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Abstract

Image stitching techniques align two images captured at

different viewing positions onto a single wider image. When

the captured 3D scene is not planar and the camera base-

line is large, two images exhibit parallax where the relative

positions of scene structures are quite different from each

view. The existing image stitching methods often fail to work

on the images with large parallax. In this paper, we propose

an image stitching algorithm robust to large parallax based

on the novel concept of warping residuals. We first estimate

multiple homographies and find their inlier feature matches

between two images. Then we evaluate warping residual for

each feature match with respect to the multiple homogra-

phies. To alleviate the parallax artifacts, we partition input

images into superpixels and warp each superpixel adap-

tively according to an optimal homography which is com-

puted by minimizing the error of feature matches weighted

by the warping residuals. Experimental results demonstrate

that the proposed algorithm provides accurate stitching re-

sults for images with large parallax, and outperforms the

existing methods qualitatively and quantitatively.

1. Introduction

Image stitching is an important technique for diverse

computer vision applications which aligns multiple im-

ages captured from different viewing positions onto a com-

mon coordinate domain to generate an image with wider

field of view. Recently, many commercial products us-

ing image stitching techniques have been released such as

360° panorama camera1 and surround-view monitoring sys-

tems 2. Also, image stitching software products were pro-

vided to synthesize multiple images, e.g., Adobe Photoshop

Photomerge™ and Autostitch [2].

Most of the conventional image stitching methods fol-

low similar procedures [19]. Feature points are first de-

tected from a pair of input images, and their correspondence

matches are found between the images. Then parametric

1https://www.panono.com/
2https://www.bmwblog.com/2019/04/18/video-bmw/

image warping models are estimated by using the detected

feature matches, which warp a target image onto a reference

image domain. Finally, we composite an output stitched im-

age by determining the pixel values in the overlapped areas

between the warped target image and the reference image.

One of the most crucial and challenging steps of image

stitching is image warping. Homography is a simple and

traditional image warping model which describes the para-

metric planar transformation based on the planar scene as-

sumption [9]. However, when the captured scene is not pla-

nar including foreground objects at different scene depths

and the camera baseline is large, we observe the parallax

phenomenon where the relative positions of the objects are

different from two images. In such cases, the stitching re-

sults using planar transformation models such as homog-

raphy often exhibit parallax artifacts in the vicinity of the

object boundaries.

To alleviate the parallax artifacts of image stitching,

adaptive warping algorithms have been proposed which par-

tition an image into regular grid cells or pixels and warp

the partitions by different models [7, 10, 11, 15, 22, 24]. En-

ergy minimization frameworks were applied to optimize the

adaptive warps to prevent the distortion in the warped im-

ages [11,15,24]. Local alignment techniques were proposed

which align only a specific image region while hiding the

artifacts in other misaligned regions based on seam-cutting

methods [8, 14, 23]. However, for images with large par-

allax, a group of neighboring pixels in one image may not

have the corresponding pixels adjacent each other in another

image, which causes severe parallax artifacts in resulting

stitched images obtained by the existing smooth warping

based methods [7, 11, 15, 22, 24]. A video stitching method

has been proposed which addresses the large parallax prob-

lem based on the epipolar geometry [10], however it cannot

be directly applied to image stitching due to the lack of tem-

poral motion information of video sequences.

In this paper, we propose a warping residual based stitch-

ing algorithm for images with large parallax. We first parti-

tion input images into superpixels and warp the superpixels

adaptively, since the parallax phenomenon usually occurs in

the vicinity of object boundaries. We detect feature points
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from two images and find their correspondence matches

which are then used to estimate multiple homographies and

their associated inlier matches. We find an optimal ho-

mography for each superpixel using the feature matches,

where the contribution of each feature point is adaptively

computed according to the warping residuals. The warping

residuals for a given superpixel alleviate the parallax arti-

facts when warping the superpixel by emphasizing the fea-

ture points located on the regions with similar scene depths.

Furthermore, we refine the initially estimated homography

at each superpixel using that of the neighboring superpix-

els for reliable warping. Experimental results show that the

proposed algorithm accurately aligns the images with large

parallax and outperforms the conventional image stitching

methods qualitatively and quantitatively.

The rest of this paper is organized as follows. Section 2

introduces the related work of image stitching. Section 3

proposes a novel concept of warping residuals. Section 4

describes the image warping algorithm. Section 5 presents

the experimental results. Section 6 concludes the paper.

2. Related Work

Adaptive Warping Methods Gao et al. proposed a dual

homography method that blends the homography estimated

for the distant plane with the homography estimated for the

ground plane adaptively according to the positions of fea-

ture points [7]. Lin et al. computed a spatially-varying

affine transformation where an initially estimated global

transformation is refined to the optimal one by minimiz-

ing a cost function [15]. Zaragoza et al. divided an input

image into regular grid cells and estimated an optimal ho-

mography for each cell by moving direct linear transforma-

tion (MDLT) [22] which assigns more weights to the feature

points spatially closer to the target cell when computing the

alignment error. Zhang et al. employed a scale preserving

term and a line preserving term to minimize the distortion in

the warped images [24]. Li et al. approximated the projec-

tion bias caused by the homography of the matched points

by using an analytical warping function based on the thin-

plate spline [18] with radial basis functions [11]. Lee and

Sim proposed a video stitching algorithm for large paral-

lax based on the epipolar geometry [10]. Note that [7] does

not handle the scenes with more than two planar structures.

The other methods [11,15,22,24] can warp the background

composed of multiple planar regions, however, they usually

assume continuous scene depths with small parallax and of-

ten fail to align foreground objects with large parallax hav-

ing abrupt depth changes from the background. Also, [10]

requires temporal motion information of foreground objects

which is not available for image stitching. In contrary, the

proposed method can warp both of the background and mul-

tiple foreground objects at different scene depths between

two images with large parallax.

Shape-Preserving Warps Whereas the overlapping re-

gions between two images are well aligned by using valid

feature matches, the non-overlapping regions usually ex-

hibit severe perspective distortions. Chang et al. applied the

homography transformation to the overlapping regions and

applied the similarity transformation to the non-overlapping

regions, respectively [3]. Lin et al. proposed a homog-

raphy linearization method that smoothly extrapolates the

warps for the overlapping regions to the non-overlapping

regions [13]. Chen et al. estimated proper scale and rota-

tion for each image and designed an objective function for

warping estimation based on a global similarity-prior [4]. Li

et al. proposed a quasi-homography warp to solve the line

bending problem between the homography transformation

and the similarity transformation of [3] by linearly scaling

the horizontal component of the homography [12]. Note

that the shape-preserving warps are usually designed to mit-

igate the perspective distortion in non-overlapping regions

between two images, whereas the main purpose of this pa-

per is to align common visual contents in the overlapped

regions between two images with large parallax.

Seam-Based Methods Gao et al. defined a seam-cutting

loss for the homography that measures the discontinuity be-

tween the warped target image and the reference image [8].

They estimated multiple homographies using RANSAC [6]

and selected an optimal homography having the minimum

seam-cutting loss. Zhang et al. estimated the local homog-

raphy which aligns a certain image region only, and applied

the contents preserving warping (CPW) [16] to further re-

fine the alignment [23]. The misalignment artifacts are hid-

den by the seam-cutting method. Lin et al. improved the

stitching performance gradually by using the iterative warp

and seam estimation [14]. The seam-based methods usu-

ally align certain local image regions only to provide visu-

ally pleasing results of image stitching, which may not be

geometrically accurate over an entire image area.

3. Warping Residuals for Large Parallax

We review the mathematical framework of MDLT [22],

which is one of the adaptive image warping models. Then

we introduce a novel concept of warping residuals which

assign high weights to the feature points located at simi-

lar scene depths to a given superpixel when computing the

alignment error of the warped superpixel.

3.1. Moving Direct Linear Transformation

Let X be a real-world point on a plane π in 3D space,

and let x = [x1, x2, 1]
T and y = [y1, y2, 1]

T are the pixels

of X projected onto two images I and J , respectively. The

relationship between the two pixels is described by a 3 × 3
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homography matrix H induced by the plane π.

y ∼ Hx (1)

where ∼ indicates the equality up to scale. Since the two

locations of Hx and y are same in J , we have [22]

03×1 = y ×Hx

=





01×3 −xT y2x
T

xT 01×3 −y1x
T

−y2x
T y1x

T 01×3



h
(2)

where h is obtained by vectorizing the rows of H. When

x and y are not projected from a same scene point on

π and the camera baseline between I and J is not suffi-

ciently small, the equation (2) does not hold and the norm

‖y ×Hx‖ can be regarded as the alignment error of I and

J .

Direct linear transformation (DLT) [25] estimates the op-

timal homography ĥ from K matching pairs of pixels be-

tween I and J , which minimizes the algebraic error as

ĥ = argminh

K
∑

k=1

‖gkh‖
2
, s.t. ‖h‖ = 1, (3)

= argminh ‖Gh‖
2
, s.t. ‖h‖ = 1, (4)

where gk is the first-two rows of the RHS matrix in (2) for

the k-th matching pair of pixels and G ∈ R
2K×9 is obtained

by stacking gk’s for all the K matching pairs. The optimal

homography matrix Ĥ is obtained from the solution ĥ, the

least significant right singular vector of G.

Note that this global homography may yield significant

parallax artifacts when aligning the images with non-planar

3D scenes and large camera baselines. To alleviate this arti-

facts, Zaragoza et al. [22] modified DLT to the moving DLT

(MDLT) which partitions the images into regular grid cells

and estimates the homography for each cell adaptively. The

optimal homography Ĥi (equivalently its vectorized form

ĥi) for the i-th cell is estimated by employing a weight ma-

trix Wi to (4) as

ĥi = argminh ‖WiGh‖
2
, s.t. ‖h‖ = 1, (5)

where Wi ∈ R
2K×2K is a diagonal weight matrix for the

i-th cell given by

Wi = diag([wi,1 wi,1 wi,2 wi,2 · · · wi,K wi,K ]). (6)

The weight wi,k is defined using the spatial distance be-

tween the center pixel ci of the i-th cell and the k-th feature

point xk given by

wi,k = max(exp(−‖ci − x̃k‖
2
/σ2), γ). (7)

where x̃ means the 2D pixel coordinates of the homoge-

neous coordinates x.

Figure 1. Visualization of warping residuals associated with the

three feature matches of {xk ↔ yk}
3

k=1 with respect to the two

planes of π1 and π
2.

3.2. Warping Residual Based Transformation

The spatial distance based weight defined in (7) allevi-

ates the artifacts of image warping methods based on the

global homography, however it still suffers from severe mis-

alignment artifacts especially on the challenging images

with large parallax. As illustrated in Figure 1, let us con-

sider three feature points where the two points x1 and x2

lie on the plane π1 while the point x3 lies on the other plane

π2, respectively. We assume the two planes π1 and π2 have

different scene depths from each other causing severe par-

allax, and therefore the relative locations of π1 and π2 in

J are largely different from that in I. Consider the three

matching pairs {xk ↔ yk}
3
k=1 between I and J . While

the relative locations between x̃1 and x̃2 in I are same to

that of the matched pixels ỹ1 and ỹ2 in J , the relative loca-

tions between x̃2 and x̃3 in I are quite different from that

of the matched pixels ỹ2 and ỹ3 in J , as shown in Fig-

ure 1. The existing weighting scheme in (7) assigns higher

weights to spatially closer feature points regardless of dif-

ferent scene depths, and hence yields parallax artifacts in

the vicinity of object boundaries.

To overcome this drawback, we first extract multiple

possible homography matrices of Hm’s between I and J ,

and introduce a warping residual rmk for the k-th matched

point xk with respect to the m-th homography Hm as

rmk = ‖ỹk − ỹm
k ‖ . (8)

where ym
k = Hmxk. In Figure 1, we consider two homo-

graphies H1 and H2 associated with π1 and π2, and warp

the three points {xk}
3
k=1 using the two homographies, re-

spectively. Since x1 and x2 lie on π1, the warping residuals

of r11 and r12 induced by H1 are small but r21 and r22 induced

by H2 becomes large. In contrary, x3 lies on π2 and thus

results in a small warping residual of r23 but a large residual

of r13 , respectively. For a given k-th feature point xk, we de-

fine the warping residual vector rk using M homographies

{Hm}Mm=1 given by

rk = [r1k r2k · · · rMk ]T . (9)
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(a) (b)

(c) (d)

Figure 2. Effect of warping residuals. (a) A target image I and

(b) a reference image J . (c) The partitioned regular grid cells and

the feature points with spatial distance based weights [22] used

to estimate the homography for a given cell marked by the white

cross. (d) The partitioned superpixels and the feature points with

the proposed warping residual based weights used to estimate the

homography for a given superpixel marked by the white cross. We

draw large grid cells and superpixels for visualization purpose.

We see that the warping residual vectors implicitly describe

the overall scene structures, since the feature points located

on a same planar region tend to have similar warping resid-

ual vectors to each other, while the points located at dif-

ferent scene depths yield largely different warping residual

vectors from each other.

We adopt the warping residual vectors for image stitch-

ing with large parallax. Specifically, we first partition input

images into superpixels which are warped adaptively, since

the parallax phenomenon usually occurs in the vicinity of

the object boundaries. We estimate the optimal homogra-

phy ĥi for the i-th superpixel Si by solving the equation

in (5) where the existing spatial distance based weight wi,k

is replaced with the proposed warping residual based weight

wprop

i,k given by

wprop

i,k = max(exp(−‖Ri − rk‖
2
/σ2), γ), (10)

where Ri is the warping residual vector of the i-th super-

pixel Si which is defined by the warping residual vector of

the nearest feature point xk to the center of Si. We empir-

icaly set σ = 4 and γ = 0.01. Note that each superpixel

is warped adaptively by imposing high weights to the fea-

ture points located on similar planar regions to the target

superpixel.

Figure 2 shows the effect of the warping residual based

weighting scheme, where two input images in Figures 2(a)

and (b) exhibit large parallax, since the red object and the

buildings have quite different relative positions from each

view. Figure 2(c) visualizes the partitioned regular grid cells

and the detected feature points obtained by APAP [22]. We

compute the spatial distance based weights in (7) for the

feature points with respect to a target grid cell marked by

the white cross. We see that higher weights are assigned

to the feature points spatially closer to the target grid cell.

In particular, even though the target grid cell is located on

the red object, not only the points located on the red ob-

ject but also the points on the white tower are assigned high

weights. On the other hand, Figure 2(d) shows the parti-

tioned superpixels and the warping residual based weights

computed in (10) for a given target superpixel marked by

the white cross. We observe that the proposed algorithm as-

signs high weights to only the feature points located on the

same red object to the target superpixel, while effectively

suppressing the weights for the spatially close feature points

located on the white tower at a different scene depth from

the red object. Also, note that large parallax usually occurs

in the vicinity of the object boundaries which are effectively

captured by the boundaries of superpixels.

4. Image Warping

We first estimate multiple valid homographies between

two images, which are used to compute the warping resid-

uals. We partition input images into superpixels and esti-

mate an optimal homography at each superpixel based on

the warping residuals. We also refine the initially estimated

homography to handle the occlusion for more reliable im-

age alignment.

4.1. Multi­Homography Estimation

We find feature points by using SIFT [17] to obtain a

set of initial matches Finit between two images I and J .

Then we use Finit to estimate M multiple homographies

{Hm}Mm=1 and the associated inlier matches {Fm
inlier}

M
m=1.

We initialize the set Fcand of the candidate matches as

Finit, and estimate the first homography H1 with its inlier

set F1
inlier from Fcand using the outlier removal method of

MULTI-GS with a threshold of η = 0.01 [5]. For stable

homography estimation, we also use the normalized coordi-

nates of feature points [25], and remove the matches of iso-

lated feature points from F1
inlier which have no neighboring

points within 50 pixel distance. We subtract F1
inlier from

Fcand, and continue to estimate the next homography H2

and its inlier set F2
inlier from the updated Fcand. This pro-

cess is iteratively repeated up to 5 times until satisfying the

stopping condition, ‖Fm
inlier‖ < 8 or ‖Fcand‖ / ‖Finit‖ <

0.02. In addition, when only a single homography is es-

timated as valid during the iteration, we regard the input

images exhibit small parallax and estimate H1 and F1
inlier

again using a more relaxed inlier threshold of η = 0.1. Fi-

nally, we combine the obtained sets {Fm
inlier}

M
m=1 into the
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(a) (b) (c) (d)

Figure 3. Image warping by multiple homographies. (a) Input images and (b∼d) the results of image stitching where the target image is

warped by the estimated three homographies, respectively.

(a) (b)

(c) (d)

Figure 4. (a) A target image and (b) a reference image with large

parallax. The warped target images onto the reference image do-

main according to (c) the initially estimated homography and (d)

the refined homography, respectively.

set of total inlier matches Finlier. Figure 3 shows a pair

of input images with large parallax and their stitching re-

sults obtained by warping the target image onto the refer-

ence image according to the three estimated homographies,

respectively. We see that each of the multiple homographies

aligns a certain image region only, e.g., the first homog-

raphy aligns the white building, the second homography

aligns the ground plane, and the third homography aligns

the blue object, respectively.

4.2. Optimal Warping Estimation

As explained in Section 3, we partition an input image

I into superpixels using SLIC [1], and we warp each su-

perpixel of I onto J according to the optimal homogra-

phy computed by solving (5) based on the warping resid-

ual based weights in (10). However, such forward warping

may cause holes in the warped image domain, and there-

fore, we perform the inverse warping from J to I instead.

Specifically, we consider a large canvas on J domain which

includes J and the warped image of I. We partition the

canvas into superpixels where the inside of J is partitioned

by using SLIC [1] and the outside of J is uniformly parti-

tioned into superpixels of 100× 100 regular grids. For each

j-th superpixel SJ
j in the canvas, we estimate the initial

homography ĤJ→I
j based on the equation (5) similarly to

the homography estimation for the forward warping. Then

we take the pixels in I corresponding to SJ
j according to

ĤJ→I
j , and generate a hole-free warped image of I on the

canvas domain.

Figures 4(a) and (b) show two images I and J , respec-

tively, and Figure 4(c) shows the warped image of I. We

see that most of the pixels are warped accurately, however,

the tail of the fish statue appears twice due to the occlu-

sion as depicted in the yellow box. To handle this occlusion

artifact, we check whether the superpixels in the canvas do-

main, whose corresponding pixels lie within I, are occluded

in I or not. In practice, we first compute a warping loss for

SJ
j given by

L(SJ
j ) =

1
∣

∣SJ
j

∣

∣

∑

q∈SJ

j

∥

∥

∥
J (q)− I(ĤJ→I

j q)
∥

∥

∥
(11)

where large warping losses are usually evaluated at the su-

perpixels occluded in I. We also compute a bidirectional

warping distance for SJ
j as

d(cj) = ‖cj − ĉj‖ (12)

where cj is the center pixel of SJ
j and ĉj = ĤiĤ

J→I
j cj

where Ĥi denotes the homography of the forward warping

at the i-th superpixel in I including the pixel of ĤJ→I
j cj .

As marked by the red points in Figure 4(b), cj and its bidi-

rectionally warped point have a large distance in the warped

image since cj is occluded in I. We empirically detect SJ
j

is occluded when L(SJ
j ) > 20 and d(cj) is larger than 2%
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(a) (b) (c) (d)

Figure 5. Effects of the warping residual based weighting and the occlusion handling in the proposed algorithm. (a) Input images with

large parallax. The stitched images obtained by using (b) APAP [22], (c) an extended APAP by replacing the spatial distance based weight

with the proposed warping residual based one, and (d) the proposed algorithm with occlusion handling and homography refinement.

(a) (b) (c)

Figure 6. Image stitching results of the proposed algorithm. (a) Input images with large parallax. The stitched images obtained by using

(b) the initial homography and (c) the refined homography, respectively. “Truck (top)” and “Subway (bottom)” images.

of the diagonal length of J . In addition, we perform the

connected component analysis on the detected superpixels

and select M − 1 largest connected regions as occluded re-

gions. Note that M is the number of estimated multiple

homographies. We observe that, in most cases, occlusions

mainly occur between the foreground objects and the back-

ground, and thus we simplify the number of occluded re-

gions as M − 1. Figure 4(d) illustrates the warped image of

I on the canvas domain of J , where the regions of occlu-

sion are represented as holes.

Note that the warping residual vector of a superpixel is

defined by that of the feature point nearest to the super-

pixel, which may cause the alignment error when they are

not on the same object. Therefore, we obtain an increased

number of feature points by adjusting the parameters when

implementing SIFT. We also additionally refine the esti-

mated homography ĤJ→I
j for SJ

j to the homography of

the neighboring superpixel which has the minimum warp-

ing loss in (11) among 100 nearest superpixels to SJ
j . We

apply the refinement method to non-occluded superpixels

only, since no valid pixel values are extracted from the oc-

cluded superpixels.

5. Experimental Results

We evaluate the performance of the proposed image

stitching algorithm using 40 pairs of test images: 20 im-

age pairs are from [23] and the other 20 pairs are newly

captured. In order to compare the alignment performances

effectively, each pair of images share sufficient overlapping

areas and we apply the average blending scheme to combine

the warped target image and the reference image.

5.1. Performance of Image Warping

Figure 5 shows ablation experimental results of the pro-

posed algorithm. As shown in Figure 5(b), the existing

method of APAP [22] yields severe parallax artifacts around

the foreground object of the standing board. When we re-

place the spatial distance based weighting scheme of APAP

with the proposed warping residual based one, most of the

parallax artifactis are effectively alleviated as shown in Fig-

ure 5(c). In addition, the occlusion handling and the ho-

mography refinement further remove the artifacts as shown

in Figure 5(d).

Figure 6 shows the results of image stitching obtained
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(a) I (b) J (c) Homography (d) CPW [16] (e) APAP [22] (f) ELA [11] (g) Proposed

Figure 7. Comparison of the image stitching results obtained by the proposed algorithm with that of the four existing methods: Homography,

CPW [16], APAP [22], and ELA [11]. From top to bottom, “Garden,” “Building,” “Propeller,” “Seattle,” “Fish statue,” “Comic characters,”

“Puppet,” “Superman,” “Company statue,” “Street,” and “Truck” images.

by the proposed algorithm on two challenging test sets with

large parallax, which include multiple foreground objects

with complex shapes at different scene depths. Figure 6(b)

shows the stitching results obtained by warping images ac-

cording to the initial homographies, where we see that most

of the images with large parallax are well aligned without

causing severe artifacts. However, some superpixels are as-

signed false warping residuals derived from their nearest

feature points located at different scene depths, which often

exhibits stitching artifacts such as ghosting in the vicinity

of the object boundaries as highlighted in Figure 6(b). Fig-

ure 6(c) shows the final stitching results obtained by warp-

ing images according to the refined homographies, which

accurately aligns the foreground objects at different scene

depths, e.g., the truck and the satellite dish in “Truck” and

the traffic sign in “Subway.”
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Figure 8. Examples of ground truth matches.

(a) (b)

Figure 9. Comparison of the quantitative performance of image

alignment. (a) Average geometric error. (b) SSIM.

5.2. Comparison With Conventional Methods

We compare the performance of the proposed algorithm

with that of the four existing algorithms: Homography,

CPW [16], APAP [22], and ELA [11]. Homography is a

global image alignment method that estimates a single dom-

inant homography, and the other three methods are adap-

tive image alignment methods. CPW adaptively deforms

the vertices of grid cells based on the energy minimiza-

tion framework. APAP uses MDLT computed with the spa-

tial distance based weighting scheme to estimate the ho-

mographies for the grid cells. ELA adaptively aligns the

grid cells by approximating the warping error analytically.

Note that we do not compare the seam-cutting based meth-

ods [8, 14, 23] since they try to hide the misalignment ar-

tifacts, and we also do not compare the shape-preserving

warping based methods [3, 4, 12, 13] since they mainly fo-

cus on aligning non-overlapping areas. We implemented

Homography and CPW, and we obtained the stitching re-

sults of APAP3 and ELA4 using the source codes provided

by the authors. Note that we used MULTI-GS [5] to Ho-

mography and CPW for more reliable outlier removal.

Fig. 7 compares the image stitching results. “Gar-

den” and “Building” images exhibit relatively small paral-

lax, and thus most of the methods provide reliable stitching

results. However, on the other test images with large paral-

lax, the conventional algorithms usually fail to align both of

the foreground objects and the background simultaneously

since they are designed based on the assumption that the

neighboring pixels in the target image should be neighbor-

ing pixels in the warped image domain as well. Specifically,

the conventional methods yield severe ghosting artifacts in

the vicinity of the object boundaries, e.g., the red object

in “Seattle,” the characters in “Comic characters,” and the

wooden object in “Puppet.” On the contrary, while the fore-

3http://cs.adelaide.edu.au/˜tjchin/apap/
4https://ieeexplore.ieee.org/document/8119833/

algorithms

ground object in “Fish statue” is well-aligned by the con-

ventional methods, the stitched background images yield

severe artifacts. Also, both of the foreground objects and

the background in “Company statue” and “Street” are mis-

aligned by the conventional methods. On the other hand,

the proposed algorithm adaptively estimates optimal homo-

graphies at local image regions with similar scene depths

according to the warping residuals, and aligns both of the

foreground objects and the background reliably while alle-

viating the parallax artifacts in stitched images successfully.

For example, the proposed algorithm accurately aligns the

foreground objects, e.g., the red object in ‘Seattle,” the char-

acters in “Comic characters,” and the truck in “Truck,” and

also aligns the background regions faithfully, e.g., the back-

ground buildings in “Fish statue” and “Street.”

In addition, we evaluate the quantitative performance of

image alignment using the ground truth feature matches for

the 40 pairs of test images. Specifically, we distributed

query pixels regularly on I and used the dense feature de-

scriptor DAISY [20] to obtain the matched pixels in J
which are then refined manually, as shown in Figure 8.

We have about 90 ground truth matches on average per

each image pair. We measure the difference between the

warped query pixels and their ground truth matching pixels

on J domain in terms of the average geometric error and

SSIM [21] as shown in Figures 9(a) and (b), respectively.

Homography, CPW, APAP, and ELA yield the average geo-

metric errors of 33.3, 21.1, 23.3, and 26.9, and the average

SSIM of 0.41, 0.49, 0.54, and 0.57, respectively. However,

the proposed algorithm achieves the minimum error of 13.9

and the highest SSIM score of 0.62.

6. Conclusions

We proposed a warping residual based image stitching

algorithm robust to the large parallax. We partitioned in-

put images into superpixels and warped each superpixel ac-

cording to an optimal homography which minimizes the

warping error of the feature matches. We introduced the

warping residual which adaptively assigns high weights to

the feature points located at local image regions with sim-

ilar depths to the target superpixel. Experimental results

demonstrated that the proposed algorithm accurately aligns

both of the foreground objects as well as the background

on challenging test images with large parallax, and yields a

significantly better performance compared with the conven-

tional image stitching methods.
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