
Structured Binary Neural Networks for Accurate Image Classification and

Semantic Segmentation

Bohan Zhuang1 Chunhua Shen1∗ Mingkui Tan2 Lingqiao Liu1 Ian Reid1

1Australian Centre for Robotic Vision, The University of Adelaide
2South China University of Technology

Abstract

In this paper, we propose to train convolutional neural

networks (CNNs) with both binarized weights and activa-

tions, leading to quantized models specifically for mobile

devices with limited power capacity and computation re-

sources. Previous works on quantizing CNNs seek to ap-

proximate the floating-point information using a set of dis-

crete values, which we call value approximation, but typ-

ically assume the same architecture as the full-precision

networks. However, we take a novel “structure approxi-

mation” view for quantization—it is very likely that a dif-

ferent architecture may be better for best performance. In

particular, we propose a “network decomposition” strat-

egy, termed Group-Net, in which we divide the network into

groups. In this way, each full-precision group can be effec-

tively reconstructed by aggregating a set of homogeneous

binary branches. In addition, we learn effective connections

among groups to improve the representational capability.

Moreover, the proposed Group-Net shows strong general-

ization to other tasks. For instance, we extend Group-Net

for highly accurate semantic segmentation by embedding

rich context into the binary structure. Experiments on both

classification and semantic segmentation tasks demonstrate

the superior performance of the proposed methods over var-

ious popular architectures. In particular, we outperform the

previous best binary neural networks in terms of accuracy

and major computation savings.

1. Introduction

Designing deeper and wider convolutional neural networks

has led to significant breakthroughs in many machine learn-

ing tasks, such as image classification [17,26], object detec-

tion [40, 41] and object segmentation [7, 34]. However, ac-

curate deep models often require billions of FLOPs, which

makes it infeasible for deep models to run many real-time

applications on resource constrained mobile platforms. To

∗C. Shen is the corresponding author.

solve this problem, many existing works focus on network

pruning [18,28,54], low-bit quantization [24,53] and/or ef-

ficient architecture design [8, 21]. Among them, the quan-

tization approaches represent weights and activations with

low bitwidth fixed-point integers, and thus the dot product

can be computed by several XNOR-popcount bitwise oper-

ations. The XNOR of two bits requires only a single logic

gate instead of using hundreds units for floating point multi-

plication [10,14]. Binarization [22,39] is an extreme quanti-

zation approach where both the weights and activations are

represented by a single bit, either +1 or −1. In this paper,

we aim to design highly accurate binary neural networks

(BNNs) from both the quantization and efficient architec-

ture design perspectives.

Existing quantization methods can be mainly divided

into two categories. The first category methods seek to de-

sign more effective optimization algorithms to find better

local minima for quantized weights. These works either in-

troduce knowledge distillation [35,38,53] or use loss-aware

objectives [19, 20]. The second category approaches fo-

cus on improving the quantization function [4, 48, 51]. To

maintain good performance, it is essential to learn suitable

mappings between discrete values and their floating-point

counterparts . However, designing quantization function is

highly non-trivial especially for BNNs, since the quantiza-

tion functions are often non-differentiable and gradients can

only be roughly approximated.

The above two categories of methods belong to value

approximation, which seeks to quantize weights and/or ac-

tivations by preserving most of the representational ability

of the original network. However, the value approximation

approaches have a natural limitation that it is merely a lo-

cal approximation. Moreover, these methods often lacks of

adaptive ability to general tasks. Given a pretrained model

on a specific task, the quantization error will inevitably oc-

cur and the final performance may be affected.

In this paper, we seek to explore a third category called

structure approximation . The main objective is to redesign

a binary architecture that can directly match the capability

of a floating-point model. In particular, we propose a Struc-

413

tured Binary Neural Network called Group-Net to partition

the full-precision model into groups and use a set of paral-

lel binary bases to approximate its floating-point structure

counterpart. In this way, higher-level structural information

can be better preserved than the value approximation ap-

proaches.

Furthermore, relying on the proposed structured model,

we are able to design flexible binary structures according

to different tasks and exploit task-specific information or

structures to compensate the quantization loss and facilitate

training. For example, when transferring Group-Net from

image classification to semantic segmentation, we are mo-

tivated by the structure of Atrous Spatial Pyramid Pooling

(ASPP) [5]. In DeepLab v3 [6] and v3+ [7], ASPP is merely

applied on the top of extracted features while each block in

the backbone network can employ one atrous rate only. In

contrast, we propose to directly apply different atrous rates

on parallel binary bases in the backbone network, which

is equivalent to absorbing ASPP into the feature extraction

stage. Thus, we significantly boost the performance on se-

mantic segmentation, without increasing the computation

complexity of the binary convolutions.

In general, it is nontrivial to extend previous value ap-

proximation based quantization approaches to more chal-

lenging tasks such as semantic segmentation (or other gen-

eral computer vision tasks). However, as will be shown, our

Group-Net can be easily extended to other tasks. Never-

theless, it is worth mentioning that value and structure ap-

proximation are complementary rather than contradictory.

In other words, both are important and should be exploited

to obtain highly accurate BNNs.

Our methods are also motivated by those energy-efficient

architecture design approaches [8, 21, 23, 49] which seek to

replace the traditional expensive convolution with compu-

tational efficient convolutional operations (i.e., depthwise

separable convolution, 1 × 1 convolution). Nevertheless,

we propose to design binary network architectures for dedi-

cated hardware from the quantization view. We highlight

that while most existing quantization works focus on di-

rectly quantizing the full-precision architecture, at this point

in time we do begin to explore alternative architectures that

shall be better suited for dealing with binary weights and ac-

tivations. In particular, apart from decomposing each group

into several binary bases, we also propose to learn the con-

nections between each group by introducing a fusion gate.

Moreover, Group-Net can be possibly further improved

with Neural Architecture Search methods [37, 55, 56] .

Our contributions are summarized as follows:

• We propose to design accurate BNNs structures from

the structure approximation perspective. Specifically,

we divide the networks into groups and approximate

each group using a set of binary bases. We also pro-

pose to automatically learn the decomposition by in-

troducing soft connections.

• The proposed Group-Net has strong flexibility and can

be easily extended to other tasks. For instance, in

this paper we propose Binary Parallel Atrous Convo-

lution (BPAC), which embeds rich multi-scale con-

text into BNNs for accurate semantic segmentation.

Group-Net with BPAC significantly improves the per-

formance while maintaining the complexity compared

to employ Group-Net only.

• We evaluate our models on ImageNet and PASCAL

VOC datasets based on ResNet. Extensive exper-

iments show the proposed Group-Net achieves the

state-of-the-art trade-off between accuracy and com-

putational complexity.

We review some relevant works in the sequel.

Network quantization: The recent increasing demand for

implementing fixed point deep neural networks on embed-

ded devices motivates the study of network quantization.

Fixed-point approaches that use low-bitwidth discrete val-

ues to approximate real ones have been extensively explored

in the literature [4, 22, 29, 39, 51, 53]. BNNs [22, 39] pro-

pose to constrain both weights and activations to binary val-

ues (i.e., +1 and −1), where the multiply-accumulations

can be replaced by purely xnor(·) and popcount(·) opera-

tions. To make a trade-off between accuracy and complex-

ity, [13, 15, 27, 47] propose to recursively perform residual

quantization and yield a series of binary tensors with de-

creasing magnitude scales. However, multiple binarizations

are sequential process which cannot be paralleled. In [29],

Lin et al. propose to use a linear combination of binary

bases to approximate the floating point tensor during for-

ward propagation. This inspires aspects of our approach,

but unlike all of these local tensor approximations, we addi-

tionally directly design BNNs from a structure approxima-

tion perspective.

Efficient architecture design: There has been a rising in-

terest in designing efficient architecture in the recent liter-

ature. Efficient model designs like GoogLeNet [45] and

SqueezeNet [23] propose to replace 3×3 convolutional ker-

nels with 1×1 size to reduce the complexity while in-

creasing the depth and accuracy. Additionally, separable

convolutions are also proved to be effective in Inception

approaches [44, 46]. This idea is further generalized as

depthwise separable convolutions by Xception [8], Mo-

bileNet [21, 43] and ShuffleNet [49] to generate energy-

efficient network structure. To avoid handcrafted heuristics,

neural architecture search [30, 31, 37, 55, 56] has been ex-

plored for automatic model design.

2. Method

Most previous literature has focused on value approxi-

mation by designing accurate binarization functions for

414

weights and activations (e.g., multiple binarizations [13,15,

27, 29, 47]). In this paper, we seek to binarize both weights

and activations of CNNs from a “structure approximation”

view. In the following, we first give the problem definition

and some basics about binarization in Sec. 2.1. Then, in

Sec. 2.2, we explain our binary architecture design strategy.

Finally, in Sec. 2.3, we describe how to utilize task-specific

attributes to generalize our approach to semantic segmenta-

tion.

2.1. Problem definition

For a convolutional layer, we define the input x ∈
R

cin×win×hin , weight filter w ∈ R
c×w×h and the output

y ∈ R
cout×wout×hout , respectively.

Binarization of weights: Following [39], we approximate

the floating-point weight w by a binary weight filter bw and

a scaling factor α ∈ R
+ such that w ≈ αbw, where bw is

the sign of w and α calculates the mean of absolute values

of w. In general, sign(·) is non-differentiable and so we

adopt the straight-through estimator [1] (STE) to approx-

imate the gradient calculation. Formally, the forward and

backward processes can be given as follows:

Forward : bw = sign(w),

Backward :
∂ℓ

∂w
=

∂ℓ

∂bw
· ∂b

w

∂w
≈ ∂ℓ

∂bw
,

(1)

where ℓ is the loss.

Binarization of activations: For activation binarization,

we utilize the piecewise polynomial function to approxi-

mate the sign function as in [33]. The forward and back-

ward can be written as:

Forward : ba = sign(x),

Backward : ∂ℓ
∂x

= ∂ℓ
∂ba

· ∂ba

∂x
,

where ∂ba

∂x
=







2 + 2x : −1 ≤ x < 0
2− 2x : 0 ≤ x < 1
0 : otherwise

.
(2)

2.2. Structured Binary Network Decomposition

In this paper, we seek to design a new structural representa-

tion of a network for quantization. First of all, note that a

float number in computer is represented by a fixed-number

of binary digits. Motivated by this, rather than directly do-

ing the quantization via “value decomposition”, we propose

to decompose a network into binary structures while pre-

serving its representability.

Specifically, given a floating-point residual network Φ
with N blocks, we decompose Φ into P binary fragments

[F1, ...,FP], where Fi(·) can be any binary structure. Note

that each Fi(·) can be different. A natural question arises:

can we find some simple methods to decompose the net-

work with binary structures so that the representability can

be exactly preserved? To answer this question, we here ex-

plore two kinds of architectures for F(·), namely layer-wise

decomposition and group-wise decomposition in Sec. 2.2.1

and Sec. 2.2.2, respectively. After that, we will present a

novel strategy for automatic decomposition in Sec. 2.2.3.

2.2.1 Layer-wise binary decomposition

The key challenge of binary decomposition is how to re-

construct or approximate the floating-point structure. The

simplest way is to approximate in a layer-wise manner. Let

B(·) be a binary convolutional layer and bw
i be the bina-

rized weights for the i-th base. In Fig. 1 (c), we illustrate the

layer-wise feature reconstruction for a single block. Specifi-

cally, for each layer, we aim to fit the full-precision structure

using a set of binarized homogeneous branches F(·) given

a floating-point input tensor x:

F(x) =

K
∑

i=1

λiBi(x) =

K
∑

i=1

λi(b
w
i ⊕ sign(x)), (3)

where ⊕ is bitwise operations xnor(·) and popcount(·), K
is the number of branches and λi is the combination co-

efficient to be determined. During the training, the struc-

ture is fixed and each binary convolutional kernel bw
i as

well as λi are directly updated with end-to-end optimiza-

tion. The scale scalar can be absorbed into batch normal-

ization when doing inference. Note that all Bi’s in Eq. (3)

have the same topology as the original floating-point coun-

terpart. Each binary branch gives a rough approximation

and all the approximations are aggregated to achieve more

accurate reconstruction to the original full precision convo-

lutional layer. Note that when K = 1, it corresponds to di-

rectly binarize the floating-point convolutional layer (Fig. 1

(b)). However, with more branches (a larger K), we are ex-

pected to achieve more accurate approximation with more

complex transformations.

During the inference, the homogeneous K bases can be

parallelizable and thus the structure is hardware friendly.

This will bring significant gain in speed-up of the inference.

Specifically, the bitwise XNOR operation and bit-counting

can be performed in a parallel of 64 by the current gener-

ation of CPUs [33, 39]. And we just need to calculate K
binary convolutions and K full-precision additions. As a

result, the speed-up ratio σ for a convolutional layer can be

calculated as:

σ =
cincoutwhwinhin

1

64
(Kcincoutwhwinhin) +Kcoutwouthout

,

=
64

K
· cinwhwinhin

cinwhwinhin + 64wouthout

.

(4)

We take one layer in ResNet for example. If we set cin =
256, w × h = 3 × 3, win = hin = wout = hout = 28,

K = 5, then it can reach 12.45× speedup. But in practice,

each branch can be implemented in parallel. And the actual

speedup ratio is also influenced by the process of memory

read and thread communication.

415

conv conv ⊕

(b)

λ
1

⊕

ℱ

…

λ
K

⊕

…

B(⋅)

B(⋅)

B(⋅)

B(⋅)

⊕

(⋅)

(a) (c)

⊕B(⋅)B(⋅)

Figure 1: Overview of the baseline binarization method and the proposed layer-wise binary decomposition. We take one residual block with two con-

volutional layers for illustration. For convenience, we omit batch normalization and nonlinearities. (a): The floating-point residual block. (b): Direct

binarization of a full-precision block. (c): Layer-wise binary decomposition in Eq. (3), where we use a set of binary convolutional layers B(·) to approxi-

mate a floating-point convolutional layer.

conv conv ⊕ conv conv ⊕

(c) …

B(⋅)

(a)

B(⋅) ⊕ B(⋅) B(⋅) ⊕ λ
1

λ
K

⊕

B(⋅) B(⋅) ⊕ B(⋅) B(⋅) ⊕

B(⋅) B(⋅) ⊕ λ
1

λ
K

⊕

B(⋅) B(⋅) ⊕

B(⋅) B(⋅) ⊕ λ
1

λ
K

⊕

B(⋅) B(⋅) ⊕

(b)

……

G(⋅)

H (⋅)

Figure 2: Illustration of the proposed group-wise binary decomposition

strategy. We take two residual blocks for description. (a): The floating-

point residual blocks. (b): Basic group-wise binary decomposition in

Eq. (5), where we approximate a whole block with a linear combination

of binary blocks G(·). (c): We approximate a whole group with homo-

geneous binary bases H(·), where each group consists of several blocks.

This corresponds to Eq. (6).

2.2.2 Group-wise binary decomposition

In the layer-wise approach, we approximate each layer with

multiple branches of binary layers. Note each branch will

introduce a certain amount of error and the error may accu-

mulate due to the aggregation of multi-branches. As a re-

sult, this strategy may incur severe quantization errors and

bring large deviation for gradients during backpropagation.

To alleviate the above issue, we further propose a more flex-

ible decomposition strategy called group-wise binary de-

composition, to preserve more structural information during

approximation.

To explore the group-structure decomposition, we first

consider a simple case where each group consists of only

one block. Then, the layer-wise approximation strategy can

be easily extended to the group-wise case. As shown in

Fig. 2 (b), similar to the layer-wise case, each floating-point

group is decomposed into multiple binary groups. How-

ever, each group Gi(·) is a binary block which consists of

several binary convolutions and floating-point element-wise

operations (i.e., ReLU, AddTensor). For example, we can

set Gi(·) as the basic residual block [17] which is shown

in Fig. 2 (a). Considering the residual architecture, we can

decompose F(x) by extending Eq. (3) as:

F(x) =
K
∑

i=1

λiGi(x), (5)

where λi is the combination coefficient to be learned. In

Eq. (5), we use a linear combination of homogeneous bi-

nary bases to approximate one group, where each base Gi

is a binarized block. In this way, we effectively keep the

original residual structure in each base to preserve the net-

work capacity. As shown in Sec. 4.3.1, the group-wise de-

composition strategy performs much better than the simple

layer-wise approximation.

Furthermore, the group-wise approximation is flexible.

We now analyze the case where each group may contain

different number of blocks. Suppose we partition the net-

work into P groups and it follows a simple rule that each

group must include one or multiple complete residual build-

ing blocks. For the p-th group, we consider the blocks set

T ∈ {Tp−1+1, ..., Tp}, where the index Tp−1 = 0 if p = 1.

And we can extend Eq. (5) into multiple blocks format:

F(xTp−1+1) =
K
∑

i=1

λiHi(x),

=
K
∑

i=1

λiG
Tp

i (G
Tp−1

i (...(G
Tp−1+1

i (xTp−1+1))...)),

(6)

where H(·) is a cascade of consequent blocks which is

shown in Fig. 2 (c). Based on F(·), we can efficiently con-

struct a network by stacking these groups and each group

may consist of one or multiple blocks. Different from

Eq. (5), we further expose a new dimension on each base,

which is the number of blocks. This greatly increases the

structure space and the flexibility of decomposition. We il-

lustrate several possible connections in Sec. S1 in the sup-

plementary file and further describe how to learn the de-

composition in Sec. 2.2.3.

2.2.3 Learning for dynamic decomposition

There is a big challenge involved in Eq. (6). Note that the

network has N blocks and the possible number of connec-

tions is 2N . Clearly, it is not practical to enumerate all pos-

sible structures during the training. Here, we propose to

416

solve this problem by learning the structures for decompo-

sition dynamically. We introduce in a fusion gate as the soft

connection between blocks G(·). To this end, we first define

the input of the i-th branch for the n-th block as:

Cn
i = sigmoid(θni),

xn
i = Cn

i ⊙Gn−1

i (xn−1

i)

+ (1− Cn
i)⊙

K
∑

j=1

λjG
n−1

j (xn−1

j),

(7)

where θ ∈ R
K is a learnable parameter vector, Cn

i is a gate

scalar and ⊙ is the Hadamard product.

λ
1

⊗

⊕

⊕

⊕

⊗ ⊕

Fusion gate

λ
K

…

B(⋅)

B(⋅) B(⋅)

B(⋅)
λ
1

⊕

⊕

⊕
λ
K

…

B(⋅)

B(⋅) B(⋅)

B(⋅)

C
1

1−C
1

G
1

n−1
G
1

n

Figure 3: Illustration of the soft connection between two neighbouring

blocks. For convenience, we only illustrate the fusion strategy for one

branch.

Here, the branch input xn
i is a weighted combination of

two paths. The first path is the output of the corresponding

i-th branch in the (n− 1)-th block, which is a straight con-

nection. The second path is the aggregation output of the

(n− 1)-th block. The detailed structure is shown in Fig. 3.

In this way, we make more information flow into the branch

and increase the gradient paths for improving the conver-

gence of BNNs.

Remarks: For the extreme case when
K∑

i=1

C
n

i = 0,

Eq. (7) will be reduced to Eq. (5) which means we approxi-

mate the (n−1)-th and the n-th block independently. When
K∑

i=1

C
n

i = K, Eq. (7) is equivalent to Eq. (6) and we set H(·)
to be two consequent blocks and approximate the group as

a whole. Interestingly, when
N∑

n=1

K∑

i=1

C
n

i = NK, it corre-

sponds to set H(·) in Eq. (6) to be a whole network and

directly ensemble K binary models.

2.3. Extension to semantic segmentation

The key message conveyed in the proposed method is that

although each binary branch has a limited modeling capa-

bility, aggregating them together leads to a powerful model.

In this section, we show that this principle can be applied

to tasks other than image classification. In particular, we

consider semantic segmentation which can be deemed as a

dense pixel-wise classification problem. In the state-of-the-

art semantic segmentation network, the atrous convolutional

layer [6] is an important building block, which performs

convolution with a certain dilation rate. To directly apply

(a): The conventional floating-point dilated convolution.

(b): The proposed Binary Parallel Atrous Convolution (BPAC).

Sign Multi-dilations decompose

-1 1 -1 1 -1 1 -1

1 1 -1 1 1 -1 1

1 -1 -1 1 -1 1 -1

-1 -1 1 -1 1 1 1

1 1 -1 -1 1 -1 1

-1 -1 1 1 -1 -1 -1

-1 1 -1 1 -1 1 1

-1 1 -1

1 -1 1

-1 1 -1

3x3 Conv

rate=1

3x3 Conv

rate=2

…
..

Sum

⊕

⊕Binary feature map

Output

-1 -1 -1

1 -1 -1

1 -1 1

⊛

Floating-point feature map 3x3 Conv, dilation rate=2

Output
a11 a12 a13 a14 a15 a16 a17

a21 a22 a23 a24 a25 a26 a27

a31 a32 a33 a34 a35 a36 a37

a41 a42 a43 a44 a45 a46 a47

a51 a52 a53 a54 a55 a56 a57

a61 a62 a63 a64 a65 a66 a67

a71 a72 a73 a74 a75 a76 a77

w11 w12 w13

w21 w22 w23

w31 w32 w33

Figure 4: The comparison between conventional dilated convolution and

BPAC. For expression convenience, the group only has one convolutional

layer. ⊛ is the convolution operation and ⊕ indicates the XNOR-popcount

operations. (a): The original floating-point dilated convolution. (b): We

decompose the floating-point atrous convolution into a combination of bi-

nary bases, where each base uses a different dilated rate. We sum the

output features of each binary branch as the final representation.

the proposed method to such a layer, one can construct mul-

tiple binary atrous convolutional branches with the same

structure and aggregate results from them. However, we

choose not to do this but propose an alternative strategy: we

use different dilation rates for each branch. In this way, the

model can leverage multiscale information as a by-product

of the network branch decomposition. It should be noted

that this scheme does not incur any additional model pa-

rameters and computational complexity compared with the

naive binary branch decomposition. The idea is illustrated

in Fig. 4 and we call this strategy Binary Parallel Atrous

Convolution (BPAC).

In this paper, we use the same ResNet backbone in [6,

7] with output stride=8, where the last two blocks em-

ploy atrous convolution. In BPAC, we keep rates =
{2, 3, ...,K,K+1} and rates = {6, 7, ...,K+4,K+5} for

K bases in the last two blocks, respectively. Intriguingly, as

will be shown in Sec. 4.4, our strategy brings so much ben-

efit that using five binary bases with BPAC achieves similar

performance as the original full precision network despite

the fact that it saves considerable computational cost.

3. Discussions

Complexity analysis: A comprehensive comparison of var-

ious quantization approaches over complexity and storage

is shown in Table 1. For example, in the previous state-

417

Table 1: Computational complexity and storage comparison of different quantization approaches. F : full-precision, B: binary, QK : K-bit quantization.

Model Weights Activations Operations Memory saving Computation Saving

Full-precision DNN F F +, -, × 1 1

[22, 39] B B XNOR-popcount ∼ 32× ∼ 64×
[9, 20] B F +, - ∼ 32× ∼ 2×
[50, 52] QK F +, -, × ∼ 32

K
× < 2×

[35, 48, 51, 53] QK QK +, -, × ∼ 32

K
× < 64

K2×
[13, 15, 27, 29, 47] K ×B K ×B +, -, XNOR-popcount ∼ 32

K
× < 64

K2×
Group-Net K × (B,B) +, -, XNOR-popcount ∼ 32

K
× < 64

K
×

of-the-art binary model ABC-Net [29], each convolutional

layer is approximated using K weight bases and K activa-

tion bases, which needs to calculate K2 times binary con-

volution. In contrast, we just need to approximate several

groups with K structural bases. As reported in Sec. 4.2 , we

save approximate K times computational complexity while

still achieving comparable Top-1 accuracy. Since we use K
structural bases, the number of parameters increases by K
times in comparison to the full-precision counterpart. But

we still save memory bandwidth by 32/K times since all

the weights are binary in our paper. For our approach, there

exists element-wise operations between each group, so the

computational complexity saving is slightly less than 64

K
×.

Differences of Group-net from fixed-point methods: The

proposed Group-net with K bases is different from the K-

bit fixed-point approaches [35, 48, 51, 53].

We first show how the inner product between fixed-point

weights and activations can be computed by bitwise opera-

tions. Let a weight vector w ∈ R
M be encoded by a vector

bw
i ∈ {−1, 1}M , i = 1, ...,K. Assume we also quan-

tize activations to K-bit. Similarly, the activations x can

be encoded by ba
j ∈ {−1, 1}M , j = 1, ...,K. Then, the

convolution can be written as

QK(wT)QK(x) =
K−1
∑

i=0

K−1
∑

j=0

2i+j(bw
i ⊕ ba

j), (8)

where QK(·) is any quantization function1.

During the inference, it needs to first get the encod-

ing ba
j for each bit by looking up the quantization in-

tervals. Then, it calculates and sums over K2 times

xnor(·) and popcount(·). The complexity is about O(K2).
Note that the output range for a single output shall be

[−(2K − 1)2M, (2K − 1)2M].
In contract, we directly obtain ba

j via sign(x). More-

over, since we just need to calculate K times xnor(·) and

popcount(·) (see Eq. (3)), and then sum over the outputs,

the computational complexity is O(K). For binary convo-

lution, its output range is {-1, 1}. So the value range for

each element after summation is [−KM,KM], in which

the number of distinct values is much less than that in fixed-

point methods.

1For simplicity, we only consider uniform quantization in this paper.

In summary, compared with K-bit fixed-point meth-

ods, Group-Net with K bases just needs
√
K compu-

tational complexity and saves (2K − 1)2/K accumulator

bandwidth. Even
√
K-bit fixed-point quantization requires

more memory bandwidth to feed signal in SRAM or in reg-

isters.

Differences of Group-net from multiple binarizations

methods: In ABC-Net [29], a linear combination of

binary weight/activations bases are obtained from the

full-precision weights/activations without being directly

learned. In contrast, we directly design the binary network

structure, where binary weights are end-to-end optimized.

[13,15,27,47] propose to recursively approximate the resid-

ual error and obtain a series of binary maps corresponding

to different quantization scales. However, it is a sequential

process which cannot be paralleled. And all multiple bina-

rizations methods belong to local tensor approximation. In

contrast to value approximation, we propose a structure ap-

proximation approach to mimic the full-precision network.

Moreover, tensor-based methods are tightly designed to lo-

cal value approximation and are hardly generalized to other

tasks accordingly. In addition, our structure decomposition

strategy achieves much better performance than tensor-level

approximation as shown in Sec. 4.3.1. More discussions are

provided in Sec. S2 in the supplementary file.

4. Experiment

We define several methods for comparison as follows:

LBD: It implements the layer-wise binary decomposition

strategy described in Sec. 2.2.1. Group-Net: It imple-

ments the full model with learnt soft connections described

in Sec. 2.2.3. Following Bi-Real Net [32, 33], we apply

shortcut bypassing every binary convolution to improve the

convergence. Group-Net**: Based on Group-Net, we keep

the 1× 1 downsampling convolution to full-precision simi-

lar to [2, 33].

4.1. Implementation details

As in [4, 39, 51, 53], we quantize the weights and activa-

tions of all convolutional layers except that the first and the

last layer have full-precision. In all ImageNet experiments,

training images are resized to 256 × 256, and a 224 × 224
crop is randomly sampled from an image or its horizontal

418

flip, with the per-pixel mean subtracted. We do not use any

further data augmentation in our implementation. We use a

simple single-crop testing for standard evaluation. No bias

term is utilized. We first pretrain the full-precision model

as initialization with Tanh(·) as nonlinearity and fine-tune

the binary counterpart. We use Adam [25] for optimiza-

tion. For training all binary networks, the mini-batch size

and weight decay are set to 256 and 0, respectively. The

learning rate starts at 5e-4 and is decayed twice by multi-

plying 0.1 at the 30th and 40th epoch. We train 50 epochs

in total. Following [4, 53], no dropout is used due to bina-

rization itself can be treated as a regularization. We apply

layer-reordering to the networks as: Sign → Conv → ReLU

→ BN. Inserting ReLU(·) after convolution is important for

convergence. Our simulation implementation is based on

Pytorch [36].

4.2. Evaluation on ImageNet

The proposed method is evaluated on ImageNet

(ILSVRC2012) [42] dataset. ImageNet is a large-

scale dataset which has ∼1.2M training images from 1K

categories and 50K validation images. Several representa-

tive networks are tested: ResNet-18 [17], ResNet-34 and

ResNet-50. As discussed in Sec. 3, binary approaches

and fixed-point approaches differ a lot in computational

complexity as well as storage consumption. So we compare

the proposed approach with binary neural networks in

Table 2 and fixed-point approaches in Table 3, respectively.

4.2.1 Comparison with binary neural networks

Since we employ binary weights and binary activations, we

directly compare to the previous state-of-the-art binary ap-

proaches, including BNN [22], XNOR-Net [39], Bi-Real

Net [33] and ABC-Net [29]. We report the results in Ta-

ble 2 and summarize the following points. 1): The most

comparable baseline for Group-Net is ABC-Net. As dis-

cussed in Sec. 3, we save considerable computational com-

plexity while still achieving better performance compared

to ABC-Net. In comparison to directly binarizing networks,

Group-Net achieves much better performance but needs K
times more storage and complexity. However, the K homo-

geneous bases can be easily parallelized on the real chip.

In summary, our approach achieves the best trade-off be-

tween computational complexity and prediction accuracy.

2): By comparing Group-Net** (5 bases) and Group-Net

(8 bases), we can observe comparable performance. It jus-

tifies keeping 1 × 1 downsampling layers to full-precision

is crucial for preserving the performance. 3): For Bottle-

neck structure in ResNet-50, we find larger quantization

error than the counterparts using basic blocks with 3 × 3
convolutions in ResNet-18 and ResNet-34. The similar ob-

servation is also claimed by [3]. We assume that this is

mainly attributable to the 1× 1 convolutions in Bottleneck.

The reason is 1 × 1 filters are limited to two states only

(either 1 or -1) and they have very limited learning power.

What’s more, the bottleneck structure reduces the number

of filters significantly, which means the gradient paths are

greatly reduced. In other words, it blocks the gradient flow

through BNNs. Even though the bottleneck structure can

benefit full-precision training, it is really needed to be re-

designed in BNNs. To increase gradient paths, the 1 × 1
convolutions should be removed.

4.2.2 Comparison with fix-point approaches

Since we use K binary group bases, we compare our ap-

proach with at least
√
K-bit fix-point approaches. In Ta-

ble 3, we compare our approach with the state-of-the-art

fixed-point approaches DoReFa-Net [51], SYQ [12] and

LQ-Nets [48]. As described in Sec. 3, K binarizations

are more superior than the
√
K-bit width quantization with

respect to the resource consumption. Here, we set K=4.

DOREFA-Net and LQ-Nets use 2-bit weights and 2-bit acti-

vations. SYQ employs binary weights and 8-bit activations.

All the comparison results are directly cited from the cor-

responding papers. LQ-Nets is the current best-performing

fixed-point approach and its activations have a long-tail dis-

tribution. We can observe that Group-Net requires less

memory bandwidth while still achieving comparable accu-

racy with LQ-Nets.

4.3. Ablation study

Due to the limited space, we provide more experiments in

Sec. S1 in the supplementary material.

4.3.1 Layer-wise vs. group-wise binary decomposition

We explore the difference between layer-wise and group-

wise design strategies in Table 4. By comparing the results,

we find Group-Net outperforms LBD by 7.2% on the Top-

1 accuracy. Note that LBD approach can be treated as a

kind of tensor approximation which has similarities with

multiple binarizations methods in [13, 15, 27, 29, 47] and

the differences are described in Sec. 3. It strongly shows

the necessity for employing the group-wise decomposition

strategy to get promising results. We speculate that this sig-

nificant gain is partly due to the preserved block structure

in binary bases. It also proves that apart from designing

accurate binarization function, it is also essential to design

appropriate structure for BNNs.

4.4. Evaluation on PASCAL VOC

We evaluate the proposed methods on the PASCAL VOC

2012 semantic segmentation benchmark [11] which con-

tains 20 foreground object classes and one background

class. The original dataset contains 1,464 (train), 1,449

(val) and 1,456 (test) images. The dataset is augmented by

the extra annotations from [16], resulting in 10,582 training

images. The performance is measured in terms of averaged

419

Table 2: Comparison with the state-of-the-art binary models using ResNet-18, ResNet-34 and ResNet-50 on ImageNet. All the comparing results are

directly cited from the original papers. The metrics are Top-1 and Top-5 accuracy.

Model Full BNN XNOR Bi-Real Net ABC-Net (25 bases) Group-Net (5 bases) Group-Net** (5 bases) Group-Net (8 bases)

ResNet-18
Top-1 % 69.7 42.2 51.2 56.4 65.0 64.8 67.0 67.5

Top-5 % 89.4 67.1 73.2 79.5 85.9 85.7 87.5 88.0

ResNet-34
Top-1 % 73.2 - - 62.2 68.4 68.5 70.5 71.8

Top-5 % 91.4 - - 83.9 88.2 88.0 89.3 90.4

ResNet-50
Top-1 % 76.0 - - - 70.1 69.5 71.2 72.8

Top-5 % 92.9 - - - 89.7 88.2 90.0 90.5

Table 3: Comparison with the state-of-the-art fixed-point models with

ResNet-18 on ImageNet. The metrics are Top-1 and Top-5 accuracy.

Model W A Top-1 (%) Top-5 (%)

Full-precision 32 32 69.7 89.4

Group-Net** (4 bases) 1 1 66.3 86.6

Group-Net (4 bases) 1 1 64.2 85.6

LQ-Net [48] 2 2 64.9 85.9

DOREFA-Net [51] 2 2 62.6 84.4

SYQ [12] 1 8 62.9 84.6

Table 4: Comparison with Group-Net and LBD using ResNet-18 on Ima-

geNet. The metrics are Top-1 and Top-5 accuracy.

Model Bases Top-1 % Top-5 %

Full-precision 1 69.7 89.4

Group-Net 5 64.8 85.7

LBD 5 57.6 79.7

Table 5: Performance on PASCAL VOC 2012 validation set.

Model mIOU ∆

ResNet-18, FCN-32s

Full-precision 64.9 -

LQ-Net (3-bit) 62.5 2.4

Group-Net 60.5 4.4

Group-Net + BPAC 63.8 1.1

Group-Net** + BPAC 65.1 -0.2

ResNet-18, FCN-16s

Full-precision 67.3 -

LQ-Net (3-bit) 65.1 2.2

Group-Net 62.7 4.6

Group-Net + BPAC 66.3 1.0

Group-Net** + BPAC 67.7 -0.4

ResNet-34, FCN-32s

Full-precision 72.7 -

LQ-Net (3-bit) 70.4 2.3

Group-Net 68.2 4.5

Group-Net + BPAC 71.2 1.5

Group-Net** + BPAC 72.8 -0.1

ResNet-50, FCN-32s

Full-precision 73.1 -

LQ-Net (3-bit) 70.7 2.4

Group-Net 67.2 5.9

Group-Net + BPAC 70.4 2.7

Group-Net** + BPAC 71.0 2.1

pixel intersection-over-union (mIOU) over 21 classes. Our

experiments are based on the original FCN [34]. For both

FCN-32s and FCN-16s, we adjust the dilation rates of the

last 2 blocks in ResNet with atrous convolution to make the

output stride equal to 8. We first pretrain the binary back-

bone network on ImageNet dataset and fine-tune it on PAS-

CAL VOC. During fine-tuning, we use Adam with initial

learning rate=1e-4, weight decay=1e-5 and batch size=16.

We set the number of bases K = 5 in experiments. We

train 40 epochs in total and decay the learning rate by a fac-

tor of 10 at 20 and 30 epochs. We do not add any auxiliary

loss and ASPP. We empirically observe full-precision FCN

under dilation rates (4, 8) in last two blocks achieves the

best performance. The main results are in Table 5.

From the results, we can observe that when all bases us-

ing the same dilation rates, there is a large performance gap

with the full-precision counterpart. This performance drop

is consistent with the classification results on ImageNet

dataset in Table 2. It proves that the quality of extracted

features have a great impact on the segmentation perfor-

mance. What’s more, by utilizing task-specific BPAC, we

find significant performance increase with no computational

complexity added, which strongly justifies the flexibility of

Group-Net. Moreover, we also quantize the backbone net-

work using fixed-point LQ-Nets with 3-bit weights and 3-

bit activations. Compared with LQ-Nets, we can achieve

comparable performance while saving considerable com-

plexity. In addition, we can observe Group-Net + BPAC

based on ResNet-34 even outperform the counterpart on

ResNet-50. This shows the widely used bottleneck struc-

ture is not suited to BNNs as explained in Sec. 4.2.1. We

provide more analysis in Sec. S3 in the supplementary file.

5. Conclusion

In this paper, we have begun to explore highly efficient and

accurate CNN architectures with binary weights and activa-

tions. Specifically, we have proposed to directly decompose

the full-precision network into multiple groups and each

group is approximated using a set of binary bases which

can be optimized in an end-to-end manner. We also pro-

pose to learn the decomposition automatically. Experimen-

tal results have proved the effectiveness of the proposed ap-

proach on the ImageNet classification task. Moreover, we

have generalized Group-Net from image classification task

to semantic segmentation and achieved promising perfor-

mance on PASCAL VOC. We have implemented the ho-

mogeneous multi-branch structure on CPU and achieved

promising acceleration on test-time inference.

Acknowledgement L. Liu was in part supported by

ARC DECRA Fellowship DE170101259. M. Tan was

partially supported by National Natural Science Founda-

tion of China (NSFC) 61602185, Program for Guang-

dong Introducing Innovative and Enterpreneurial Teams

2017ZT07X183.

420

References

[1] Y. Bengio, N. Léonard, and A. Courville. Estimating or prop-

agating gradients through stochastic neurons for conditional

computation. arXiv preprint arXiv:1308.3432, 2013. 3

[2] J. Bethge, M. Bornstein, A. Loy, H. Yang, and C. Meinel.

Training competitive binary neural networks from scratch.

arXiv preprint arXiv:1812.01965, 2018. 6

[3] J. Bethge, H. Yang, C. Bartz, and C. Meinel. Learn-

ing to train a binary neural network. arXiv preprint

arXiv:1809.10463, 2018. 7

[4] Z. Cai, X. He, J. Sun, and N. Vasconcelos. Deep learn-

ing with low precision by half-wave gaussian quantization.

In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 5918–

5926, 2017. 1, 2, 6, 7

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. IEEE transactions on pattern analysis and ma-

chine intelligence, 40(4):834–848, 2018. 2

[6] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-

thinking atrous convolution for semantic image segmenta-

tion. arXiv preprint arXiv:1706.05587, 2017. 2, 5

[7] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-decoder with atrous separable convolution for se-

mantic image segmentation. Proc. Eur. Conf. Comp. Vis.,

2018. 1, 2, 5

[8] F. Chollet. Xception: Deep learning with depthwise sepa-

rable convolutions. In Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., pages 1251–1258, 2017. 1, 2

[9] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect:

Training deep neural networks with binary weights during

propagations. In Proc. Adv. Neural Inf. Process. Syst., pages

3123–3131, 2015. 6

[10] A. Ehliar. Area efficient floating-point adder and multiplier

with ieee-754 compatible semantics. In Field-Programmable

Technology (FPT), 2014 International Conference on, pages

131–138. IEEE. 1

[11] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. Int. J. Comp. Vis., 88(2):303–338, 2010. 7

[12] J. Faraone, N. Fraser, M. Blott, and P. H. Leong. Syq:

Learning symmetric quantization for efficient deep neural

networks. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,

2018. 7, 8

[13] J. Fromm, S. Patel, and M. Philipose. Heterogeneous

bitwidth binarization in convolutional neural networks. In

Proc. Adv. Neural Inf. Process. Syst., 2018. 2, 3, 6, 7

[14] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna. Analysis

of high-performance floating-point arithmetic on fpgas. In

Parallel and Distributed Processing Symposium, 2004. Pro-

ceedings. 18th International, page 149. IEEE, 2004. 1

[15] Y. Guo, A. Yao, H. Zhao, and Y. Chen. Network sketching:

Exploiting binary structure in deep cnns. In Proc. IEEE Conf.

Comp. Vis. Patt. Recogn., pages 5955–5963, 2017. 2, 3, 6, 7

[16] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Ma-

lik. Semantic contours from inverse detectors. In Proc. Eur.

Conf. Comp. Vis., 2011. 7

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., pages 770–778, 2016. 1, 4, 7

[18] Y. He, X. Zhang, and J. Sun. Channel pruning for acceler-

ating very deep neural networks. In Proc. IEEE Int. Conf.

Comp. Vis., volume 2, page 6, 2017. 1

[19] L. Hou and J. T. Kwok. Loss-aware weight quantization of

deep networks. In Proc. Int. Conf. Learn. Repren., 2018. 1

[20] L. Hou, Q. Yao, and J. T. Kwok. Loss-aware binarization of

deep networks. In Proc. Int. Conf. Learn. Repren., 2017. 1,

6

[21] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017. 1, 2

[22] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks. In Proc. Adv. Neu-

ral Inf. Process. Syst., pages 4107–4115, 2016. 1, 2, 6, 7

[23] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and¡ 0.5 mb model size. arXiv

preprint arXiv:1602.07360, 2016. 2

[24] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,

H. Adam, and D. Kalenichenko. Quantization and training

of neural networks for efficient integer-arithmetic-only infer-

ence. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2018.

1

[25] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In Proc. Int. Conf. Learn. Repren., 2015. 7

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Proc.

Adv. Neural Inf. Process. Syst., pages 1097–1105, 2012. 1

[27] Z. Li, B. Ni, W. Zhang, X. Yang, and W. Gao. Perfor-

mance guaranteed network acceleration via high-order resid-

ual quantization. In Proc. IEEE Int. Conf. Comp. Vis., pages

2584–2592, 2017. 2, 3, 6, 7

[28] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and

D. Doermann. Towards optimal structured cnn pruning via

generative adversarial learning. In Proc. IEEE Conf. Comp.

Vis. Patt. Recogn., 2019. 1

[29] X. Lin, C. Zhao, and W. Pan. Towards accurate binary con-

volutional neural network. In Proc. Adv. Neural Inf. Process.

Syst., pages 344–352, 2017. 2, 3, 6, 7

[30] C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,

A. Yuille, J. Huang, and K. Murphy. Progressive neural ar-

chitecture search. In Proc. Eur. Conf. Comp. Vis., 2018. 2

[31] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and

K. Kavukcuoglu. Hierarchical representations for efficient

architecture search. In Proc. Int. Conf. Learn. Repren., 2018.

2

[32] Z. Liu, W. Luo, B. Wu, X. Yang, W. Liu, and K.-T. Cheng.

Bi-real net: Binarizing deep network towards real-network

performance. arXiv preprint arXiv:1811.01335, 2018. 6

[33] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng.

Bi-real net: Enhancing the performance of 1-bit cnns with

improved representational capability and advanced training

algorithm. In Proc. Eur. Conf. Comp. Vis., 2018. 3, 6, 7

421

[34] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proc. IEEE Conf.

Comp. Vis. Patt. Recogn., pages 3431–3440, 2015. 1, 8

[35] A. Mishra and D. Marr. Apprentice: Using knowledge dis-

tillation techniques to improve low-precision network accu-

racy. In Proc. Int. Conf. Learn. Repren., 2018. 1, 6

[36] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Au-

tomatic differentiation in pytorch. In Proc. Adv. Neural Inf.

Process. Syst. Workshops, 2017. 7

[37] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Ef-

ficient neural architecture search via parameter sharing. In

Proc. Int. Conf. Mach. Learn., 2018. 2

[38] A. Polino, R. Pascanu, and D. Alistarh. Model compression

via distillation and quantization. In Proc. Int. Conf. Learn.

Repren., 2018. 1

[39] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. In Proc. Eur. Conf. Comp. Vis., pages 525–542,

2016. 1, 2, 3, 6, 7

[40] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In Proc.

IEEE Conf. Comp. Vis. Patt. Recogn., pages 779–788, 2016.

1

[41] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Proc. Adv. Neural Inf. Process. Syst., pages 91–99, 2015. 1

[42] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge. Int.

J. Comp. Vis., 115(3):211–252, 2015. 7

[43] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages

4510–4520, 2018. 2

[44] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In Proc. AAAI Conf. on Arti. In-

tel., volume 4, page 12, 2017. 2

[45] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proc. IEEE Conf. Comp.

Vis. Patt. Recogn., pages 1–9, 2015. 2

[46] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision.

In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 2818–

2826, 2016. 2

[47] W. Tang, G. Hua, and L. Wang. How to train a compact

binary neural network with high accuracy? In Proc. AAAI

Conf. on Arti. Intel., pages 2625–2631, 2017. 2, 3, 6, 7

[48] D. Zhang, J. Yang, D. Ye, and G. Hua. Lq-nets: Learned

quantization for highly accurate and compact deep neural

networks. In Proc. Eur. Conf. Comp. Vis., 2018. 1, 6, 7,

8

[49] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An

extremely efficient convolutional neural network for mobile

devices. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2018.

2

[50] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremen-

tal network quantization: Towards lossless cnns with low-

precision weights. Proc. Int. Conf. Learn. Repren., 2017. 6

[51] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou.

Dorefa-net: Training low bitwidth convolutional neural

networks with low bitwidth gradients. arXiv preprint

arXiv:1606.06160, 2016. 1, 2, 6, 7, 8

[52] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary

quantization. Proc. Int. Conf. Learn. Repren., 2017. 6

[53] B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid. Towards ef-

fective low-bitwidth convolutional neural networks. In Proc.

IEEE Conf. Comp. Vis. Patt. Recogn., 2018. 1, 2, 6, 7

[54] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu,

J. Huang, and J. Zhu. Discrimination-aware channel pruning

for deep neural networks. In Proc. Adv. Neural Inf. Process.

Syst., pages 883–894, 2018. 1

[55] B. Zoph and Q. V. Le. Neural architecture search with rein-

forcement learning. In Proc. Int. Conf. Learn. Repren., 2017.

2

[56] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning

transferable architectures for scalable image recognition. In

Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2018. 2

422

