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Abstract

Temporal modeling is key for action recognition in

videos. It normally considers both short-range motions

and long-range aggregations. In this paper, we propose

a Temporal Excitation and Aggregation (TEA) block, in-

cluding a motion excitation (ME) module and a multiple

temporal aggregation (MTA) module, specifically designed

to capture both short- and long-range temporal evolution.

In particular, for short-range motion modeling, the ME

module calculates the feature-level temporal differences

from spatiotemporal features. It then utilizes the differences

to excite the motion-sensitive channels of the features. The

long-range temporal aggregations in previous works are

typically achieved by stacking a large number of local

temporal convolutions. Each convolution processes a local

temporal window at a time. In contrast, the MTA module

proposes to deform the local convolution to a group of sub-

convolutions, forming a hierarchical residual architecture.

Without introducing additional parameters, the features

will be processed with a series of sub-convolutions, and

each frame could complete multiple temporal aggregations

with neighborhoods. The final equivalent receptive field

of temporal dimension is accordingly enlarged, which is

capable of modeling the long-range temporal relationship

over distant frames. The two components of the TEA

block are complementary in temporal modeling. Finally,

our approach achieves impressive results at low FLOPs on

several action recognition benchmarks, such as Kinetics,

Something-Something, HMDB51, and UCF101, which con-

firms its effectiveness and efficiency.

1. Introduction

Action recognition is a fundamental problem in video-

based tasks. It becomes increasingly demanding in video-
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based applications, such as intelligent surveillance, au-

tonomous driving, personal recommendation, and entertain-

ment [28]. Though visual appearances (and its context) is

important for action recognition, it is rather important to

model the temporal structure. Temporal modeling normally

presents (or is considered) at different scales: 1) short-

range motion between adjacent frames and 2) long-range

temporal aggregation at large scales. There are lines of

works considering one or both of those aspects, especially

in the current era of deep CNNs [21, 31, 47, 6, 36, 46, 34,

2, 1, 39, 50, 49, 27, 41, 29, 24, 20]. Nevertheless, they still

leave some gaps, and the problem is far from being solved,

i.e., it remains unclear how to model the temporal structure

with significant variations and complexities effectively and

efficiently.

For short-range motion encoding, most of the existing

methods [31, 42] extract hand-crafted optical flow [48]

first, which is then fed into a 2D CNN-based two-stream

framework for action recognition. Such a two-stream

architecture processes RGB images and optical flow in

each stream separately. The computation of optical flow

is time-consuming and storage demanding. In particular,

the learning of spatial and temporal features is isolated,

and the fusion is performed only at the late layers. To

address these issues, we propose a motion excitation (ME)

module. Instead of adopting the pixel-level optical flow as

an additional input modality and separating the training of

temporal stream with the spatial stream, our module could

integrate the motion modeling into the whole spatiotem-

poral feature learning approach. Concretely, the feature-

level motion representations are firstly calculated between

adjacent frames. These motion features are then utilized to

produce modulation weights. Finally, the motion-sensitive

information in the original features of frames can be excited

with the weights. In this way, the networks are forced to

discover and enhance the informative temporal features that

capture differentiated information.

For long-range temporal aggregation, existing methods
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either 1) adopt 2D CNN backbones to extract frame-wise

features and then utilize a simple temporal max/average

pooling to obtain the whole video representation [42, 11].

Such a simple summarization strategy, however, results

in temporal information loss/confusion; or 2) adopt local

3D/(2+1)D convolutional operations to process local tem-

poral window [36, 3]. The long-range temporal relationship

is indirectly modeled by repeatedly stacking local convolu-

tions in deep networks. However, repeating a large number

of local operations will lead to optimization difficulty [14],

as the message needs to be propagated through the long

path between distant frames. To tackle this problem, we

introduce a multiple temporal aggregation (MTA) module.

The MTA module also adopts (2+1)D convolutions, but

a group of sub-convolutions replaces the 1D temporal

convolution in MTA. The sub-convolutions formulate a

hierarchical structure with residual connections between

adjacent subsets. When the spatiotemporal features go

through the module, the features realize multiple informa-

tion exchanges with neighboring frames, and the equivalent

temporal receptive field is thus increased multiple times to

model long-range temporal dynamics.

The proposed ME module and MTA module are inserted

into a standard ResNet block [14, 15] to build the Temporal

Excitation and Aggregation (TEA) block, and the entire

network is constructed by stacking multiple blocks. The

obtained model is efficient: benefiting from the light-

weight configurations, the FLOPs of the TEA network

are controlled at a low level (only 1.06× as many as 2D

ResNet). The proposed model is also effective: the two

components of TEA are complementary and cooperate in

endowing the network with both short- and long-range

temporal modeling abilities. To summarize, the main

contributions of our method are three-fold:

1. The motion excitation (ME) module to integrate the

short-range motion modeling with the whole spatiotemporal

feature learning approach.

2. The multiple temporal aggregation (MTA) module

to efficiently enlarge the temporal receptive field for long-

range temporal modeling.

3. The two proposed modules are both simple, light-

weight, and can be easily integrated into standard ResNet

block to cooperate for effective and efficient temporal

modeling.

2. Related Works

With the tremendous success of deep learning methods

on image-based recognition tasks [22, 32, 35, 14, 15],

some researchers started to explore the application of deep

networks on video action recognition task [21, 31, 36,

47, 6, 46]. Among them, Karpathy et al. [21] proposed

to apply a single 2D CNN model on each frame of

videos independently and explored several strategies to

fuse temporal information. However, the method does

not consider the motion change between frames, and the

final performance is inferior to the hand-crafted feature-

based algorithms. Donahue et al. [6] used LSTM [16]

to model the temporal relation by aggregating 2D CNN

features. In this approach, the feature extraction of each

frame is isolated, and only high-level 2D CNN features are

considered for temporal relation learning.

The existing methods usually follow two approaches

to improve temporal modeling ability. The first one was

based on two-stream architecture proposed by Simonyan

and Zisserman [31]. The architecture contained a spatial 2D

CNN that learns still feature from frames and a temporal

2D CNN that models motion information in the form of

optical flow [48]. The training of the two streams is

separated, and the final predictions for videos are averaged

over two streams. Many following works had extended

such a framework. [9, 8] explored different mid-level

combination strategies to fuse the features of two streams.

TSN [42] proposed the sparse sampling strategy to capture

long-range video clips. All these methods require additional

computation and storage costs to deal with optical flow.

Moreover, the interactions between different frames and

the two modalities are limited, which usually occur at late

layers only. In contrast, our proposed method discards

optical flow extraction and learns approximate feature-level

motion representations by calculating temporal differences.

The motion encoding can be integrated with the learning

of spatiotemporal features and utilized to discover and

enhance their motion-sensitive ingredients.

The most recent work STM [20] also attempted to model

feature-level motion features and inserts motion modeling

into spatiotemporal feature learning. Our method differs

from STM in that STM directly adds the spatiotemporal

features and motion encoding together. In contrast, our

method utilizes motion features to recalibrate the features

to enhance the motion pattern.

Another typical video action recognition approach is

based on 3D CNNs and its (2+1)D CNN variants [36, 34,

3, 38, 44]. The first work in this line was C3D [36],

which performed 3D convolutions on adjacent frames to

jointly model the spatial and temporal features in a unified

approach. To utilize pre-trained 2D CNNs, Carreira and

Zisserman [3] proposed I3D to inflate the pre-trained 2D

convolutions to 3D ones. To reduce the heavy computations

of 3D CNNs, some works proposed to decompose the 3D

convolution into a 2D spatial convolution and a 1D temporal

convolution [34, 5, 25, 13, 29, 37] or utilize a mixup of 2D

CNN and 3D CNN [38, 45, 52]. In these methods, the long-

range temporal connection can be theoretically established

by stacking multiple local temporal convolutions. However,

after a large number of local convolution operations, the

useful features from distant frames have already been weak-
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Figure 1. The framework of the proposed method for action recognition. The sparse sampling strategy [42] is adopted to sample T frames

from videos. The 2D ResNet [14] is utilized as the backbone, and the ME and MTA modules are inserted into each ResNet block to form

the TEA block. The simple temporal pooling is applied to average action predictions for the entire video.

ened and cannot be captured well. To address this issue,

T3D [5] proposed to adopt densely connected structure

[19] and combined different temporal windows [35]. Non-

local module [43] and stnet [13] applied self-attention

mechanism to model long-range temporal relationship.

Either additional parameters or time-consuming operations

accompany these attempts. Different from these works, our

proposed multiple temporal aggregation module is simple

and efficient without introducing extra operators.

3. Our Method

The framework of the proposed method is illustrated

in Figure 1. The input videos with variable lengths

are sampled using the sparse temporal sampling strategy

proposed by TSN [42]. Firstly, the videos are evenly

divided into T segments. Then one frame is randomly

selected from each segment to form the input sequence

with T frames. For spatiotemporal modeling, our model

is based on 2D CNN ResNet [14] and constructed by

stacking multiple Temporal Excitation and Aggregation

(TEA) blocks. The TEA block contains a motion excitation

(ME) module to excite motion patterns and a multiple

temporal aggregation (MTA) module to establish a long-

range temporal relationship. Following previous methods

[42, 25], the simple temporal average pooling is utilized at

the end of the model to average the predictions of all frames.

3.1. Motion Excitation (ME) Module

Motion measures the content displacements of the two

successive frames and mainly reflects the actual actions.

Many previous works utilize motion representations for

action recognition [42, 3]. Still, most of them only consider

pixel-level motion pattern in the form of optical flow [48]

and separate the learning of motions from spatiotemporal

features. Different from this, in the proposed motion

excitation (ME) module, the motion modeling is extended

from the raw pixel-level to a largely scoped feature-level,
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Excitation
X: 𝑁, 𝑇, 𝐶, 𝐻,𝑊

1x1, 2D Conv

X!: [𝑁, 𝑇, 𝐶/𝑟, 𝐻,𝑊]

Temporal Split

M 𝑡 : 𝑁, 𝐶/𝑟, 𝐻,𝑊

𝐗!(𝑡 + 1)

3x3, 2D Conv

−

Concat

M: 𝑁, 𝑇, 𝐶/𝑟, 𝐻,𝑊

1x1, 2D Conv

Sigmoid

A: [𝑁, 𝑇, 𝐶, 1,1]

Spatial Pooling

M": 𝑁, 𝑇, 𝐶/𝑟, 1,1

⨀

+

𝑋1: [𝑁, 𝑇, 𝐶, 𝐻,𝑊]

Channel Split

X2 X3 X4 X5

3, 1D Conv

3x3, 2D Conv

+

3, 1D Conv

3x3, 2D Conv

X2
1 X3

1 X4
1 𝐗5

1

+

3, 1D Conv

3x3, 2D Conv

Concat

Multiple

Temporal

Aggregation

𝐗!(𝑡)

𝑁, 𝐶/𝑟, 𝐻,𝑊𝑁, 𝐶/𝑟, 𝐻,𝑊

X: 𝑁, 𝑇, 𝐶, 𝐻,𝑊

𝑋1: [𝑁, 𝑇, 𝐶, 𝐻,𝑊]

3, 1D Conv

3x3, 2D Conv

X

Typical Approach

𝑋1

Figure 2. The implementations of the motion excitation (ME)

module (left panel) and multiple temporal aggregation (MTA)

module (right panel).

such that the motion modeling and spatiotemporal features

learning are incorporated into a unified framework.

The architecture of the ME module is shown in the

left panel of Figure 2. The shape of input spatiotemporal

feature X is [N,T,C,H,W ], where N is the batch size.

T and C denote temporal dimension and feature channels,

respectively. H and W correspond to spatial shape. The

intuition of the proposed ME module is that, among all

feature channels, different channels would capture distinct

information. A portion of channels tends to model the static

information related to background scenes; other channels

mainly focus on dynamic motion patterns describing the

temporal difference. For action recognition, it is beneficial

to enable the model to discover and then enhance these

motion-sensitive channels.

Given an input feature X, a 1×1 2D convolution layer is
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firstly adopted to reduce feature channels for efficiency.

X
r = convred ∗X, X

r
∈ R

N×T×C/r×H×W (1)

where X
r denotes the channel-reduced feature. ∗ indicates

the convolution operation. r = 16 is the reduction ratio.

The feature-level motion representations at time step

t is approximately considered as the difference between

the two adjacent frames, X
r(t) and X

r(t + 1). Instead

of directly subtracting the original features, we propose

to perform the channel-wise transformation on features

first and then utilize the transformed feature to calculate

motions. Formally,

M(t) = convtrans∗X
r(t+1)−X

r(t), 1 ≤ t ≤ T−1, (2)

where M(t) ∈ RN×C/r×H×W is the motion feature at time

t. convtrans is a 3×3 2D channel-wise convolution layer

performing transformation for each channel.

We denote the motion feature at the end of time

steps as zero, i.e., M(T ) = 0, and construct the final

motion matrix M by concatenating all the motion features

[M(1), . . . ,M(T )]. Then a global average pooling layer is

utilized to summarize the spatial information since our goal

is to excite the motion-sensitive channels where the detailed

spatial layouts are of no great importance:

M
s = Pool(M), M

s
∈ R

N×T×C/r×1×1. (3)

Another 1×1 2D convolution layer convexp is utilized

to expand the channel dimension of motion features to

the original channel dimension C, and the motion-attentive

weights A can be obtained by using the sigmoid function.

A = 2δ(convexp ∗M
s)− 1, A ∈ R

N×T×C×1×1, (4)

where δ indicates the sigmoid function.

Finally, the goal of the module is to excite the motion-

sensitive channels; thus, a simple way is to conduct

channel-wise multiplication between the input feature X

and attentive weight A. However, such an approach will

suppress the static background scene information, which

is also beneficial for action recognition. To address this

issue, in the proposed motion-based excitation module, we

propose to adopt a residual connection to enhance motion

information meanwhile preserve scene information.

X
o = X+X⊙A, X

o
∈ R

N×T×C×H×W , (5)

where X
o is the output of the proposed module, in which

the motion pattern has been excited and enhanced. ⊙

indicates the channel-wise multiplication.

3.1.1 Discussion with SENet

The excitation scheme is firstly proposed by SENet [18, 17]

for image recognition tasks. We want to highlight our

differences with SENet. 1) SENet is designed for image-

based tasks. When SENet is applied to spatiotemporal

features, it processes each frame of videos independently

without considering temporal information. 2) SENet is

a kind of self-gating mechanism [40], and the obtained

modulation weights are utilized to enhance the informative

channels of feature X. While our module aims to enhance

the motion-sensitive ingredients of the feature. 3) The

useless channels will be completely suppressed in SENet,

but the static background information can be preserved in

our module by introducing a residual connection.

3.2. Multiple Temporal Aggregation (MTA) Module

Previous action recognition methods [36, 34] typically

adopt the local temporal convolution to process neighboring

frames at a time, and the long-range temporal structure can

be modeled only in deep networks with a large number

of stacked local operations. It is an ineffective approach

since the optimization message delivered from distant

frames has been dramatically weakened and cannot be well

handled. To address this issue, we propose the multiple

temporal aggregation (MTA) module for effective long-

range temporal modeling. The MTA module is inspired

by Res2Net [10], in which the spatiotemporal features

and corresponding local convolution layers are split into a

group of subsets. This approach is efficient since it does

not introduce additional parameters and time-consuming

operations. In the module, the subsets are formulated as a

hierarchical residual architecture such that a serial of sub-

convolutions are successively applied to the features and

could accordingly enlarge the equivalent receptive field of

the temporal dimension.

As shown in the upper-right corner of Figure 2, given

an input feature X, a typical approach is to process it

with a single local temporal convolution and another spatial

convolution. Different from this, we split the feature

into four fragments along the channel dimension, and the

shape of each fragment thus becomes [N,T,C/4, H,W ].
The local convolutions are also divided into multiple sub

ones. The last three fragments are sequentially processed

with one channel-wise temporal sub-convolution layer and

another spatial sub-convolution layer. Each of them only

has 1/4 parameters as original ones. Moreover, the residual

connection is added between the two adjacent fragments,

which transforms the module from a parallel architecture to

a hierarchical cascade one. Formally1,

X
o
i = Xi, i = 1,

X
o
i = convspa ∗ (convtemp ∗Xi), i = 2,

X
o
i = convspa ∗ (convtemp ∗ (Xi +X

o
i−1

)), i = 3, 4,
(6)

1The necessary reshape and permutation operations are ignored for

simplicity. In fact, to conduct 1D temporal convolution on input feature

X, it requires to be reshaped from [N,T,C,H,W ] to [NHW,C, T ].
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Figure 3. The motion excitation (ME) module is placed after the

first 1×1 convolution layer. The multiple temporal aggregation

(MTA) module is utilized to replace the 3×3 convolution layer.

where X
o
i ∈ R

N×T×C/4×H×W is the output of i-th frag-

ment. convtemp denotes the 1D channel-wise temporal sub-

convolution whose kernel size is 3 and convspa indicates the

3×3 2D spatial sub-convolution.

In this module, the different fragments have different

receptive fields. For example, the output of the first

fragment Xo
1

is the same as input fragment X1; thus, its

receptive field is 1×1×1. By aggregating information from

former fragments in series, the equivalent receptive field of

the last fragment Xo
4

has been enlarged three times. Finally,

a simple concatenation strategy is adopted to combine

multiple outputs.

X
o = [Xo

1
;Xo

2
;Xo

3
;Xo

4
] , X

o
∈ R

N×T×C×H×W (7)

The obtained output feature X
o involves spatiotemporal

representations capturing different temporal ranges. It is

superior to the local temporal representations obtained by

using a single local convolution in typical approaches.

3.3. Integration with ResNet Block

Finally, we describe how to integrate the proposed

modules into standard ResNet block [14] to construct our

temporal excitation and aggregation (TEA) block. The

approach is illustrated in Figure 3. For computational

efficiency, the motion excitation (ME) module is integrated

into the residual path after the bottleneck layer (the first 1×1

Conv layer). The multiple temporal aggregation (MTA)

module is utilized to replace the original 3×3 Conv layer

in the residual path. The action recognition network can be

constructed by stacking the TEA blocks.

4. Experiments

4.1. Datasets

The proposed approach is evaluated on two large-scale

action recognition datasets, Something-Something V1 [12]

and Kinetic400 [3], and other two small-scale datasets,

HMDB51 [23] and UCF101 [33]. As pointed in [45, 51],

most of the categories in Kinetics, HMDB, and UCF

can be recognized by considering the background scene

information only, and the temporal understanding is not

very important in most cases. While the categories of

Something-Something focus on human interactions with

daily life objects, for example, “pull something” and “push

something”. Classifying these interactions requires more

considerations of temporal information. Thus the proposed

method is mainly evaluated on Something-Something since

our goal is to improve the temporal modeling ability.

Kinetics contains 400 categories and provides download

URL links for ∼240k training videos and ∼20k validation

videos. In our experiments, we successfully collect 223,127

training videos and 18,153 validation videos, because a

small fraction of the URLs (around 10%) is no longer valid.

For the Kinetics dataset, the methods are learned on the

training set and evaluated on the validation set. HMDB

contains 51 classes and 6,766 videos, while UCF includes

101 categories with 13,320 videos. For these two datasets,

we follow TSN [42] to utilize three different training/testing

splits for evaluation, and the average results are reported.

Something-Something V1 includes 174 categories with

86,017 training videos, 11,522 validation videos, and

10,960 test videos. All of them have been split into

individual frames at the same rate, and the extracted frames

are also publicly available. The methods are learned on the

training set and measured on the validation set and test set.

4.2. Implementation Details

We utilize 2D ResNet-50 as the backbone and replace

each ResNet block with the TEA block from conv2 to

conv5. The sparse sampling strategy [42] is utilized to

extract T frames from the video clips (T = 8 or 16 in

our experiments). During training, random scaling and

corner cropping are utilized for data augmentation, and the

cropped region is resized to 224×224 for each frame2.

During the test, two evaluation protocols are considered

to trade-off accuracy and speed. 1) efficient protocol (center

crop×1 clip), in which 1 clip with T frames is sampled from

the video. Each frame is resized to 256×256, and a central

region of size 224×224 is cropped for action prediction.

2) accuracy protocol (full resolution×10 clips), in which

10 different clips are randomly sampled from the video,

and the final prediction is obtained by averaging all clips’

scores. For each frame in a video clip, we follow the

strategy proposed by [43] and resize the shorter size to 256

with maintaining the aspect ratio. Then 3 crops of 256×256

that cover the full-frame are sampled for action prediction.

4.3. Experimental Results

4.3.1 Ablation Study

In this section, we first conduct several ablation experiments

to testify the effectiveness of different components in our

proposed TEA block. Without loss of generality, the models

are trained with 8 frames on the Something-Something

V1 training set and evaluated on the validation set. Six

2More training details can be found in supplementary materials.
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Figure 4. The altered blocks of different baselines based on

standard ResNet block [14].

baseline networks are considered for comparison, and their

corresponding blocks are illustrated in Figure 4. The

comparison results, including the classification accuracies

and inference protocols, are shown in Table 1.

• (2+1)D ResNet. In the residual branch of the standard

ResNet block, a 1D channel-wise temporal convolu-

tion is inserted after the first 2D spatial convolution.

• (2+1)D Res2Net. The channel-wise temporal con-

volution is integrated into Res2Net block [10]. In

Res2Net, the 3×3 spatial convolution of ResNet block

is deformed to be a group of sub-convolutions.

• Multiple Temporal Aggregation (MTA). The motion

excitation module is removed from the proposed TEA

network.

• Motion Excitation (ME). Compared with the (2+1)D

ResNet baseline, the proposed motion excitation mod-

ule is added to the residual path.

• (2+1)D SENet. The SE block [18, 17] replaces the

motion excitation module in the ME baseline. The SE

block utilizes two fully connected layers to produce

modulation weights from original features, and then

apply the obtained weights to rescale the features.

• ME w/o Residual. The residual connection is re-

moved from the ME baseline. Thus the output feature

is obtained by directly multiplying the input feature

with the motion-sensitive weights, i.e., Xo = X⊙A.

Table 1. Comparison results on Something-Something.

Method Frames×Crops×Clips
Val

Top-1 (%)

Val

Top-5 (%)

(2+1)D ResNet (a)1 8×1×1 46.0 75.3

(2+1)D Res2Net (b)1 8×1×1 46.2 75.5

MTA (c)1 8×1×1 47.5 76.4

TEA 8×1×1 48.9 78.1

(2+1)D ResNet (a)1 8×1×1 46.0 75.3

(2+1)D SENet (e)1 8×1×1 46.5 75.6

ME w/o Residual (f)1 8×1×1 47.2 76.1

STM [20]2 8×1×1 47.5 -

ME (d)1 8×1×1 48.4 77.5

TEA 8×1×1 48.9 78.1

1. XX (y). XX indicates the XX baseline, and y represents that the

architecture of the corresponding block is the y-th one in Figure 4.

2. The result of STM using efficient inference protocol is cited from

Table 9 in [20].

Effect of Multiple Temporal Aggregation. Firstly, it can

be seen from the first compartment of Table 1 that the

MTA baseline outperforms the (2+1)D ResNet baseline by

a large margin (47.5% vs. 46.0%). Compared with the

(2+1)D ResNet baseline, the capable long-range temporal

aggregation can be constructed in the MTA module by

utilizing the hierarchical structure to enlarge the equivalent

receptive field of the temporal dimension in each block,

which results in the performance improvements.

Moreover, considering the proposed MTA module en-

larges both spatial and temporal receptive fields, it is

thus necessary to ascertain the independent impact of the

two aspects. To this end, we then compare the (2+1)D

ResNet baseline with the (2+1)D Res2Net baseline. In

(2+1)D Res2Net, the group of sub-convolutions is applied

to spatial dimension only, and the equivalent receptive field

of temporal dimension is unchanged in this model. We

can see that the accuracies of the two baselines are similar

and both inferior to that of MTA (46.0%/46.2% vs. 47.5%).

It proves that exploring complicated spatial structures and

sophisticated spatial representations have, to some extent,

limit impacts on the action recognition task. The key to

improving the performance of action recognition is capable

and reliable temporal modeling ability.

Effect of Motion Modeling. To testify the effectiveness

of the motion modeling for action recognition, we compare

the ME baseline with the (2+1)D ResNet baseline. In

the second compartment of Table 1, we can see that the

action recognition performance is significantly increased

by considering the motion encoding (48.1% vs. 46.0%).

The discovery of motion-sensitive features will force the

networks to focus on dynamic information that reflects the

actual actions.

To prove that such improvement is not brought by in-

troducing extra parameters and soft attention mechanisms,
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Table 2. Comparison results of TEA with other state-of-the-art methods on Something-Something V1.

Method Backbone Frames×Crops×Clips FLOPs Pre-train
Val

Top-1 (%)
Val

Top-5 (%)
Test

Top-1 (%)

3D/(2D+3D) CNNs:
I3D-RGB [44] 3D ResNet50

32×3×2
153G×3×2 ImgNet

+
K400

41.6 72.2 -
NL I3D-RGB [44] 3D ResNet50 168G×3×2 44.4 76.0 -

NL I3D+GCN-RGB [44] 3D ResNet50+GCN 303G×3×2 46.1 76.8 45.0

ECO-RGB [52]
BNIncep+3D Res18

8×1×1 32G×1×1
K400

39.6 - -
ECOEn-RGB [52] 92×1×1 267G×1×1 46.4 - 42.3

ECOEn-(RGB+Flow) [52] 92 + 92 N/A2 49.5 - 43.9

2D/(2+1)D CNNs:
TSN-RGB [42] BNInception

8×1×1
16G×1×1

ImgNet
19.5 - -

TSN-RGB [42] ResNet50 33G×1×1 19.7 - -

STM-RGB [20]
ResNet50

8×3×10 33G×3×10
ImgNet

49.2 79.3 -
STM-RGB [20] 16×3×10 67G×3×10 50.7 80.4 43.1

TSM-RGB [25]

ResNet50

8×1×1 33G×1×1
ImgNet

+
K400

43.4 73.2 -
TSM-RGB [25] 16×1×1 65G×1×1 44.8 74.5 -

TSMen-RGB [25] 8 + 16 33G + 65G 46.8 76.1 -

TSM-(RGB+Flow) [25] 16 + 16 N/A2 50.2 79.5 47.0

TEA (Ours)

ResNet50

8×1×1 35G×1×1

ImgNet

48.9 78.1 -
TEA (Ours) 8×3×10 35G×3×10 51.7 80.5 45.3
TEA (Ours) 16×1×1 70G×1×1 51.9 80.3 -
TEA (Ours) 16×3×10 70G×3×10 52.3 81.9 46.6

1. “ImgNet” denotes ImageNet dataset [4, 30] and “K400” indicates Kinetics400 datasets [3].

2. “N/A” represents that the FLOPs cannot be accurately measured because of extracting optical flow.

we then compare the (2+1)D SENet baseline with the

(2+1)D ResNet baseline. (2+1)D SENet adds the SE

block at the start of the trunk path, aiming to excite the

informative feature channels. However, the SE block is

applied to each frame of videos independently, and the

temporal information is not considered in this approach.

Thus, the performance of the (2+1)D SENet baseline is

similar to the (2+1)D ResNet baseline (46.5% vs. 46.0%).

The improvement is quite limited.

Finally, we explore several designs for motion modeling.

We first compare the ME baseline with the ME w/o Residual

baseline. It can be seen that the performance decreases

from 48.1% to 47.2% without residual connections since

the static information related background scenes will be

eliminated in ME w/o Residual. It proves that the scene

information is also beneficial for action recognition, and the

residual connection is necessary for the motion excitation

module. Then we compare the ME baseline with STM

[20]. We can see that ME attains higher accuracy than STM

(48.4% vs. 47.5%), which verifies the excitation mechanism

utilized in the proposed method is superior to the simple add

approach used in STM. When additionally considering the

long-range temporal relationship by introducing the MTA

module, the accuracy of our method (TEA) can be further

improved to 48.9%.

4.3.2 Comparisons with the State-of-the-arts

In this section, we first compare TEA with the existing

state-of-the-art action recognition methods on Something-

Something V1 and Kinetics400. The comprehensive statis-

tics, including the classification results, inference protocols,

and the corresponding FLOPs, are shown in Table 2 and 3.

In both tables, the first compartment contains the meth-

ods based on 3D CNNs or the mixup of 2D and 3D CNNs,

and the methods in the second compartment are all based

on 2D or (2+1)D CNNs. Due to the high computation

costs of 3D CNNs, the FLOPs of methods in the first

compartment are typically higher than others. Among all

existing methods, the most efficient ones are TSN8f [42]

and TSM8f [25] with only 33G FLOPs. Compared with

these methods, the FLOPs of our proposed TEA network

slightly increases to 35G (1.06×), but the performance is

increased by a big margin, a relative improvement of 5.4 %

(48.8% vs. 43.4%).

The superiority of our TEA on Something-Something is

quite impressive. It confirms the remarkable ability of TEA

for temporal modeling. Using efficient inference protocol

(center crop×1 clip) and 8 input frames, the proposed TEA

obtains 48.8%, which significantly outperforms TSN and

TSM with similar FLOPs (19.7%/43.4%). This results

even exceeds the ensemble result of TSM, which combines

the two models using 8 and 16 frames, respectively

(TSMEn, 46.8%). When utilizing 16 frames as input and

applying a more laborious accuracy evaluation protocol

(full resolution×10 clips), the FLOPs of our method

increase to ∼2000G, which is similar to NL I3D+GCN

[44]. But the proposed method significantly surpasses NL

I3D+GCN and all other existing methods (52.3% vs. 46.1%)

on the validation set. Our performance on the test set
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Table 3. Comparison results of TEA with other state-of-the-art methods on Kinetics400 validation set.

Method Backbone Frames×Crops×Clips FLOPs Pre-train Top-1 (%) Top-5 (%)

3D/(2D+3D) CNNs:
I3D-RGB [3]

Inception V1 64×N/A×N/A1 108G×N/A×N/A ImgNet 72.1 90.3
I3D-RGB [3] 108G×N/A×N/A None 67.5 87.2

ECO-RGBEn [52] BNIncep+3D Res18 92×1×1 267G×1×1 None 70.0 -

NL I3D-RGB [44] 3D ResNet101 32×6×10 359G×6×10 ImgNet 77.7 93.3

NL SlowFast [7] 3D ResNet101 (16+8)×3×10 234G×3×10 None 79.8 93.9

2D/(2+1)D CNNs:
TSN-RGB [42] BNInception

25×10×1
53G×10×1

ImgNet
69.1 88.7

TSN-RGB [42] Inception v3 80G×10×1 72.5 90.2

R(2+1)D [38] ResNet-34 32×1×10 152G×1×10 None 72.0 90.0

STM-RGB [20] ResNet50 16×3×10 67G×3×10 ImgNet 73.7 91.6

TSM-RGB [25]
ResNet50

8×3×10 33G×3×10
ImgNet

74.1 -
TSM-RGB [25] 16×3×10 65G×3×10 74.7 -

TEA (Ours)

ResNet50

8×1×1 35G×1×1

ImgNet

72.5 90.4
TEA (Ours) 8×3×10 35G×3×10 75.0 91.8
TEA (Ours) 16×1×1 70G×1×1 74.0 91.3
TEA (Ours) 16×3×10 70G×3×10 76.1 92.5

1. “ImgNet” denotes ImageNet dataset [4, 30] and “None” indicates training models from scratch.

2. “N/A” represents that the authors do not report the inference protocol in their paper.

(46.6%) also outperforms most of the existing methods.

Moreover, we do not require additional COCO images

[26] to pre-train an object detector as in [44]. When

compared with the methods utilizing both RGB and optical

flow modalities, i.e., ECOEn-(RGB+Flow) [52] (49.5%)

and TSM-(RGB+Flow) [25] (50.2%), the obtained result

(52.3%) also shows substantial improvements.

On Kinetics400, the performance of our method (76.1%)

is inferior to that of SlowFast [7] (79.8%). However, the

SlowFast networks adopt the deeper networks (ResNet101)

based on 3D CNNs and utilize time-consuming non-local

[43] operations. When comparing methods with similar

efficiency, such as TSM [25] and STM [20], TEA obtains

better performance. When adopting 8 frames as input,

TEA gains ∼1% higher accuracy than TSM (75.0% vs.

74.1%). While utilizing 16 input frames, our TEA method

outperforms both TSM16f and STM 16f with a large margin

(76.1% vs. 74.7%/73.7%).

Finally, we report comparison results on HMDB51 and

UCF101 in Table 4. Our method achieves 73.3% on

HMDB51 and 96.9% on UCF101 with the accuracy infer-

ence protocol. The performance of our model (TEA16f )

outperforms most of the existing methods except for I3D

[3]. I3D is based on 3D CNNs and additional input

modality; thus, its computational FLOPs will be far more

than ours.

5. Conclusion

In this paper, we propose the Temporal Excitation and

Aggregation (TEA) block, including the motion excitation

Table 4. Comparison results on HMDB51 and UCF101.

Method Backbone
HMDB51

MCA (%)1
UCF101

MCA (%)1

I3D-(RGB+Flow) [3] 3D Inception 80.7 98.0

TSN-(RGB+Flow) [42] BNInception 68.5 94.0

StNet [13] ResNet50 - 93.5

TSM2 ResNet50 70.7 94.5

STM [20] ResNet50 72.2 96.2

TEA (Ours) ResNet50 73.3 96.9

1. MCA denotes mean class accuracy.

2. TSM does not report MCA results, and the listed results are cited

from STM [20].

(ME) module and the multiple temporal aggregation (MTA)

module for both short- and long-range temporal modeling.

Specifically, the ME module could insert the motion

encoding into the spatiotemporal feature learning approach

and enhance the motion pattern in spatiotemporal features.

In the MTA module, the reliable long-range temporal

relationship can be established by deforming the local

convolutions into a group of sub-convolutions to enlarge

the equivalent temporal receptive field. The two proposed

modules are integrated into the standard ResNet block and

cooperate for capable temporal modeling.

6. Ackonwledgement

This work is supported by the Video Understanding

Middle Platform of the Platform and Content Group (PCG)

at Tencent. The authors would like to thank Wei Shen for

his helpful suggestions.

916



References

[1] Hakan Bilen, Basura Fernando, Efstratios Gavves, and

Andrea Vedaldi. Action recognition with dynamic image

networks. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 40(12):2799–2813, 2017.

[2] Hakan Bilen, Basura Fernando, Efstratios Gavves, Andrea

Vedaldi, and Stephen Gould. Dynamic image networks for

action recognition. In CVPR, pages 3034–3042, 2016.

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,

pages 6299–6308, 2017.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, pages 248–255, 2009.

[5] Ali Diba, Mohsen Fayyaz, Vivek Sharma, Amir Hossein

Karami, Mohammad Mahdi Arzani, Rahman Yousefzadeh,

and Luc Van Gool. Temporal 3d convnets: New architecture

and transfer learning for video classification. arXiv preprint

arXiv:1711.08200, 2017.

[6] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional

networks for visual recognition and description. In CVPR,

pages 2625–2634, 2015.

[7] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and

Kaiming He. Slowfast networks for video recognition.

In Proceedings of the IEEE International Conference on

Computer Vision, pages 6202–6211, 2019.

[8] Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes.

Spatiotemporal multiplier networks for video action recog-

nition. In CVPR, pages 4768–4777, 2017.

[9] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Convolutional two-stream network fusion for video action

recognition. In CVPR, pages 1933–1941, 2016.

[10] Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu

Zhang, Ming-Hsuan Yang, and Philip Torr. Res2net: A

new multi-scale backbone architecture. arXiv preprint

arXiv:1904.01169, 2019.

[11] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic,

and Bryan Russell. Actionvlad: Learning spatio-temporal

aggregation for action classification. In CVPR, pages 971–

980, 2017.

[12] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-

ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,

Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz

Mueller-Freitag, et al. The “something something” video

database for learning and evaluating visual common sense.

In ICCV, pages 5843–5851, 2017.

[13] Dongliang He, Zhichao Zhou, Chuang Gan, Fu Li, Xiao Liu,

Yandong Li, Limin Wang, and Shilei Wen. Stnet: Local and

global spatial-temporal modeling for action recognition. In

AAAI, pages 8401–8408, 2019.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In ECCV,

pages 630–645, 2016.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural Computation, 9(8):1735–1780, 1997.

[17] J Hu, L Shen, S Albanie, G Sun, and E Wu. Squeeze-and-

excitation networks. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2019.

[18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation

networks. In CVPR, pages 7132–7141, 2018.

[19] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and

Kilian Q Weinberger. Densely connected convolutional

networks. In CVPR, pages 4700–4708, 2017.

[20] Boyuan Jiang, MengMeng Wang, Weihao Gan, Wei Wu, and

Junjie Yan. Stm: Spatiotemporal and motion encoding for

action recognition. In ICCV, pages 2000–2009, 2019.

[21] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In CVPR,

pages 1725–1732, 2014.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, pages 1097–1105, 2012.

[23] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote,

Tomaso Poggio, and Thomas Serre. Hmdb: a large video

database for human motion recognition. In ICCV, pages

2556–2563, 2011.

[24] Yanghao Li, Sijie Song, Yuqi Li, and Jiaying Liu. Temporal

bilinear networks for video action recognition. In AAAI,

pages 8674–8681, 2019.

[25] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift

module for efficient video understanding. In ICCV, pages

7083–7093, 2019.

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, pages 740–755, 2014.

[27] Joe Yue-Hei Ng and Larry S Davis. Temporal difference

networks for video action recognition. In WACV, pages

1587–1596, 2018.

[28] Oleksandra Poquet, Lisa Lim, Negin Mirriahi, and Shane

Dawson. Video and learning: a systematic review (2007–

2017). In ICLAK, pages 151–160. ACM, 2018.

[29] Zhaofan Qiu, Ting Yao, Chong-Wah Ngo, Xinmei Tian, and

Tao Mei. Learning spatio-temporal representation with local

and global diffusion. In CVPR, pages 12056–12065, 2019.

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015.

[31] Karen Simonyan and Andrew Zisserman. Two-stream

convolutional networks for action recognition in videos. In

NIPS, pages 568–576, 2014.

[32] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014.

917



[33] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.

Ucf101: A dataset of 101 human actions classes from videos

in the wild. arXiv preprint arXiv:1212.0402, 2012.

[34] Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram E Shi.

Human action recognition using factorized spatio-temporal

convolutional networks. In ICCV, pages 4597–4605, 2015.

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, pages 1–9, 2015.

[36] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In ICCV, pages 4489–4497,

2015.

[37] Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feiszli.

Video classification with channel-separated convolutional

networks. arXiv preprint arXiv:1904.02811, 2019.

[38] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann

LeCun, and Manohar Paluri. A closer look at spatiotemporal

convolutions for action recognition. In CVPR, pages 6450–

6459, 2018.

[39] Gül Varol, Ivan Laptev, and Cordelia Schmid. Long-

term temporal convolutions for action recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

40(6):1510–1517, 2017.

[40] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng

Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang.

Residual attention network for image classification. In

CVPR, pages 3156–3164, 2017.

[41] Limin Wang, Wei Li, Wen Li, and Luc Van Gool.

Appearance-and-relation networks for video classification.

In CVPR, pages 1430–1439, 2018.

[42] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment

networks: Towards good practices for deep action recogni-

tion. In ECCV, pages 20–36, 2016.

[43] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, pages 7794–

7803, 2018.

[44] Xiaolong Wang and Abhinav Gupta. Videos as space-time

region graphs. In ECCV, pages 399–417, 2018.

[45] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and

Kevin Murphy. Rethinking spatiotemporal feature learning:

Speed-accuracy trade-offs in video classification. In ECCV,

pages 305–321, 2018.

[46] Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas,

Christopher Pal, Hugo Larochelle, and Aaron Courville.

Describing videos by exploiting temporal structure. In ICCV,

pages 4507–4515, 2015.

[47] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vi-

jayanarasimhan, Oriol Vinyals, Rajat Monga, and George

Toderici. Beyond short snippets: Deep networks for video

classification. In CVPR, pages 4694–4702, 2015.

[48] Christopher Zach, Thomas Pock, and Horst Bischof. A

duality based approach for realtime tv-l 1 optical flow. In

Joint Pattern Recognition Symposium, pages 214–223, 2007.

[49] Yue Zhao, Yuanjun Xiong, and Dahua Lin. Recognize

actions by disentangling components of dynamics. In CVPR,

pages 6566–6575, 2018.

[50] Yue Zhao, Yuanjun Xiong, and Dahua Lin. Trajectory

convolution for action recognition. In NIPS, pages 2204–

2215, 2018.

[51] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio

Torralba. Temporal relational reasoning in videos. In ECCV,

pages 803–818, 2018.

[52] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas

Brox. Eco: Efficient convolutional network for online video

understanding. In ECCV, pages 695–712, 2018.

918


