.97 82.06 96.71 82.01 63.15

Improvement +7.37 +5.62 +9.19 +6.15 - - - - +2.56 +3.76 +3.78 +1.88 - - - -

LEVEL 2 PV-RCNN (Ours) 65.36 91.58 65.13 36.46 64.79 91.00 64.49 35.70 77.45 94.64 80.39 55.39 76.60 94.03 79.40 53.82

Table 5. Performance comparison on the Waymo Open Dataset with 202 validation sequences for the vehicle detection. Note that the

results of PointPillar [13] on the Waymo Open Dataset are reproduced by [44].

Method
RPN with 3D

Voxel CNN

Keypoints

Encoding

RoI-grid

Pooling
Easy Mod. Hard

RPN Baseline X 90.46 80.87 77.30

Pool from Encoder X X 91.88 82.86 80.52

PV-RCNN X X X 92.57 84.83 82.69

Table 6. Effects of voxel-to-keypoint scene encoding strategy and

RoI-grid pooling refinement.

f
(pv1)
i f

(pv2)
i f

(pv3)
i f

(pv4)
i f

(bev)
i f

(raw)
i Moderate mAP

X 81.98

X 83.32

X 83.17

X X 84.54

X X X 84.69

X X X X 84.72

X X X X X 84.75

X X X X X X 84.83

Table 7. Effects of different feature components for VSA module.

aggregating feature volumes from encoder to the RoI-grid

points (see Sec. 3.1). As shown in the 2nd and 3rd rows

of Table 6, the voxel-to-keypoint scene encoding strategy

contributes significantly to the performance in all difficulty

levels. This benefits from that the keypoints enlarge the re-

ceptive fields by bridging the 3D voxel CNN and RoI-grid

points, and the segmentation supervision of keypoints also

enables a better multi-scale feature learning from the 3D

voxel CNN. Besides, a small set of keypoints as the interme-

diate feature representation also decreases the GPU memory

usage when compared with the directly pooling strategy.

Effects of different features for VSA module. In Table 7,

we investigate the importance of each feature component of

keypoints in Eq. (3) and Eq. (4). The 1st row shows that

the performance drops a lot if we only aggregate features

from f
(raw)
i , since the shallow semantic information is not

enough for the proposal refinement. The high level seman-

tic information from f
(pv3)
i , f

(pv4)
i and f

(bev)
i improves the

performance significantly as shown in 2nd to 5th rows. As

shown in last four rows, the additions of relative shallow se-

mantic features f
(pv1)
i , f

(pv2)
i , f

(raw)
i further improves the

performance slightly and the best performance is achieved

with all the feature components as the keypoint features.

Effects of PKW module. We propose the predicted key-

point weighting (PKW) module in Sec. 3.2 to re-weight

the point-wise features of keypoint with extra keypoint seg-

mentation supervision. Table 8 (1st and 4th rows) shows

that removing the PKW module drops performance a lot,

which demonstrates that the PKW module enables better

multi-scale feature aggregation by focusing more on the

PKW
RoI

Pooling

Confidence

Prediction
Easy Moderate Hard

✗ RoI-grid Pooling IoU-guided scoring 92.09 82.95 81.93

X RoI-aware Pooling IoU-guided scoring 92.54 82.97 80.30

X RoI-grid Pooling Classification 91.71 82.50 81.41

X RoI-grid Pooling IoU-guided Scoring 92.57 84.83 82.69

Table 8. Effects of predicted keypoint weighting module, RoI-grid

pooling module and IoU-guided confidence prediction.

foreground keypoints, since they are more important for the

succeeding proposal refinement network.

Effects of RoI-grid pooling module. We investigate the

effects of RoI-grid pooling module by replacing it with the

RoI-aware pooling [28] and keeping the other modules con-

sistent. Table 8 shows that the performance drops signifi-

cantly when replacing RoI-grid pooling module, which val-

idates that our proposed set abstraction based RoI-grid pool-

ing could learn much richer contextual information, and the

pooled features also encode more discriminative RoI fea-

tures by pooling more effective features with large search

radii for each grid point. 1st and 2nd rows of Table 6 also

shows that comparing with the 3D voxel RPN, the perfor-

mance increases a lot after the proposal is refined by the

features aggregated from the RoI-grid pooling module.

5. Conclusion

We have presented the PV-RCNN framework, a novel

method for accurate 3D object detection from point clouds.

Our method integrates both the multi-scale 3D voxel CNN

features and the PointNet-based features to a small set of

keypoints by the new proposed voxel set abstraction layer,

and the learned discriminative features of keypoints are then

aggregated to the RoI-grid points with multiple receptive

fields to capture much richer context information for the

fine-grained proposal refinement. Experimental results on

the KITTI dataset and the Waymo Open dataset demon-

strate that our proposed voxel-to-keypoint scene encoding

and keypoint-to-grid RoI feature abstraction strategy signif-

icantly improve the 3D object detection performance com-

pared with previous state-of-the-art methods.
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