
Binary Ensemble Neural Network:

More Bits per Network or More Networks per Bit?

Shilin Zhu

UC San Diego

La Jolla, CA 92093

shz338@eng.ucsd.edu

Xin Dong

Harvard University

Cambridge, MA 02138

xindong@g.harvard.edu

Hao Su

UC San Diego

La Jolla, CA 92093

haosu@eng.ucsd.edu

Abstract

Binary neural networks (BNN) have been studied exten-

sively since they run dramatically faster at lower memory

and power consumption than floating-point networks, thanks

to the efficiency of bit operations. However, contemporary

BNNs whose weights and activations are both single bits

suffer from severe accuracy degradation. To understand why,

we investigate the representation ability, speed and bias/vari-

ance of BNNs through extensive experiments. We conclude

that the error of BNNs are predominantly caused by the in-

trinsic instability (training time) and non-robustness (train

& test time). Inspired by this investigation, we propose the

Binary Ensemble Neural Network (BENN) which leverages

ensemble methods to improve the performance of BNNs with

limited efficiency cost. While ensemble techniques have been

broadly believed to be only marginally helpful for strong

classifiers such as deep neural networks, our analysis and

experiments show that they are naturally a perfect fit to boost

BNNs. We find that our BENN, which is faster and more ro-

bust than state-of-the-art binary networks, can even surpass

the accuracy of the full-precision floating number network

with the same architecture.

1. Introduction

Deep Neural Networks (DNNs) have achieved great im-

pact to broad disciplines in academia and industry [57, 38].

Recently, the deployment of DNNs are transferring from

high-end cloud to low-end devices such as mobile phones

and embedded chips, serving general public with many real-

time applications, such as drones, miniature robots, and aug-

mented reality. Unfortunately, these devices typically have

limited computing power and memory space, thus cannot

afford DNNs to achieve important tasks like object recogni-

tion involving significant matrix computation and memory

usage.

Binary Neural Network (BNN) is among the most promis-

ing techniques to meet the desired computation and memory

requirement. BNNs [31] are deep neural networks whose

Figure 1. Comparison between traditional floating-number DNN,

BNN and our proposed BENN on image recognition task (W:

weights, A: activations). The inference speed of BENN can be

further boosted on FPGAs [63].

weights and activations have only two possible values (e.g.,

-1 and +1) and can be represented by a single bit. Beyond the

obvious advantage of saving storage and memory space, the

binarized architecture admits only bitwise operations, which

can be computed extremely fast using digital logic units [20]

such as arithmetic-logic unit (ALU) with much less power

consumption than floating-point unit (FPU).

Despite the significant gain in speed and storage, how-

ever, current BNNs suffer from notable accuracy degrada-

tion when applied to challenging tasks such as ImageNet

classification. To mitigate the gap, previous researches in

BNNs have been focusing on designing more effective opti-

mization algorithms to find better local minima of the quan-

tized weights. However, the task is highly non-trivial, since

gradient-based optimization that used to be effective to train

DNNs now becomes tricky to implement.

In this paper, we investigate BNNs systematically in terms

of representation power, speed, bias, variance, stability, and

their robustness. We find that BNNs suffer from severe in-

trinsic instability and non-robustness regardless of network

parameter values. What implied by this observation is that

the performance degradation of BNNs are not likely to be

resolved by solely improving the optimization techniques; in-

stead, it is mandatory to cure the BNN function, particularly

to reduce the prediction variance and improve its robustness

14923

to noises.

Inspired by the analysis, in this work, we propose Binary

Ensemble Neural Network (BENN). Though the basic idea is

as straight-forward as to simply aggregate multiple BNNs by

boosting or bagging, we show that the statistical properties

of the ensembled classifiers become much nicer: not only the

bias and variance are reduced, more importantly, BENN’s

robustness to noises at test time is significantly improved.

All the experiments suggest that BNNs and ensemble meth-

ods are a perfectly natural fit. Using architectures of the

same connectivity (a compact Network in Network [42]), we

find that boosting only 4 ∼ 5 BNNs would be able to even

surpass the baseline DNN with real weights in the best case.

In addition, our initial exploration by applying BENN on

ImageNet recognition using AlexNet [38] and ResNet [27]

also shows a large gain. This is by far the fastest, most accu-

rate, and most robust results achieved by binarized networks

(Fig. 1).

To the best of our knowledge, this is the first work to

bridge BNNs with ensemble methods. Unlike traditional

BNN improvements that have computational complexity of

& O(K2) by using K-bit per weights [65] or K bases in

total [43], the complexity of BENN is reduced to O(K).
Compared with [65, 43], BENN also enjoys better bitwise

operation parallelizability. With trivial parallelization, the

complexity can be reduced to O(1). We believe that BENN

can shed light on more research along this idea to achieve

extremely fast yet robust computation by networks.

2. Related Work

Quantized and binary neural networks: People have

found that there is no need to use full-precision parameters

and activations and can still preserve the accuracy of a neu-

ral network using k-bit fixed point numbers, as stated by

[19, 23, 61, 8, 40, 41, 48, 56, 49]. The first approach is

to use low-bit numbers to approximate real ones, which is

called quantized neural networks (QNNs) [32]. [66, 64] also

proposed ternary neural networks. Although recent advances

such as [65] can achieve competitive performance compared

with full-precision models, they cannot fully speed it up be-

cause we still cannot perform parallelized bitwise operation

with bitwidth larger than one. [31] is the very recent work

that binarizes all the weights and activations, which was the

birth of BNN. They have demonstrated the power of BNNs

in terms of speed, memory use and power consumption. But

recent works such as [58, 11, 21, 10] also reveal the strong

accuracy degradation and mismatch issue during the train-

ing when BNNs are applied in complicated tasks such as

ImageNet ([12]) recognition, especially when the activation

is binarized. Although some work like [43, 50, 13] have

offered reasonable solutions to approximate full-precision

neural network, much more computation and tricks on hy-

perparameters are still needed to implement compared with

BENN. Since they either use K-bitwidth quantization or K
binary bases, the computational complexity cannot get rid

of O(K2) if O(1) is required for 1-bit single BNN, while

BENN can achieve O(K) and even O(1) if multiple threads

are naturally paralleled. Also, many of current literatures

tried to minimize the distance between binary and real-value

parameters. But empirical assumptions such as Gaussian

parameter distribution are usually required in order to get a

priori for each BNN or just keep the sign same as suggested

by [43], otherwise the non-convex optimization is hard to

deal with. By contrast, BENN can be a general framework

to achieve the goal and has strong potential to work even

better than full-precision networks, without involving more

hyperparameters than a single BNN.

Ensemble techniques: To avoid simply relying on a sin-

gle powerful classifier, the ensemble strategy can improve

the accuracy of given learning algorithm combining multi-

ple weak classifiers as summarized by [6, 9, 47]. The two

most common strategies are bagging by [5] and boosting

by [51, 17, 53, 26], which were proposed many years ago

and have strong statistical foundation. They have roots in

a theoretical framework PAC model by [59] which was the

first to pose the question of whether weak learners can be en-

sembled into a strong learner. Bagging predictors are proved

to reduce variance while boosting can reduce both bias and

variance, and their effectiveness have been proved by many

theoretical analysis. Traditionally ensemble was used with

decision trees, decision stumps, random forests and achieved

great success thanks to its desirable statistical properties.

Recently people use ensemble to increase the generaliza-

tion ability of deep CNNs [24], advocate boosting on CNNs

and do architecture selection [45], and propose boost over

features [30]. But people did not pay enough attention to

ensemble techniques because neural network is not a weak

classifier anymore thus ensemble can unnecessarily increase

the model complexity. However, when applied to weak bi-

nary neural networks, we found it generates new insights

and hopes, and BENN is a natural outcome of such perfect

combination. In this work, we build our BENN on the top of

variant bagging, AdaBoost by [15, 52], LogitBoost by [17]

and can be extended to many more variants of traditional

ensemble algorithms. We hope this work can revive these

intelligent approaches and bring their life back into modern

neural networks.

3. Why Making BNNs Work Well is Challeng-

ing?

Despite the speed and space advantage of BNN, its per-

formances is still far inferior to the real valued counterparts.

There are at least two possible reasons: First, functions rep-

resentable by BNNs may have some inherent flaws; Second,

current optimization algorithms may still not be able to find

a good minima. While most researchers have been work-

24924

ing on developing better optimization methods, we suspect

that BNNs have some fundamental flaws. The following

investigation reveals the fundamental limitations of BNN-

representable functions experimentally.

Because all weights and activations are binary, an obvi-

ous fact is that BNNs can only represent a subset of discrete

functions, being strictly weaker than real networks that are

universal continuous function approximators [29]. What are

not so obvious are two serious limitations of BNNs: the

robustness issue w.r.t. input perturbations, and the stability

issue w.r.t. network parameters. Classical learning theory

tells us that both robustness and stability are closely related

to the generalization error of a model [62, 4]. A more de-

tailed theoretical analysis on BNN’s problems is attached in

supplementary material.

Robustness Issue: In practice, we observe more severe

overfitting effects of BNNs than real networks. Robustness is

defined as the property that if a testing population is “similar”

to a training population, then the testing error is close to the

training error [62]. To verify this point, we experiment in a

random network setting and a trained network setting.

Random Network Setting. We compute the following

quantity to compare 32bit real-valued DNN, BNN, QNN,

and our BENN model (Sec. 4) on the Network-In-Network

(NIN) architecture:

EwE∆x||f(x+∆x;w)− f(x;w)||2 (1)

where f is the network and w represents network weights.

We randomly sample real-valued weights w ∼ N (0, I)
as suggested in literature to get a DNN fr with weights wr

and binarize it to get a BNN fb with binary weights wb.

We also independently sample and binarize wr to generate

multiple BNNs with the same architecture to simulate the

BENN and get wbenn. QNN is obtained by quantizing the

DNN to k-bit weights (W) and activations (A). We normalize

each input image in CIFAR-10 to the range [−1, 1].
Then we inject the input perturbation ∆x on each exam-

ple by a Gaussian noise with different variances (0.001 ∼
0.1), run a forward pass on each network, and measure the

expected l2 norm of the change on the output distribution.

The above l2 norm of DNN, BNN, QNN, and BENN aver-

aged by 1000 sampling rounds is shown in Fig. 2(left) with

perturbation variance 0.01.

Results show that BNNs always have larger output varia-

tion, suggesting that they are more susceptible to input per-

turbation, and BNN does worse than QNN that has more bits.

We also observe that having more bits on activations actually

improves BNN’s robustness significantly, while having more

bits on weights has smaller improvement (Fig. 2(left, right)).

Trained Network Setting. To further consolidate the dis-

covery, we also train a real-valued DNN fr and a BNN fb
using XNOR-Net [50] rather than direct sampling. We also

include our designed BENN fbenn in comparison. Then we

perform the same Gaussian input perturbation ∆x, run a

forward pass, and calculate the change of classification error

L on CIFAR-10 as:

E∆x||L(f(x+∆x))− L(f(x))||2 (2)

Results in Fig. 2(middle) indicates that BNNs are still more

sensitive to noises even if it is well optimized. Although peo-

ple have shown that weights in BNN still have nice statistical

properties as in [1], the conclusion can change dramatically

if both weights and activations are binarized while input is

perturbed.

Stability Issue: BNNs are known to be hard to opti-

mize due to problems such as gradient mismatch and non-

smoothness of activation function. While [40] has shown

that stochastic rounding converges to within O(∆) accuracy

of the minimizer in expectation where ∆ denotes quantiza-

tion resolution, assuming the error surface is convex, the

community has not fully understood the non-convex error

surface of BNN and how it interacts with different optimizers

such as SGD or ADAM [37].

To compare the stability of different networks (sensitivity

to network parameter during optimization), we measure the

accuracy fluctuation after a large amount of training steps.

Fig. 2 (right) shows the accuracy oscillation in the last 20

training steps after we train BNN and QNN with 300 epochs,

and results show that we should at least have QNN with

weights and activations both 4-bit in order to stabilize the

network.

One explanation of such instability is the non-smoothness

of the function output w.r.t. the binary network parameters.

Note that, as the output of the activation function in the

previous layer, the input to each layer of BNNs are binarized

numbers. In other words, not only each function is non-

smooth w.r.t. the input, but also it is non-smooth w.r.t. the

learned parameters. As a comparison, empirically, BENN

with 5 and 32 ensembles (denoted as BENN-05/32 in Fig. 2)

have already achieved amazing stability.

4. Binary Ensemble Neural Network

In this section, we illustrate our BENN using bagging

and boosting strategies, respectively. In all experiments,

we adopt the widely used deterministic binarization as

xb = Sign(x) for network weights and activations, which

is preferred to leverage hardware accelerations. However,

back-propagation becomes challenging since the derivative

is zero almost everywhere except for the stepping point. In

this work, we borrow the common strategy called “straight-

through estimator” (STE) [28] during back-propagation, de-

fined as ∂J
∂x

= ∂J
∂xb

I|x|≤1.

4.1. BENNBagging

The key idea of bagging is to average weak classifiers that

are trained from i.i.d. samples of the training set. To train

34925

Figure 2. Left: BNN has large output variation (robustness issue). Middle: BNN has large variation of prediction accuracy (robustness issue).

Right: BNN has large test accuracy variation during training (instability issue). BENN can cure these problems. Here, the perturbation

variance is 0.01. (*QNN-W1A2 denotes QNN with 1-bit weights and 2-bit activations and so do others.)

each BNN classifier, we sample M examples independently

with replacement from the training set D. We do this K
times to get K BNNs, denoted as b1, ..., bK . The sampling

with replacement assures that each BNN sees roughly 63%
of the entire training set.

At test time, we aggregate the opinions from these K
classifiers and decide among C classes. We compare two

ways of aggregating the outputs. One is to choose the label

that most BNNs agree with (hard decision), while the other

is to choose the best label after aggregating their softmax

probabilities (soft decision).

The main advantage brought by bagging is to reduce the

variance of a single classifier. This is known to be extremely

effective for deep decision trees which suffer from high vari-

ance, but only marginally helpful to boost the performance

of neural networks, since networks are generally quite stable.

Interestingly, though less helpful to real-valued networks,

bagging is effective to improve BNNs since the instability is-

sue is severe for BNNs due to gradient mismatch and strong

discretization noise as stated in Sec. 3.

4.2. BENNBoosting

Boosting is another important tool to ensemble classifiers.

Instead of just aggregating the predictions from multiple

independently trained BNNs, boosting combines multiple

weak classifiers in a sequential manner and can be viewed

as a stage-wise gradient descent method optimized in the

function space. Boosting is able to reduce both bias and

variance of individual classifiers.

There are many variants of boosting algorithms and we

choose the AdaBoost [15] algorithm for its popularity. Sup-

pose classifier k has hypothesis bk : X → R, weight αk, and

output distribution pk, we can denote the aggregated classi-

fier as BK : X → R and its aggregated output distribution

PK . Then AdaBoost minimizes the following exponential

loss:

J(BK) =
∑

i

e−Y TPK

=
∑

i

e−Y T (PK−1+αkp
K)

where Y = (y1, ..., yC)
T and i denotes the index of the

training example.

Reweighting Principle The key idea of boosting algo-

rithm is to have the current classifier pay more attention to

the misclassified samples by previous classifiers. Reweight-

ing is the most common way of budgeting attention based

on the historical results. There are essentially two ways to

accomplish this goal:

• Reweighting on sampling probabilities: Suppose initially

each training example i is assigned π = ui = 1/M
uniformly, so each sample gets equal chance to be picked.

After each round, we reweight the sampling probability

according to the classification confidence.

• Reweighting on loss/gradient: We may also incorpo-

rate ui into the gradient, so that a BNN bk updates pa-

rameters with larger step size on misclassified exam-

ples and vice versa. For example, set ∇wJ(b
k) ←

λ · (αkp
k
y)(ui) · ∇wJ(b

k), where λ is the learning rate.

However, we observe that this approach is less effec-

tive experimentally for BNNs, and we conjecture that it

exaggerates the gradient mismatch problem.

4.3. InferenceTime Complexity

A 1-bit BNN with the same connectivity as the origi-

nal full-precision 32-bit DNN can save ∼ 32x memory. In

reality, BNN can achieve ∼ 58x speed up on the current

generation of 64-bit CPUs [50] and may be further improved

with special hardware such as FPGA. Some existing works

only binarize the weights but leave activations full-precision,

which practically only results in & 2x speed up. As for

BENN with K ensembles, each BNN’s inference is inde-

pendent, thus the total memory saving is ∼ 32/Kx. As for

boosting, we can further compress BNN to save more com-

putations and memory usage. Besides, existing approaches

have complexity O(K2) with K-bit QNN [65] or use K bi-

nary bases [43], because they cannot avoid the bit collection

operation to generate a number, although their fixed-point

computation is much more efficient than float-point computa-

tion. If O(1) is the time complexity of the boolean operation,

then BENN reduces the quadratic complexity to linear, i.e.,

O(K) with K ensembles but still maintains the very satis-

fying accuracy and stability as stated above. We can even

44926

make the inference in O(1) for BENN if multiple threads

are supported. A complete comparison is shown in Table 1.

4.4. Stability Analysis

Given a full-precision real valued DNN fw with a set

of parameters w ∼ N(0, σ2
w), a BNN fwb

with binarized

parameters wb, input vector x ∼ N(0, 1) (after Batch Nor-

malization) and perturbation ∆x ∼ N(0, σ2), and a BENN

fwbenn
with K ensembles, we want to compare their stability

and robustness w.r.t. the network parameters and input per-

turbation. Here we analyze the variance of output change

before and after perturbation, which echoes Eq. 1 in Sec. 3.

This is because the output change has zero mean and its

variance reflects the distribution of output variation. More

specifically, larger variance means increased variation of

output w.r.t. input perturbation.

Assume fw, fwb
, fwbenn

are outputs before non-linear ac-

tivation function of a single neuron in an one-layer net-

work, we have the output variation of real-value DNN as

fw(x + ∆x) − fw(x) = w ⊙ ∆x, whose distribution has

variance σ2
r = |w|σ2

wσ
2, where |w| denotes number of input

connections for this neuron and ⊙ denotes inner product.

Some modern non-linear activation function g(·) like ReLU

will not change the inequality of variances, thus we can omit

them in the analysis to keep it simple.

For BNN with both weights and activations binarized,

we can rewrite the above formulation as f b
wb
(x + ∆x) −

f b
wb
(x) = sign(w) ⊙ [sign(x + ∆x) − sign(x)], thus hav-

ing variance σ2
bnn = |w|σ2

sign(w)(σ
2
sign(x+∆x)−sign(x)). And

for BENN-Bagging, we have σ2
benn = σ2

bnn/K with K en-

sembles, since bagging effectively reduces variance. For

BENN-Boosting, our model can reduce both bias and vari-

ance at the same time. However for boosting, the analysis on

bias and variance becomes much more difficult and there are

still some debates in literature [7, 17]. With these Gaussian

assumptions and some numerical experiments (detailed anal-

ysis and theorems can be found in supplementary material),

we can verify the large stability gain of BENN over BNN

compared with floating-number DNN. As for robustness, the

same analysis principle can be applied to perturbing weights

as ∆w compared with ∆x used in stability analysis.

5. Independent and Warm-Restart Training

for BENNs

We train our BENN with two different methods. The first

one is to initialize each new classifier independently and re-

train it, which is a traditional way. To accelerate the training

of new weak classifier in BENN, we can also initialize the

weights of the new classifier by cloning the weights from

the most recently trained classifier. We name this training

scheme as warm-restart training, and we conjecture that the

knowledge of those unseen data for the new classifier has

been transferred from the inherited weights and is helpful

to increase the discriminability of the new classifier. Inter-

estingly, we observe that for small network and dataset like

Network-In-Network [42] on CIFAR-10, warm-restart train-

ing has better accuracy. However, independent training is

better when BENN is applied to large network and dataset

such as AlexNet [38] and ResNet [27] on ImageNet since

overfitting problem emerges. More discussion can be found

in Sec. 6 and Sec. 7.

Implementation Details We train BENN on the image

classification task with CNN block structure containing a

batch normalization layer, a binary activation layer, a bi-

nary convolution layer, a non-binary activation layer (e.g.,

sigmoid, ReLU), and a pooling layer, as used by many re-

cent works [50, 65]. To compute the gradient of step func-

tion sign(x), we use the same approach suggested by STE.

When updating parameters, we use real-valued weights as

[50] suggests otherwise the tiny update could be killed by

deterministic binarization and training cannot move on. In

this work, we train each BNN using standard independent

and warm-restart training. Unlike the previous works which

always keep the first and last layer full-precision, we test 7

different BNN architecture configurations as shown in Ta-

ble 2 and use them as ingredients for ensemble in BENN.

6. Experimental Results

We evaluate BENN on CIFAR-10 and ImageNet datasets

with a self-designed compact Network-In-Network (NIN)

[42], the standard AlexNet [38] and ResNet-18 [27], respec-

tively. We have summarized in Table 2 the configurations

of all BNN variants. More detailed specifications of the

networks can be found in the supplementary material. For

each type of BNN, we obtain the converged single BNN

when training is done. We also store BNN after each train-

ing step and obtain the best BNN along the way by picking

the one with the highest test accuracy (e.g., Best SB). We

use BENN-T-R to denote the BENN by aggregating R BNNs

of configuration T (e.g., BENN-SB-32). We also denote

Bag/Boost-Indep and Bag/Boost-Seq as bagging/boosting

with standard independent training and warm-restart sequen-

tial training (Sec. 5). All ensembled BNNs share the same

network architecture as their real-valued DNN counterpart

in this paper, although studying multi-model ensemble is an

interesting future work. The code of all our experiments will

be made public online.

6.1. Insights Generated from CIFAR10

In this section, we show the large performance gain using

BENN on CIFAR-10 and summarize some insights. Each

BNN is initialized by a pre-trained model from XNOR-Net

[50] and then retrained by 100 epochs to reach convergence

before ensemble. Each full-precision DNN counterpart is

trained by 300 epochs to obtain the best accuracy for refer-

ence. The learning rate is set to 0.001 and ADAM optimizer

54927

Table 1. Analysis of Theoretically Computational Complexity on a Single Network. (F-full-precision, Qk-k-bit quantization, B-binary)

Network Weights Activation Operations Memory Saving Computation Saving

Standard DNN F F +, -, × 1 1

[10, 33, 39, 66, 64],... B F +, - ∼ 32x ∼ 2x

[65, 32, 61, 2],... Qk Qk +, -, × ∼ 32

k
x < 58

k2
x

[43],... k × B k × B +, -, XNOR, bitcount ∼ 32

k
x ∼ 58

k2
x

[50] and ours B B XNOR, bitcount ∼ 32x ∼ 58x

Table 2. Weak BNN Configurations Used to Ensemble (W-weights, A-activation, Params-number of parameters in network). The Last Two

are Naive Compressed Network.

Weak BNN Configuration/Type (T) Weight Activation Size Params

SB (Semi-BNN) First and last layer:32-bit First and last layer:32-bit 100% 100%

AB (All-BNN) All layers:1-bit All layers:1-bit 100% 100%

WQB (Weight-Quantized-BNN) All layers:Q-bit All layers:1-bit 100% 100%

AQB (Activation-Quantized-BNN) All layers:1-bit All layers:Q-bit 100% 100%

IB (Except-Input-BNN) All layers:1-bit First layer: 32-bit 100% 100%

SB/AB/IB-Tiny (Tiny-Compress-BNN) - - 50% 25%

SB/AB/IB-Nano (Nano-Compress-BNN) - - 10% 1%

Table 3. Oscillation During Training (Instability)

Network Ensemble Method #Ensemble STD

SB - 1 2.94

Best SB - 1 1.40

BENN-SB Bag-Seq 5 0.31

BENN-SB Boost-Seq 5 0.24

BENN-SB Bag-Seq 32 0.03

BENN-SB Boost-Seq 32 0.02

is used. Here, we use a compact Network-In-Network (NIN)

for CIFAR-10. We first present some significant independent

comparisons as follows and then summarize the insights we

found.

Single BNN versus BENN: We found that BENN can

achieve much better accuracy and stability than a single

BNN with negligible sacrifice in speed. Experiments across

all BNN configurations show that BENN has the accuracy

gain ranging from 4.21% to 24.16% over BNN on CIFAR-

10. If each BNN is weak (e.g., AB), the gain of BENN

will increase as shown in Fig. 3 (right). This verifies that

BNN is indeed a good weak classifier for ensembling. Sur-

prisingly, BENN-SB outperforms full-precision DNN after

32 ensembles (either bagging or boosting) by up to 1.52%
(Fig. 3 (left)). Note that in order to have the same memory

usage as a 32-bit DNN, we constrain the ensemble up to

32 rounds if no network compression is involved. If more

ensembles are available, we observe further performance

boost but accuracy gain will eventually become flat.

We also compare BENN-SB-5 (i.e., 5 ensembles) with

WQB (Q=5, 5-bit weight and 1-bit activation), which have

the same amount of parameters (measured by bits). WQB

can only achieve∼ 80% accuracy unstably while our ensem-

ble network can reach up to ∼ 86% and remain stable.

We also measure the accuracy variation of the classifier

in the last 20 training steps for all BNN configurations. The

results in Table 3 indicate that BENN can reduce BNN’s

variance by ∼ 90% if ensemble 5 rounds and ∼ 99% after

32 rounds. Moreover, picking the best BNN with the highest

test accuracy instead of using the BNN when training is done

Table 4. Impact of Network Compression

Network Ensemble Method #Ensemble Accuracy

Best SB - 1 84.91%

BENN-SB Bag-Seq 32 89.12%

BENN-SB Boost-Seq 32 89.00%

Best SB-Tiny - 1 77.20%

BENN-SB-Tiny Bag-Seq 32 84.09%

BENN-SB-Tiny Boost-Seq 32 84.32%

Best SB-Nano - 1 40.70%

BENN-SB-Nano Bag-Seq 500 57.12%

BENN-SB-Nano Boost-Seq 500 63.11%

can also reduce the oscillation. This is because the statistical

property of ensemble framework (Sec. 3 and Sec. 4.4) makes

BENN become a graceful way to ensure high stability.

Bagging versus boosting: It is known that bagging can

only reduce the variance of the predictor, while boosting

can reduce both bias and variance. Fig. 3(right), Fig. 4, and

Table 4 show that boosting outperforms bagging, especially

after BNN is compressed, by up to 2.51% when network size

is reduced to 50% (Tiny config) and 13.38% when network

size is reduced to 10% (Nano config), and the gain increases

from 5 to 32 ensembles. This verifies that boosting is a better

choice if the model does not overfit much.

Standard independent training versus warm-restart

training: Standard ensemble techniques use independent

training, while warm-restart training enable new classifiers to

learn faster. Fig. 3 (left) shows that warm-restart training per-

forms better up to 3.9% for bagging and 2.95% for boosting

after the same number of training epochs. This means gradu-

ally adapting to more examples might be a better choice for

CIFAR-10. However, this does not hold for ImageNet task

because of slight over-fitting with warm-restart (Sec. 6.2).

We believe that this is an interesting phenomenon but it needs

more justification by studying the theory of convergence.

The impact of compressing BNN: BNN’s model com-

plexity largely affects bias and variance. If each weak BNN

has enough complexity with low bias but high variance, then

bagging is more favorable than boosting due to simplicity.

64928

Best SBNN

BENN-SBNN-5

BENN-SBNN-32

Bag-Indep Boost-IndepBag-Seq Boost-Seq

Best EBNN BENN-EBNN-32

BENN-EBNN-5

Bag-Seq Boost-Seq

Best SB

BENN-SB-5

BENN-SB-32 Best AB

SB Config AB Config

BENN-AB-32

BENN-AB-5

Figure 3. Left: BENN can increase the test accuracy significantly with more ensembles. It can even achieve better accuracy than its

full-precision counterpart under Semi-BNN (SB) case. Right: Boosting strongly outperforms bagging in All-BNN (AB) case where each

BNN has larger bias.

Bag-Seq Boost-Seq

BENN-EBNN-32

BENN-IBNN-32

BENN-QBNN-32

BENN-SBNN-32

BENN-AB-32

BENN-IB-32

BENN-AQB-32

BENN-SB-32

Figure 4. After ensemble, the accuracy increases with more ac-

tivation bits (Q=2 in AQB). Preserving the first and/or last layer

full-precision (IB and SB) helps, compared with all-binary case

(AB).

However, if each BNN’s size is small with large bias, boost-

ing becomes a much better choice. To verify this, we com-

press each BNN in Table 2 by naively reducing the amount

of channels and neurons in each layer. The results in Table 4

show that BENN-SB can maintain reasonable performance

even after naive compression, and boosting gains more over

bagging in severe compression (Nano config).

We also found that BENN is less sensitive to network

size. Table 4 shows that compression reduces single BNN’s

accuracy by 7.71% (Tiny config) and 44.21% (Nano config).

After 32 ensembles, the performance loss caused by compres-

sion decreases to 4.8% and 26.01% respectively. Surpris-

ingly, we observe that compression only reduces the accuracy

of full-precision DNN by 1.18% (Tiny config) and 16.03%
(Nano config). So it is necessary to have not-too-weak BNNs

to build BENN that can compete with full-precision DNN.

Better pruning algorithm can be combined with BENN in

the future rather than naive compression to allow smaller

network to be ensembled.

The effect of bit width: Higher bitwidth results in lower

variance and bias at the same time. This can be seen in

Fig. 4 where we make activations 2-bit in BENN-AQB (Q=2).

As can be seen, BENN-AQB (Q=2) and BENN-IB have

comparable accuracy after 32 ensembles, but much better

than BENN-AB and worse than BENN-SB. We also observe

that activation binarization results in much more unstable

model than weight binarization. This indicates that the gain

of having more bits is mostly due to better features from the

input image, since input binarization is a real pain for neural

networks. Surprisingly, BENN-AB can still achieve more

than 80% accuracy under such a pain.

The effect of binarizing first and last layer: Almost

all the existing works in BNN assume the full precision

of the first and last layer, since binarization on these two

layers will cause severe accuracy degradation. But we found

BENN is less affected, as shown by BENN-AB, BENN-SB

and BENN-IB in Fig. 4. The BNN’s accuracy loss due to

binarizing these two special layers is 3.98% ∼ 11.9%. For

BENN with 32 ensembles, the loss reduces to 2.36% ∼
6.98%.

In summary, we generate our main insights about BNN

and BENN: (1) Ensemble such as bagging and boosting

greatly relieve BNN’s problems in terms of representation

power, stability, and robustness. (2) Boosting gains advan-

tage over bagging in most cases, and warm-restart training

is often a better choice. (3) Weak BNN’s configuration (i.e.,

size, bitwidth, first and last layer) is essential to build a well-

functioning BENN to match full-precision DNN in practice.

6.2. Exploration on Applying BENN to ImageNet
Recognition

We believe BENN is one of the best neural network struc-

tures for inference acceleration. To demonstrate the effective-

ness of BENN, we compare our algorithm with state-of-the-

arts on the ImageNet recognition task (ILSVRC2012) using

AlexNet [38] and ResNet-18 [27]. Specifically, we com-

pare our BENN-SB independent training (Sec. 5) with the

full-precision DNN [38, 50], DoReFa-Net (k-bit quantized

weight and activation) [65], XNOR-Net (binary weight and

activation) [50], BNN (binary weight and activation) [31]

74929

Table 5. Comparison with state-of-the-arts on ImageNet using

AlexNet (W-weights, A-activation)

Method W A Top-1

Full-Precision DNN [38, 50] 32 32 56.6%

XNOR-Net [50] 1 1 44.0%

DoReFa-Net [65] 1 1 43.6%

BinaryConnect [10, 50] 1 32 35.4%

BNN [31, 50] 1 1 27.9%

BENN-SB-3, Bagging (ours) 1 1 48.8%

BENN-SB-3, Boosting (ours) 1 1 50.2%

BENN-SB-6, Bagging (ours) 1 1 52.0%

BENN-SB-6, Boosting (ours) 1 1 54.3%

Table 6. Comparison with state-of-the-arts on ImageNet using

ResNet-18 (W-weights, A-activation)

Method W A Top-1

Full-Precision DNN [27, 43] 32 32 69.3%

XNOR-Net [50] 1 1 48.6%

ABC-Net [43] 1 1 42.7%

BNN [31, 50] 1 1 42.2%

BENN-SB-3, Bagging (ours) 1 1 53.4%

BENN-SB-3, Boosting (ours) 1 1 53.6%

BENN-SB-6, Bagging (ours) 1 1 57.9%

BENN-SB-6, Boosting (ours) 1 1 61.0%

and BinaryConnect (binary weight) [10]. Note that accuracy

of BNN and BinaryConnect on AlexNet are reported by [50]

instead of original authors. For DoReFa-Net and ABC-Net,

we use the best reported accuracy by original authors with

1-bit weight and 1-bit activation. For XNOR-Net, we re-

port the number of our own retrained model. Our BENN is

retrained given a well pre-trained model until convergence

by XNOR-Net after 100 epochs to use, and we retrain each

BNN with 80 epochs before ensemble. As shown in Table 5

and 6, BENN-SB is the best among all the state-of-the-art

BNN architecture, even with only 3 ensembles paralleled on

3 threads. Meanwhile, although we do observe continuous

gain with more ensembles, we found that BENN with more

ensembles on ImageNet task can be unstable in terms of

accuracy and needs further investigation on overfitting issue,

otherwise the rapid gain is not always guaranteed. Here we

report the numbers where the performance is stable, although

we do observe even better performance sometimes. We be-

lieve our intitial exploration along this direction has shown

BENN’s potentiality of catching up full-precision DNN and

even surpass it with more base BNN classifiers. In fact, how

to optimize BENN on large and diverse dataset is still an

interesting open problem.

7. Discussion
More bits per network or more networks per bit? We

believe this paper brings up this important question. As for

biological neural networks such as our brain, the signal be-

tween two neurons is more like a spike instead of high-range

real-value signal. This implies that it may not be necessary to

use real-valued numbers, while involve a lot of redundancies

and can waste significant computing power. Our work con-

verts the direction of ‘how many bits per network is enough?’

into ‘how many networks per bit?’. BENN provides a hi-

erarchical view, i.e., we build weak classifiers by groups

of neurons, and build a strong classifier by ensembling the

weak classifiers. We have shown that this hierarchical ap-

proach is more intuitive and natural to represent knowledge.

Although the optimal ensemble structure is beyond the scope

of this paper, we believe that some structure searching or

meta-learning techniques can be applied. Moreover, the im-

provement on single BNN such as studying the error surface

and resolving the curse of activation/gradient binarization is

still essential for the success of BENN.

BENN is hardware friendly: Using BENN with K en-

sembles is better than using one K-bit classifier. Firstly,

K-bit quantization still cannot get rid of fixed-point multipli-

cation, while BENN can support bitwise operation. People

have found that BNN can be further accelerated on FPGAs

over modern CPUs [63, 18]. Secondly, people have shown

that the complexity of a multiplier is proportional to the

square of bitwidth, thus BENN simplifies the hardware de-

sign. Thirdly, BENN can use spike signals in the chips

instead of keeping the signal real-valued all the time, which

can save a lot of energy. Finally, unlike recent literature

requiring quadratic time to compute, BENN can be better

paralleled on the chips due to its linear time complexity. In

fact, we have implemented our BENN (SB model) on Xil-

inx Zynq XCZU7EV FPGA boards, achieved up to ∼200x

fold improvement over CPU measured by GOPS/Watt with

computation reusing strategies.

Current limitations: It is known to all that ensemble

methods can potentially cause overfitting to the model and

we also observed similar problems on CIFAR-10 and Ima-

geNet, when the number of ensembles keeps increasing. An

interesting next step is to analyze the property of decision

boundary of BENN on different datasets and track its evolu-

tion in high-dimensional feature space. Also, training will

take longer time if many ensembles are needed (especially

on large dataset like ImageNet), thus reducing the speed of

design iterations, although our training can be easily scaled

with GPUs. Finally, BENN needs to be further optimized for

large networks such as AlexNet and ResNet in order to show

its full power, such as picking the best ensemble rule and

base classifier. Modern advanced variants of the ensemble

techniques can be incorporated into BENN as well.

8. Conclusion

In this paper, we proposed BENN, a novel neural network

architecture which marries BNN with ensemble methods.

The experiments showed a large performance gain in terms

of accuracy, robustness, and stability. Our experiments also

reveal some insights about trade-offs on bit width, network

size, number of ensembles, etc. We believe that by leverag-

ing specialized hardware such as FPGA and more advanced

modern ensemble techniques with less overfitting, BENN

can be a new dawn for deploying large deep neural networks

into mobile and embedded systems.

84930

References

[1] A. G. Anderson and C. P. Berg. The high-dimensional

geometry of binary neural networks. arXiv preprint

arXiv:1705.07199, 2017. 3

[2] S. Anwar, K. Hwang, and W. Sung. Fixed point optimization

of deep convolutional neural networks for object recognition.

In Acoustics, Speech and Signal Processing (ICASSP), 2015

IEEE International Conference on, pages 1131–1135. IEEE,

2015. 6

[3] Y. Bengio, N. Léonard, and A. Courville. Estimating or prop-

agating gradients through stochastic neurons for conditional

computation. arXiv preprint arXiv:1308.3432, 2013.

[4] O. Bousquet and A. Elisseeff. Stability and generalization.

Journal of machine learning research, 2(Mar):499–526, 2002.

3

[5] L. Breiman. Bagging predictors. Machine learning,

24(2):123–140, 1996. 2

[6] L. Breiman. Bias, variance, and arcing classifiers. 1996. 2

[7] P. Bühlmann and T. Hothorn. Boosting algorithms: Regu-

larization, prediction and model fitting. Statistical Science,

pages 477–505, 2007. 5

[8] Z. Cai, X. He, J. Sun, and N. Vasconcelos. Deep learning

with low precision by half-wave gaussian quantization. arXiv

preprint arXiv:1702.00953, 2017. 2

[9] J. G. Carney, P. Cunningham, and U. Bhagwan. Confidence

and prediction intervals for neural network ensembles. In

Neural Networks, 1999. IJCNN’99. International Joint Con-

ference on, volume 2, pages 1215–1218. IEEE, 1999. 2

[10] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect:

Training deep neural networks with binary weights during

propagations. In Advances in neural information processing

systems, pages 3123–3131, 2015. 2, 6, 8

[11] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks: Training deep neural

networks with weights and activations constrained to+ 1 or-1.

arXiv preprint arXiv:1602.02830, 2016. 2

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

Computer Vision and Pattern Recognition, 2009. CVPR 2009.

IEEE Conference on, pages 248–255. IEEE, 2009. 2

[13] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li. Gated xnor net-

works: Deep neural networks with ternary weights and activa-

tions under a unified discretization framework. arXiv preprint

arXiv:1705.09283, 2017. 2

[14] P. Domingos. A unified bias-variance decomposition. In

Proceedings of 17th International Conference on Machine

Learning, pages 231–238, 2000.

[15] Y. Freund and R. E. Schapire. A desicion-theoretic gener-

alization of on-line learning and an application to boosting.

In European conference on computational learning theory,

pages 23–37. Springer, 1995. 2, 4

[16] Y. Freund, R. E. Schapire, et al. Experiments with a new

boosting algorithm. In Icml, volume 96, pages 148–156. Bari,

Italy, 1996.

[17] J. Friedman, T. Hastie, R. Tibshirani, et al. Additive logistic

regression: a statistical view of boosting (with discussion

and a rejoinder by the authors). The annals of statistics,

28(2):337–407, 2000. 2, 5

[18] C. Fu, S. Zhu, H. Su, C.-E. Lee, and J. Zhao. Towards fast

and energy-efficient binarized neural network inference on

fpga. arXiv preprint arXiv:1810.02068, 2018. 8

[19] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing

deep convolutional networks using vector quantization. arXiv

preprint arXiv:1412.6115, 2014. 2

[20] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna. Analysis

of high-performance floating-point arithmetic on fpgas. In

Parallel and Distributed Processing Symposium, 2004. Pro-

ceedings. 18th International, page 149. IEEE, 2004. 1

[21] Y. Guo, A. Yao, H. Zhao, and Y. Chen. Network sketching:

Exploiting binary structure in deep cnns. arXiv preprint

arXiv:1706.02021, 2017. 2

[22] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan.

Deep learning with limited numerical precision. In Interna-

tional Conference on Machine Learning, pages 1737–1746,

2015.

[23] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quantiza-

tion and huffman coding. arXiv preprint arXiv:1510.00149,

2015. 2

[24] S. Han, Z. Meng, A.-S. Khan, and Y. Tong. Incremental

boosting convolutional neural network for facial action unit

recognition. In Advances in Neural Information Processing

Systems, pages 109–117, 2016. 2

[25] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In Advances

in neural information processing systems, pages 1135–1143,

2015.

[26] T. Hastie, S. Rosset, J. Zhu, and H. Zou. Multi-class adaboost.

Statistics and its Interface, 2(3):349–360, 2009. 2

[27] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 770–778,

2016. 2, 5, 7, 8

[28] G. Hinton. Neural networks for machine learning. In Cours-

era, 2012. 3

[29] K. Hornik, M. Stinchcombe, and H. White. Multilayer feed-

forward networks are universal approximators. Neural net-

works, 2(5):359–366, 1989. 3

[30] F. Huang, J. Ash, J. Langford, and R. Schapire. Learning

deep resnet blocks sequentially using boosting theory. arXiv

preprint arXiv:1706.04964, 2017. 2

[31] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks. In Advances in neural

information processing systems, pages 4107–4115, 2016. 1,

2, 7, 8

[32] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio. Quantized neural networks: Training neural net-

works with low precision weights and activations. arXiv

preprint arXiv:1609.07061, 2016. 2, 6

94931

[33] K. Hwang and W. Sung. Fixed-point feedforward deep neural

network design using weights+ 1, 0, and- 1. In Signal Pro-

cessing Systems (SiPS), 2014 IEEE Workshop on, pages 1–6.

IEEE, 2014. 6

[34] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and< 0.5 mb model size. arXiv

preprint arXiv:1602.07360, 2016.

[35] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015.

[36] M. Kim and P. Smaragdis. Bitwise neural networks. arXiv

preprint arXiv:1601.06071, 2016.

[37] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014. 3

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 1, 2, 5, 7, 8

[39] F. Li, B. Zhang, and B. Liu. Ternary weight networks. arXiv

preprint arXiv:1605.04711, 2016. 6

[40] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein.

Training quantized nets: A deeper understanding. In Advances

in Neural Information Processing Systems, pages 5813–5823,

2017. 2, 3

[41] D. Lin, S. Talathi, and S. Annapureddy. Fixed point quan-

tization of deep convolutional networks. In International

Conference on Machine Learning, pages 2849–2858, 2016. 2

[42] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv

preprint arXiv:1312.4400, 2013. 2, 5

[43] X. Lin, C. Zhao, and W. Pan. Towards accurate binary convo-

lutional neural network. In Advances in Neural Information

Processing Systems, pages 344–352, 2017. 2, 4, 6, 8

[44] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio.

Neural networks with few multiplications. arXiv preprint

arXiv:1510.03009, 2015.

[45] M. Moghimi, S. J. Belongie, M. J. Saberian, J. Yang, N. Vas-

concelos, and L.-J. Li. Boosted convolutional neural networks.

In BMVC, 2016. 2

[46] J. Ott, Z. Lin, Y. Zhang, S.-C. Liu, and Y. Bengio. Recurrent

neural networks with limited numerical precision. arXiv

preprint arXiv:1608.06902, 2016.

[47] N. C. Oza and S. Russell. Online ensemble learning. Univer-

sity of California, Berkeley, 2001. 2

[48] E. Park, J. Ahn, and S. Yoo. Weighted-entropy-based quan-

tization for deep neural networks. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017. 2

[49] A. Polino, R. Pascanu, and D. Alistarh. Model com-

pression via distillation and quantization. arXiv preprint

arXiv:1802.05668, 2018. 2

[50] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. In European Conference on Computer Vision,

pages 525–542. Springer, 2016. 2, 3, 4, 5, 6, 7, 8

[51] R. E. Schapire. The boosting approach to machine learning:

An overview. In Nonlinear estimation and classification,

pages 149–171. Springer, 2003. 2

[52] R. E. Schapire. Explaining adaboost. In Empirical inference,

pages 37–52. Springer, 2013. 2

[53] R. E. Schapire and Y. Singer. Improved boosting algo-

rithms using confidence-rated predictions. Machine learning,

37(3):297–336, 1999. 2

[54] D. Soudry, I. Hubara, and R. Meir. Expectation backpropaga-

tion: Parameter-free training of multilayer neural networks

with continuous or discrete weights. In Advances in Neural

Information Processing Systems, pages 963–971, 2014.

[55] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neural

networks from overfitting. The Journal of Machine Learning

Research, 15(1):1929–1958, 2014.

[56] W. Sung, S. Shin, and K. Hwang. Resiliency of

deep neural networks under quantization. arXiv preprint

arXiv:1511.06488, 2015. 2

[57] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, A. Rabinovich, et al. Going deeper

with convolutions. Cvpr, 2015. 1

[58] W. Tang, G. Hua, and L. Wang. How to train a compact

binary neural network with high accuracy? In AAAI, pages

2625–2631, 2017. 2

[59] L. G. Valiant. A theory of the learnable. Communications of

the ACM, 27(11):1134–1142, 1984. 2

[60] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus.

Regularization of neural networks using dropconnect. In

International Conference on Machine Learning, pages 1058–

1066, 2013.

[61] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized

convolutional neural networks for mobile devices. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4820–4828, 2016. 2, 6

[62] H. Xu and S. Mannor. Robustness and generalization. Ma-

chine learning, 86(3):391–423, 2012. 3

[63] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Sri-

vastava, R. Gupta, and Z. Zhang. Accelerating binarized

convolutional neural networks with software-programmable

fpgas. In Proceedings of the 2017 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, pages 15–

24. ACM, 2017. 1, 8

[64] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental net-

work quantization: Towards lossless cnns with low-precision

weights. arXiv preprint arXiv:1702.03044, 2017. 2, 6

[65] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-

net: Training low bitwidth convolutional neural networks with

low bitwidth gradients. arXiv preprint arXiv:1606.06160,

2016. 2, 4, 5, 6, 7, 8

[66] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary

quantization. arXiv preprint arXiv:1612.01064, 2016. 2, 6

104932

