
GhostNet: More Features from Cheap Operations

Kai Han1 Yunhe Wang1 Qi Tian1∗ Jianyuan Guo2 Chunjing Xu1 Chang Xu3

1Noah’s Ark Lab, Huawei Technologies. 2Peking University.
3School of Computer Science, Faculty of Engineering, University of Sydney.

{kai.han,yunhe.wang,tian.qi1,xuchunjing}@huawei.com jyguo@pku.edu.cn c.xu@sydney.edu.au

Abstract

Deploying convolutional neural networks (CNNs) on em-

bedded devices is difficult due to the limited memory and

computation resources. The redundancy in feature maps

is an important characteristic of those successful CNNs,

but has rarely been investigated in neural architecture de-

sign. This paper proposes a novel Ghost module to gener-

ate more feature maps from cheap operations. Based on

a set of intrinsic feature maps, we apply a series of linear

transformations with cheap cost to generate many ghost

feature maps that could fully reveal information underlying

intrinsic features. The proposed Ghost module can be taken

as a plug-and-play component to upgrade existing convo-

lutional neural networks. Ghost bottlenecks are designed

to stack Ghost modules, and then the lightweight Ghost-

Net can be easily established. Experiments conducted on

benchmarks demonstrate that the proposed Ghost module is

an impressive alternative of convolution layers in baseline

models, and our GhostNet can achieve higher recognition

performance (e.g. 75.7% top-1 accuracy) than MobileNetV3

with similar computational cost on the ImageNet ILSVRC-

2012 classification dataset. Code is available at https:

//github.com/huawei-noah/ghostnet.

1. Introduction

Deep convolutional neural networks have shown excellent

performance on various computer vision tasks, such as image

recognition [30, 13], object detection [43, 33], and semantic

segmentation [4]. Traditional CNNs usually need a large

number of parameters and floating point operations (FLOPs)

to achieve a satisfactory accuracy, e.g. ResNet-50 [16] has

about 25.6M parameters and requires 4.1B FLOPs to pro-

cess an image of size 224 × 224. Thus, the recent trend

of deep neural network design is to explore portable and

efficient network architectures with acceptable performance

for mobile devices (e.g. smart phones and self-driving cars).

∗Corresponding author

Figure 1. Visualization of some feature maps generated by the first

residual group in ResNet-50, where three similar feature map pair

examples are annotated with boxes of the same color. One feature

map in the pair can be approximately obtained by transforming the

other one through cheap operations (denoted by spanners).

Over the years, a series of methods have been proposed to

investigate compact deep neural networks such as network

pruning [14, 39], low-bit quantization [42, 26], knowledge

distillation [19, 57], etc. Han et al. [14] proposed to prune

the unimportant weights in neural networks. [31] utilized

ℓ1-norm regularization to prune filters for efficient CNNs.

[42] quantized the weights and the activations to 1-bit data

for achieving large compression and speed-up ratios. [19]

introduced knowledge distillation for transferring knowl-

edge from a larger model to a smaller model. However,

performance of these methods are often upper bounded by

pre-trained deep neural networks that have been taken as

their baselines.

Besides them, efficient neural architecture design has a

very high potential for establishing highly efficient deep net-

works with fewer parameters and calculations, and recently

has achieved considerable success. This kind of methods

can also provide new search unit for automatic search meth-

ods [62, 55, 5]. For instance, MobileNet [21, 44, 20] utilized

the depthwise and pointwise convolutions to construct a

unit for approximating the original convolutional layer with

larger filters and achieved comparable performance. Shuf-

fleNet [61, 40] further explored a channel shuffle operation

1580



to enhance the performance of lightweight models.

Abundant and even redundant information in the feature

maps of well-trained deep neural networks often guarantees

a comprehensive understanding of the input data. For exam-

ple, Figure 1 presents some feature maps of an input image

generated by ResNet-50, and there exist many similar pairs

of feature maps, like a ghost of each another. Redundancy

in feature maps could be an important characteristic for a

successful deep neural network. Instead of avoiding the re-

dundant feature maps, we tend to embrace them, but in a

cost-efficient way.

In this paper, we introduce a novel Ghost module to gen-

erate more features by using fewer parameters. Specifically,

an ordinary convolutional layer in deep neural networks will

be split into two parts. The first part involves ordinary con-

volutions but their total number will be rigorously controlled.

Given the intrinsic feature maps from the first part, a series

of simple linear operations are then applied for generating

more feature maps. Without changing the size of output

feature map, the overall required number of parameters and

computational complexities in this Ghost module have been

decreased, compared with those in vanilla convolutional

neural networks. Based on Ghost module, we establish an

efficient neural architecture, namely, GhostNet. We first

replace original convolutional layers in benchmark neural

architectures to demonstrate the effectiveness of Ghost mod-

ules, and then verify the superiority of our GhostNets on

several benchmark visual datasets. Experimental results

show that, the proposed Ghost module is able to decrease

computational costs of generic convolutional layer while

preserving similar recognition performance, and GhostNets

can surpass state-of-the-art efficient deep models such as

MobileNetV3 [20], on various tasks with fast inference on

mobile devices.

The rest of the paper is organized as follows: section 2

briefly concludes the related work in the area, followed by

the proposed Ghost module and GhostNet in section 3, the

experiments and analysis in section 4, and finally, conclusion

in section 5.

2. Related Work

Here we revisit the existing methods for lightening neural

networks in two parts: model compression and compact

model design.

2.1. Model Compression

For a given neural network, model compression aims

to reduce the computation, energy and storage cost [14,

48, 11, 54]. Pruning connections [15, 14, 50] cuts out the

unimportant connections between neurons. Channel prun-

ing [51, 18, 31, 39, 59, 23, 35] further targets on removing

useless channels for easier acceleration in practice. Model

quantization [42, 24, 26] represents weights or activations

in neural networks with discrete values for compression

and calculation acceleration. Specifically, binarization meth-

ods [24, 42, 38, 45] with only 1-bit values can extremely

accelerate the model by efficient binary operations. Tensor

decomposition [27, 9] reduces the parameters or computa-

tion by exploiting the redundancy and low-rank property in

weights. Knowledge distillation [19, 12, 3] utilizes larger

models to teach smaller ones, which improves the perfor-

mance of smaller models. The performances of these meth-

ods usually depend on the given pre-trained models. The

improvement on basic operations and architectures will make

them go further.

2.2. Compact Model Design

With the need for deploying neural networks on embed-

ded devices, a series of compact models are proposed in

recent years [7, 21, 44, 20, 61, 40, 53, 56]. Xception [7] uti-

lizes depthwise convolution operation for more efficient use

of model parameters. MobileNets [21] are a series of light

weight deep neural networks based on depthwise separable

convolutions. MobileNetV2 [44] proposes inverted resid-

ual block and MobileNetV3 [20] further utilizes AutoML

technology [62, 55, 10] achieving better performance with

fewer FLOPs. ShuffleNet [61] introduces channel shuffle op-

eration to improve the information flow exchange between

channel groups. ShuffleNetV2 [40] further considers the

actual speed on target hardware for compact model design.

Although these models obtain great performance with very

few FLOPs, the correlation and redundancy between feature

maps has never been well exploited.

3. Approach

In this section, we will first introduce the Ghost module

to utilize a few small filters to generate more feature maps

from the original convolutional layer, and then develop a

new GhostNet with an extremely efficient architecture and

high performance.

3.1. Ghost Module for More Features

Deep convolutional neural networks [30, 46, 16] often

consist of a large number of convolutions that results in

massive computational costs. Although recent works such

as MobileNet [21, 44] and ShuffleNet [40] have introduced

depthwise convolution or shuffle operation to build efficient

CNNs using smaller convolution filters (floating-number

operations), the remaining 1× 1 convolution layers would

still occupy considerable memory and FLOPs.

Given the widely existing redundancy in intermediate

feature maps calculated by mainstream CNNs as shown in

Figure 1, we propose to reduce the required resources, i.e.

convolution filters used for generating them. In practice,

given the input data X ∈ R
c×h×w, where c is the number

of input channels and h and w are the height and width of

1581



the input data, respectively, the operation of an arbitrary

convolutional layer for producing n feature maps can be

formulated as

Y = X ∗ f + b, (1)

where ∗ is the convolution operation, b is the bias term,

Y ∈ R
h′

×w′
×n is the output feature map with n channels,

and f ∈ R
c×k×k×n is the convolution filters in this layer. In

addition, h′ and w′ are the height and width of the output

data, and k × k is the kernel size of convolution filters f ,

respectively. During this convolution procedure, the required

number of FLOPs can be calculated as n · h′ · w′ · c · k · k,

which is often as large as hundreds of thousands since the

number of filters n and the channel number c are generally

very large (e.g. 256 or 512).

Conv

Input Output

(a) The convolutional layer.

Identity

…

Conv

Φ1Φ2Φ𝑘
Input

Output

(b) The Ghost module.

Figure 2. An illustration of the convolutional layer and the proposed

Ghost module for outputting the same number of feature maps. Φ

represents the cheap operation.

According to Eq. 1, the number of parameters (in f and b)
to be optimized is explicitly determined by the dimensions

of input and output feature maps. As observed in Figure 1,

the output feature maps of convolutional layers often contain

much redundancy, and some of them could be similar with

each other. We point out that it is unnecessary to generate

these redundant feature maps one by one with large number

of FLOPs and parameters. Suppose that the output feature

maps are “ghosts” of a handful of intrinsic feature maps

with some cheap transformations. These intrinsic feature

maps are often of smaller size and produced by ordinary

convolution filters. Specifically, m intrinsic feature maps

Y ′ ∈ R
h′

×w′
×m are generated using a primary convolution:

Y ′ = X ∗ f ′, (2)

where f ′ ∈ R
c×k×k×m is the utilized filters, m ≤ n and the

bias term is omitted for simplicity. The hyper-parameters

such as filter size, stride, padding, are the same as those in

the ordinary convolution (Eq. 1) to keep the spatial size (i.e.

h′ and w′) of the output feature maps consistent. To further

obtain the desired n feature maps, we propose to apply a

series of cheap linear operations on each intrinsic feature in

Y ′ to generate s ghost features according to the following

function:

yij = Φi,j(y
′

i), ∀ i = 1, ...,m, j = 1, ..., s, (3)

where y′i is the i-th intrinsic feature map in Y ′, Φi,j in the

above function is the j-th (except the last one) linear oper-

ation for generating the j-th ghost feature map yij , that

is to say, y′i can have one or more ghost feature maps

{yij}
s
j=1

. The last Φi,s is the identity mapping for pre-

serving the intrinsic feature maps as shown in Figure 2(b).

By utilizing Eq. 3, we can obtain n = m · s feature maps

Y = [y11, y12, · · · , yms] as the output data of a Ghost mod-

ule as shown in Figure 2(b). Note that the linear operations Φ
operate on each channel whose computational cost is much

less than the ordinary convolution. In practice, there could

be several different linear operations in a Ghost module, e.g.

3× 3 and 5× 5 linear kernels, which will be analyzed in the

experiment part.

Difference from Existing Methods. The proposed Ghost

module has major differences from existing efficient con-

volution schemes. i) Compared with the units in [21, 61]

which utilize 1×1 pointwise convolution widely, the primary

convolution in Ghost module can have customized kernel

size. ii) Existing methods [21, 44, 61, 40] adopt pointwise

convolutions to process features across channels and then

take depthwise convolution to process spatial information.

In contrast, Ghost module adopts ordinary convolution to

first generate a few intrinsic feature maps, and then utilizes

cheap linear operations to augment the features and increase

the channels. iii) The operation to process each feature map

is limited to depthwise convolution or shift operation in pre-

vious efficient architectures [21, 61, 53, 28], while linear

operations in Ghost module can have large diversity. iv)

In addition, the identity mapping is paralleled with linear

transformations in Ghost module to preserve the intrinsic

feature maps.

Analysis on Complexities. Since we can utilize the pro-

posed Ghost module in Eq. 3 to generate the same number of

feature maps as that of an ordinary convolutional layer, we

can easily integrate the Ghost module into existing well de-

signed neural architectures to reduce the computation costs.

Here we further analyze the profit on memory usage and the-

oretical speed-up by employing the Ghost module. For exam-

ple, there are 1 identity mapping and m ·(s−1) = n
s
·(s−1)

linear operations, and the averaged kernel size of each linear

operation is equal to d × d. Ideally, the n · (s − 1) linear

operations can have different shapes and parameters, but the

online inference will be obstructed especially considering

1582



the utility of CPU or GPU cards. Thus, we suggest to take

linear operations of the same size (e.g. 3× 3 or 5× 5) in one

Ghost module for efficient implementation. The theoretical

speed-up ratio of upgrading ordinary convolution with the

Ghost module is

rs =
n · h′ · w′ · c · k · k

n
s
· h′ · w′ · c · k · k + (s− 1) · n

s
· h′ · w′ · d · d

=
c · k · k

1

s
· c · k · k + s−1

s
· d · d

≈
s · c

s+ c− 1
≈ s,

(4)

where d× d has the similar magnitude as that of k × k, and

s ≪ c. Similarly, the compression ratio can be calculated as

rc =
n · c · k · k

n
s
· c · k · k + (s− 1) · n

s
· d · d

≈
s · c

s+ c− 1
≈ s,

(5)

which is equal to that of the speed-up ratio by utilizing the

proposed Ghost module.

Ghost module

Add

Stride=1 bottleneck

Ghost module

BN ReLU

BN Ghost module

DWConv Stride=2

BN

BN

Ghost module

BN ReLU

Stride=2 bottleneck

Add

Figure 3. Ghost bottleneck. Left: Ghost bottleneck with stride=1;

right: Ghost bottleneck with stride=2.

3.2. Building Efficient CNNs

Ghost Bottlenecks. Taking the advantages of Ghost mod-

ule, we introduce the Ghost bottleneck (G-bneck) specially

designed for small CNNs. As shown in Figure 3, the Ghost

bottleneck appears to be similar to the basic residual block in

ResNet [16] in which several convolutional layers and short-

cuts are integrated. The proposed ghost bottleneck mainly

consists of two stacked Ghost modules. The first Ghost mod-

ule acts as an expansion layer increasing the number of chan-

nels. We refer the ratio between the number of the output

channels and that of the input as expansion ratio. The second

Ghost module reduces the number of channels to match the

shortcut path. Then the shortcut is connected between the

inputs and the outputs of these two Ghost modules. The

batch normalization (BN) [25] and ReLU nonlinearity are

applied after each layer, except that ReLU is not used after

the second Ghost module as suggested by MobileNetV2 [44].

Table 1. Overall architecture of GhostNet. G-bneck denotes Ghost

bottleneck. #exp means expansion size. #out means the number of

output channels. SE denotes whether using SE module.

Input Operator #exp #out SE Stride

224
2 × 3 Conv2d 3×3 - 16 - 2

112
2 × 16 G-bneck 16 16 - 1

112
2 × 16 G-bneck 48 24 - 2

56
2 × 24 G-bneck 72 24 - 1

56
2 × 24 G-bneck 72 40 1 2

28
2 × 40 G-bneck 120 40 1 1

28
2 × 40 G-bneck 240 80 - 2

14
2 × 80 G-bneck 200 80 - 1

14
2 × 80 G-bneck 184 80 - 1

14
2 × 80 G-bneck 184 80 - 1

14
2 × 80 G-bneck 480 112 1 1

14
2 × 112 G-bneck 672 112 1 1

14
2 × 112 G-bneck 672 160 1 2

7
2 × 160 G-bneck 960 160 - 1

7
2 × 160 G-bneck 960 160 1 1

7
2 × 160 G-bneck 960 160 - 1

7
2 × 160 G-bneck 960 160 1 1

7
2 × 160 Conv2d 1×1 - 960 - 1

7
2 × 960 AvgPool 7×7 - - - -

1
2 × 960 Conv2d 1×1 - 1280 - 1

1
2 × 1280 FC - 1000 - -

The Ghost bottleneck described above is for stride=1. As for

the case where stride=2, the shortcut path is implemented

by a downsampling layer and a depthwise convolution with

stride=2 is inserted between the two Ghost modules. In

practice, the primary convolution in Ghost module here is

pointwise convolution for its efficiency.

GhostNet. Building on the ghost bottleneck, we propose

GhostNet as presented in Table 7. We basically follow the

architecture of MobileNetV3 [20] for its superiority and re-

place the bottleneck block in MobileNetV3 with our Ghost

bottleneck. GhostNet mainly consists of a stack of Ghost bot-

tlenecks with the Ghost modules as the building block. The

first layer is a standard convolutional layer with 16 filters,

then a series of Ghost bottlenecks with gradually increased

channels are followed. These Ghost bottlenecks are grouped

into different stages according to the sizes of their input

feature maps. All the Ghost bottlenecks are applied with

stride=1 except that the last one in each stage is with stride=2.

At last a global average pooling and a convolutional layer are

utilized to transform the feature maps to a 1280-dimensional

feature vector for final classification. The squeeze and excite

(SE) module [22] is also applied to the residual layer in some

ghost bottlenecks as in Table 7. In contrast to MobileNetV3,

we do not use hard-swish nonlinearity function due to its

large latency. The presented architecture provides a basic de-

sign for reference, although further hyper-parameters tuning

or automatic architecture searching based ghost module will

1583



further boost the performance.

Width Multiplier. Although the given architecture in Ta-

ble 7 can already provide low latency and guaranteed accu-

racy, in some scenarios we may require smaller and faster

models or higher accuracy on specific tasks. To customize

the network for the desired needs, we can simply multiply a

factor α on the number of channels uniformly at each layer.

This factor α is called width multiplier as it can change the

width of the entire network. We denote GhostNet with width

multiplier α as GhostNet-α×. Width multiplier can control

the model size and the computational cost quadratically by

roughly α2. Usually smaller α leads to lower latency and

lower performance, and vice versa.

4. Experiments

In this section, we first replace the original convolutional

layers by the proposed Ghost module to verify its effective-

ness. Then, the GhostNet architecture built using the new

module will be further tested on the image classification and

object detection benchmarks.

Datasets and Settings. To verify the effectiveness of the

proposed Ghost module and GhostNet architecture, we con-

duct experiments on several benchmark visual datasets, in-

cluding CIFAR-10 [29], ImageNet ILSVRC 2012 dataset [8],

and MS COCO object detection benchmark [34].

CIFAR-10 dataset is utilized for analyzing the properties

of the proposed method, which consists of 60,000 32× 32
color images in 10 classes, with 50,000 training images and

10,000 test images. A common data augmentation scheme

including random crop and mirroring [16, 18] is adopted.

ImageNet is a large-scale image dataset which contains over

1.2M training images and 50K validation images belonging

to 1,000 classes. The common data preprocessing strategy

including random crop and flip [16] is applied during train-

ing. We also conduct object detection experiments on MS

COCO dataset [34]. Following common practice [32, 33],

we train models on COCO trainval35k split (union of 80K
training images and a random 35K subset of images from

validation set) and evaluate on the minival split with 5K
images.

4.1. Efficiency of Ghost Module

4.1.1 Toy Experiments.

We have presented a diagram in Figure 1 to point out that

there are some similar feature map pairs, which can be ef-

ficiently generated using some efficient linear operations.

Here we first conduct a toy experiment to observe the recon-

struction error between raw feature maps and the generated

ghost feature maps. Taking three pairs in Figure 1 (i.e. red,

greed, and blue) as examples, features are extracted using

the first residual block of ResNet-50 [16]. Taking the fea-

ture on the left as input and the other one as output, we

utilize a small depthwise convolution filter to learn the map-

ping, i.e. the linear operation Φ between them. The size of

the convolution filter d is ranged from 1 to 7, MSE (mean

squared error) values of each pair with different d are shown

in Table 2.

Table 2. MSE error v.s. different kernel sizes.

MSE (10−3) d=1 d=3 d=5 d=7

red pair 4.0 3.3 3.3 3.2

green pair 25.0 24.3 24.1 23.9

blue pair 12.1 11.2 11.1 11.0

It can be found in Table 2 that all the MSE values are

extremely small, which demonstrates that there are strong

correlations between feature maps in deep neural networks

and these redundant feature maps could be generated from

several intrinsic feature maps. Besides convolutions used

in the above experiments, we can also explore some other

low-cost linear operations to construct the Ghost module

such as affine transformation and wavelet transformation.

However, convolution is an efficient operation already well

support by current hardware and it can cover a number of

widely used linear operations such as smoothing, blurring,

motion, etc. Moreover, although we can also learn the size of

each filter w.r.t. the linear operation Φ, the irregular module

will reduce the efficiency of computing units (e.g. CPU and

GPU). Thus, we suggest to let d in a Ghost module be a

fixed value and utilize depthwise convolution to implement

Eq. 3 for building highly efficient deep neural networks in

the following experiments.

Table 3. The performance of the proposed Ghost module with

different d on CIFAR-10.
d Weights (M) FLOPs (M) Acc. (%)

VGG-16 15.0 313 93.6

1 7.6 157 93.5

3 7.7 158 93.7

5 7.7 160 93.4

7 7.7 163 93.1

Table 4. The performance of the proposed Ghost module with

different s on CIFAR-10.
s Weights (M) FLOPs (M) Acc. (%)

VGG-16 15.0 313 93.6

2 7.7 158 93.7

3 5.2 107 93.4

4 4.0 80 93.0

5 3.3 65 92.9

4.1.2 CIFAR-10.

We evaluate the proposed Ghost module on two popular net-

work architectures, i.e. VGG-16 [46] and ResNet-56 [16],

1584



on CIFAR-10 dataset. Since VGG-16 is originally designed

for ImageNet, we use its variant [60] which is widely used

in literatures for conducting the following experiments. All

the convolutional layers in these two models are replaced

by the proposed Ghost module, and the new models are de-

noted as Ghost-VGG-16 and Ghost-ResNet-56, respectively.

Our training strategy closely follows the settings in [16],

including momentum, learning rate, etc. We first analyze the

effects of the two hyper-parameters s and d in Ghost module,

and then compare the Ghost-models with the state-of-the-art

methods.

Analysis on Hyper-parameters. As described in Eq. 3,

the proposed Ghost Module for efficient deep neural net-

works has two hyper-parameters, i.e. s for generating m =
n/s intrinsic feature maps, and kernel size d × d of linear

operations (i.e. the size of depthwise convolution filters) for

calculating ghost feature maps. The impact of these two

parameters are tested on the VGG-16 architecture.

First, we fix s = 2 and tune d in {1, 3, 5, 7}, and list the

results on CIFAR-10 validation set in Table 3. We can see

that the proposed Ghost module with d = 3 performs better

than smaller or larger ones. This is because that kernels of

size 1 × 1 cannot introduce spatial information on feature

maps, while larger kernels such as d = 5 or d = 7 lead

to overfitting and more computations. Therefore, we adopt

d = 3 in the following experiments for effectiveness and

efficiency.

After investigating the kernel sizes used in the proposed

Ghost module, we keep d = 3 and tune the other hyper-

parameter s in the range of {2, 3, 4, 5}. In fact, s is directly

related to the computational costs of the resulting network,

that is, larger s leads to larger compression and speed-up

ratio as analyzed in Eq. 5 and Eq. 4. From the results in

Table 4, when we increase s, the FLOPs are reduced sig-

nificantly and the accuracy decreases gradually, which is as

expected. Especially when s = 2 which means compress

VGG-16 by 2×, our method performs even slightly better

than the original model, indicating the superiority of the

proposed Ghost module.

Table 5. Comparison of state-of-the-art methods for compressing

VGG-16 and ResNet-56 on CIFAR-10. - represents no reported

results available.
Model Weights FLOPs Acc. (%)

VGG-16 15M 313M 93.6

ℓ1-VGG-16 [31, 37] 5.4M 206M 93.4

SBP-VGG-16 [18] - 136M 92.5

Ghost-VGG-16 (s=2) 7.7M 158M 93.7

ResNet-56 0.85M 125M 93.0

CP-ResNet-56 [18] - 63M 92.0

ℓ1-ResNet-56 [31, 37] 0.73M 91M 92.5

AMC-ResNet-56 [17] - 63M 91.9

Ghost-ResNet-56 (s=2) 0.43M 63M 92.7

Comparison with State-of-the-arts. We compare Ghost-

Net with several representative state-of-the-art models on

both VGG-16 and ResNet-56 architectures. The compared

methods include different types of model compression ap-

proaches, ℓ1 pruning [31, 37], SBP [18], channel pruning

(CP) [18] and AMC [17]. For VGG-16, our model can ob-

tain an accuracy slightly higher than the original one with a

2× acceleration, which indicates that there is considerable

redundancy in the VGG model. Our Ghost-VGG-16 (s = 2)

outperforms the competitors with the highest performance

(93.7%) but with significantly fewer FLOPs. For ResNet-56

which is already much smaller than VGG-16, our model can

achieve comparable accuracy with baseline with 2× speed-

up. We can also see that other state-of-the-art models with

similar or larger computational cost obtain lower accuracy

than ours.

Visualization of Feature Maps. We also visualize the fea-

ture maps of our ghost module as shown in Figure 4. Al-

though the generated feature maps are from the primary

feature maps, they exactly have significant difference which

means the generated features are flexible enough to satisfy

the need for the specific task.

Figure 4. The feature maps in the 2nd layer of Ghost-VGG-16. The

left-top image is the input, the feature maps in the left red box are

from the primary convolution, and the feature maps in the right

green box are after the depthwise transformation.

Figure 5. The feature maps in the 2nd layer of vanilla VGG-16.

4.1.3 Large Models on ImageNet

We next embed the Ghost module in the standard ResNet-

50 [16] and conduct experiments on the large-scale Ima-

geNet dataset. ResNet-50 has about 25.6M parameters and

4.1B FLOPs with a top-5 error of 7.8%. We use our Ghost

1585



Table 6. Comparison of state-of-the-art methods for compressing ResNet-50 on ImageNet dataset.

Model Weights (M) FLOPs (B) Top-1 Acc. (%) Top-5 Acc. (%)

ResNet-50 [16] 25.6 4.1 75.3 92.2

Thinet-ResNet-50 [39] 16.9 2.6 72.1 90.3

NISP-ResNet-50-B [59] 14.4 2.3 - 90.8

Versatile-ResNet-50 [49] 11.0 3.0 74.5 91.8

SSS-ResNet-50 [23] - 2.8 74.2 91.9

Ghost-ResNet-50 (s=2) 13.0 2.2 75.0 92.3

Shift-ResNet-50 [53] 6.0 - 70.6 90.1

Taylor-FO-BN-ResNet-50 [41] 7.9 1.3 71.7 -

Slimmable-ResNet-50 0.5× [58] 6.9 1.1 72.1 -

MetaPruning-ResNet-50 [36] - 1.0 73.4 -

Ghost-ResNet-50 (s=4) 6.5 1.2 74.1 91.9

module to replace all the convolutional layers in ResNet-

50 to obtain compact models and compare the results with

several state-of-the-art methods, as detailed in Table 6. The

training settings such as the optimizer, the learning rate, and

the batch size, are totally the same as those in [16] for fair

comparisons.

From the results in Table 6, we can see that our Ghost-

ResNet-50 (s=2) obtains about 2× acceleration and com-

pression ratio, while maintaining the accuracy as that of

the original ResNet-50. Compared with the recent state-of-

the-art methods including Thinet [39], NISP [59], Versatile

filters [49] and Sparse structure selection (SSS) [23], our

method can obtain significantly better performance under

the 2× acceleration setting. When we further increase s to 4,

Ghost-based model has only a 0.3% accuracy drop with an

about 4× computation speed-up ratio. In contrast, compared

methods [53, 58] with similar weights or FLOPs have much

lower performance than ours.

4.2. GhostNet on Visual Benchmarks

After demonstrating the superiority of the proposed Ghost

module for efficiently generating feature maps, we then eval-

uate the well designed GhostNet architecture as shown in

Table 7 using Ghost bottlenecks on image classification and

object detection tasks, respectively.

4.2.1 ImageNet Classification

To verify the superiority of the proposed GhostNet, we con-

duct experiments on ImageNet classification task. We follow

most of the training settings used in [61], except that the

initial learning rate is set to 0.4 when batch size is 1,024 on

8 GPUs. All the results are reported with single crop top-1

performance on ImageNet validation set. For GhostNet, we

set kernel size k = 1 in the primary convolution and s = 2
and d = 3 in all the Ghost modules for simplicity.

Several modern small network architectures are selected

as competitors, including MobileNet series [21, 44, 20],

ShuffleNet series [61, 40], ProxylessNAS [2], FBNet [52],

MnasNet [47], etc. The results are summarized in Table 7.

The models are grouped into three levels of computational

complexity typically for mobile applications, i.e. ∼50, ∼150,

and 200-300 MFLOPs. From the results, we can see that gen-

erally larger FLOPs lead to higher accuracy in these small

networks which shows the effectiveness of them. Our Ghost-

Net outperforms other competitors consistently at various

computational complexity levels, since GhostNet is more

efficient in utilizing computation resources for generating

feature maps.

150 200 250 300 350 400 450 500
FLOPs (M)

73

74

75

76

77

Ac
cu

ra
y 

(%
)

GhostNet
MobileNetV3
MobileNetV2
EfficientNet
ShuffleNetV2
MnasNet
FBNet
ProxylessNAS

Figure 6. Top-1 accuracy v.s. FLOPs on ImageNet dataset.

30 40 50 60 70 80
Latency (ms)

73

74

75

76

77

Ac
cu

ra
y 

(%
)

GhostNet
MobileNetV3
MobileNetV2
FBNet
MnasNet
ProxylessNAS

Figure 7. Top-1 accuracy v.s. latency on ImageNet dataset.

1586



Table 7. Comparison of state-of-the-art small networks over classification accuracy, the number of weights and FLOPs on ImageNet dataset.

Model Weights (M) FLOPs (M) Top-1 Acc. (%) Top-5 Acc. (%)

ShuffleNetV1 0.5× (g=8) [61] 1.0 40 58.8 81.0

MobileNetV2 0.35× [44] 1.7 59 60.3 82.9

ShuffleNetV2 0.5× [40] 1.4 41 61.1 82.6

MobileNetV3 Small 0.75× [20] 2.4 44 65.4 -

GhostNet 0.5× 2.6 42 66.2 86.6

MobileNetV1 0.5× [21] 1.3 150 63.3 84.9

MobileNetV2 0.6× [44, 40] 2.2 141 66.7 -

ShuffleNetV1 1.0× (g=3) [61] 1.9 138 67.8 87.7

ShuffleNetV2 1.0× [40] 2.3 146 69.4 88.9

MobileNetV3 Large 0.75× [20] 4.0 155 73.3 -

GhostNet 1.0× 5.2 141 73.9 91.4

MobileNetV2 1.0× [44] 3.5 300 71.8 91.0

ShuffleNetV2 1.5× [40] 3.5 299 72.6 90.6

FE-Net 1.0× [6] 3.7 301 72.9 -

FBNet-B [52] 4.5 295 74.1 -

ProxylessNAS [2] 4.1 320 74.6 92.2

MnasNet-A1 [47] 3.9 312 75.2 92.5

MobileNetV3 Large 1.0× [20] 5.4 219 75.2 -

GhostNet 1.3× 7.3 226 75.7 92.7

Actual Inference Speed. Since the proposed GhostNet is

designed for mobile applications, we further measure the

actual inference speed of GhostNet on an ARM-based mo-

bile phone using the TFLite tool [1]. Following the common

settings in [21, 44], we use single-threaded mode with batch

size 1. From the results in Figure 7, we can see that GhostNet

obtain about 0.5% higher top-1 accuracy than MobileNetV3

with the same latency, and GhostNet need less runtime to

achieve similar performance. For example, GhostNet with

75.0% accuracy only has 40 ms latency, while MobileNetV3

with similar accuracy requires about 45 ms to process one

image. Overall, our models generally outperform the fa-

mous state-of-art models, i.e. MobileNet series [21, 44, 20],

ProxylessNAS [2], FBNet [52], and MnasNet [47].

4.2.2 Object Detection

In order to further evaluate the generalization ability of

GhostNet, we conduct object detection experiments on MS

COCO dataset. We use the trainval35k split as training data

and report the results in mean Average Precision (mAP) on

minival split, following [32, 33]. Both the two-stage Faster

R-CNN with Feature Pyramid Networks (FPN) [43, 32] and

the one-stage RetinaNet [33] are used as our framework and

GhostNet acts as a drop-in replacement for the backbone

feature extractor. We train all the models using SGD for 12

epochs from ImageNet pretrained weights with the hyper-

parameters suggested in [32, 33]. The input images are

resized to a short side of 800 and a long side not exceeding

1333. Table 8 shows the detection results, where the FLOPs

are calculated using 224 × 224 images as common prac-

tice. With significantly lower computational costs, GhostNet

achieves similar mAP with MobileNetV2 and MobileNetV3,

both on one-stage RetinaNet and two-stage Faster R-CNN

frameworks.

Table 8. Results on MS COCO dataset.

Backbone
Detection

Framework

Backbone

FLOPs
mAP

MobileNetV2 1.0× [44]

RetinaNet

300M 26.7%

MobileNetV3 1.0× [20] 219M 26.4%

GhostNet 1.1× 164M 26.6%

MobileNetV2 1.0× [44]

Faster R-CNN

300M 27.5%

MobileNetV3 1.0× [20] 219M 26.9%

GhostNet 1.1× 164M 26.9%

5. Conclusion

To reduce the computational costs of recent deep neural

networks, this paper presents a novel Ghost module for build-

ing efficient neural architectures. The basic Ghost module

splits the original convolutional layer into two parts and uti-

lizes fewer filters to generate several intrinsic feature maps.

Then, a certain number of cheap transformation operations

will be further applied for generating ghost feature maps ef-

ficiently. The experiments conducted on benchmark models

and datasets illustrate that the proposed method is a plug-

and-play module for converting original models to compact

ones while remaining the comparable performance. In ad-

dition, the GhostNet built using the proposed new module

outperforms state-of-the-art portable neural architectures, in

both terms of efficiency and accuracy.

Acknowledgment

We thank anonymous reviewers for their helpful com-

ments. Chang Xu was supported by the Australian Research

Council under Project DE180101438.

1587



References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-

low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh

Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,

Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,

Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale

machine learning on heterogeneous systems, 2015. Software

available from tensorflow.org.

[2] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. In

ICLR, 2019.

[3] Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang,

Chuanjian Liu, Boxin Shi, Chunjing Xu, Chao Xu, and Qi

Tian. Data-free learning of student networks. In ICCV, 2019.

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Semantic image segmenta-

tion with deep convolutional nets and fully connected crfs. In

ICLR, 2016.

[5] Wuyang Chen, Xinyu Gong, Xianming Liu, Qian Zhang,

Yuan Li, and Zhangyang Wang. Fasterseg: Searching for

faster real-time semantic segmentation. In ICLR, 2020.

[6] Weijie Chen, Di Xie, Yuan Zhang, and Shiliang Pu. All you

need is a few shifts: Designing efficient convolutional neural

networks for image classification. In CVPR, 2019.

[7] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In CVPR, pages 1251–1258, 2017.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li

Fei-Fei. Imagenet: A large-scale hierarchical image database.

In CVPR, pages 248–255. Ieee, 2009.

[9] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann Le-

Cun, and Rob Fergus. Exploiting linear structure within

convolutional networks for efficient evaluation. In NeurIPS,

pages 1269–1277, 2014.

[10] Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang

Wang. Autogan: Neural architecture search for generative

adversarial networks. In ICCV, 2019.

[11] Shupeng Gui, Haotao N Wang, Haichuan Yang, Chen Yu,

Zhangyang Wang, and Ji Liu. Model compression with ad-

versarial robustness: A unified optimization framework. In

NeurIPS, 2019.

[12] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu,

Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-teaching:

Robust training of deep neural networks with extremely noisy

labels. In NeurIPS, 2018.

[13] Kai Han, Jianyuan Guo, Chao Zhang, and Mingjian Zhu.

Attribute-aware attention model for fine-grained representa-

tion learning. In ACM MM, 2018.

[14] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. In ICLR, 2016.

[15] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

NeurIPS, pages 1135–1143, 2015.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, pages

770–778, 2016.

[17] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and acceler-

ation on mobile devices. In ECCV, 2018.

[18] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for

accelerating very deep neural networks. In ICCV, 2017.

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[20] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. In ICCV, 2019.

[21] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[22] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation

networks. In CVPR, 2018.

[23] Zehao Huang and Naiyan Wang. Data-driven sparse structure

selection for deep neural networks. In ECCV, pages 304–320,

2018.

[24] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks. In

NeurIPS, pages 4107–4115, 2016.

[25] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015.

[26] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In CVPR,

pages 2704–2713, 2018.

[27] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.

Speeding up convolutional neural networks with low rank

expansions. In BMVC, 2014.

[28] Yunho Jeon and Junmo Kim. Constructing fast network

through deconstruction of convolution. In NeurIPS, 2018.

[29] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Citeseer,

2009.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-

agenet classification with deep convolutional neural networks.

In NeurIPS, pages 1097–1105, 2012.

[31] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. In

ICLR, 2017.

[32] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, 2017.

1588



[33] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In ICCV,

2017.

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV. Springer, 2014.

[35] Chuanjian Liu, Yunhe Wang, Kai Han, Chunjing Xu, and

Chang Xu. Learning instance-wise sparsity for accelerating

deep models. In IJCAI, 2019.

[36] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Tim Kwang-Ting Cheng, and Jian Sun. Metapruning:

Meta learning for automatic neural network channel pruning.

In ICCV, 2019.

[37] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning. In

ICLR, 2019.

[38] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,

and Kwang-Ting Cheng. Bi-real net: Enhancing the perfor-

mance of 1-bit cnns with improved representational capability

and advanced training algorithm. In ECCV, 2018.

[39] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

In ICCV, pages 5058–5066, 2017.

[40] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In ECCV, 2018.

[41] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,

and Jan Kautz. Importance estimation for neural network

pruning. In CVPR, 2019.

[42] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and

Ali Farhadi. Xnor-net: Imagenet classification using binary

convolutional neural networks. In ECCV, pages 525–542.

Springer, 2016.

[43] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with region

proposal networks. In NeurIPS, 2015.

[44] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In CVPR, pages 4510–4520,

2018.

[45] Mingzhu Shen, Kai Han, Chunjing Xu, and Yunhe Wang.

Searching for accurate binary neural architectures. In ICCV

Workshops, 2019.

[46] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

[47] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnasnet:

Platform-aware neural architecture search for mobile. In

CVPR, pages 2820–2828, 2019.

[48] Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang

Zhao, Yingyan Lin, and Zhangyang Wang. E2-train: Train-

ing state-of-the-art cnns with over 80% energy savings. In

NeurIPS, 2019.

[49] Yunhe Wang, Chang Xu, Chunjing XU, Chao Xu, and

Dacheng Tao. Learning versatile filters for efficient con-

volutional neural networks. In NeurIPS, 2018.

[50] Yunhe Wang, Chang Xu, Shan You, Dacheng Tao, and Chao

Xu. Cnnpack: packing convolutional neural networks in the

frequency domain. In NeurIPS, pages 253–261, 2016.

[51] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai

Li. Learning structured sparsity in deep neural networks. In

NeurIPS, pages 2074–2082, 2016.

[52] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

CVPR, pages 10734–10742, 2019.

[53] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng

Zhao, Noah Golmant, Amir Gholaminejad, Joseph Gonza-

lez, and Kurt Keutzer. Shift: A zero flop, zero parameter

alternative to spatial convolutions. In CVPR, 2018.

[54] Yixing Xu, Yunhe Wang, Hanting Chen, Kai Han, XU Chun-

jing, Dacheng Tao, and Chang Xu. Positive-unlabeled com-

pression on the cloud. In NeurIPS, 2019.

[55] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi, Chao

Xu, Chunjing Xu, Qi Tian, and Chang Xu. Cars: Continu-

ous evolution for efficient neural architecture search. arXiv

preprint arXiv:1909.04977, 2019.

[56] Zhaohui Yang, Yunhe Wang, Chuanjian Liu, Hanting Chen,

Chunjing Xu, Boxin Shi, Chao Xu, and Chang Xu. Legonet:

Efficient convolutional neural networks with lego filters. In

ICML, 2019.

[57] Shan You, Chang Xu, Chao Xu, and Dacheng Tao. Learning

from multiple teacher networks. In SIGKDD, 2017.

[58] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas

Huang. Slimmable neural networks. In ICLR, 2019.

[59] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I

Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and

Larry S Davis. Nisp: Pruning networks using neuron impor-

tance score propagation. In CVPR, 2018.

[60] Sergey Zagoruyko. 92.45 on cifar-10 in torch, 2015. URL

http://torch.ch/blog/2015/07/30/cifar. html.

[61] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. CVPR, 2018.

[62] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In CVPR, pages 8697–8710, 2018.

1589


