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Abstract

To reduce memory footprint and run-time latency, tech-

niques such as neural network pruning and binarization have

been explored separately. However, it is unclear how to com-

bine the best of the two worlds to get extremely small and

efficient models. In this paper, we, for the first time, de-

fine the filter-level pruning problem for binary neural net-

works, which cannot be solved by simply migrating exist-

ing structural pruning methods for full-precision models. A

novel learning-based approach is proposed to prune filters

in our main/subsidiary network framework, where the main

network is responsible for learning representative features

to optimize the prediction performance, and the subsidiary

component works as a filter selector on the main network.

To avoid gradient mismatch when training the subsidiary

component, we propose a layer-wise and bottom-up scheme.

We also provide the theoretical and experimental compari-

son between our learning-based and greedy rule-based meth-

ods. Finally, we empirically demonstrate the effectiveness

of our approach applied on several binary models, includ-

ing binarized NIN, VGG-11, and ResNet-18, on various im-

age classification datasets. For binary ResNet-18 on Ima-

geNet, we use only 78.6% filters, achieving better test error

49.87% (= 50.02%− 0.15%) than the original model.

1. Introduction

Deep neural networks (DNN), especially deep convolu-

tion neural networks (DCNN), have made remarkable strides

during the last decade. From the first ImageNet Challenge

winner network, AlexNet, to the more recent state-of-the-

art, ResNet, we observe that DNNs are growing substan-

tially deeper and more complex. These modern deep neu-

ral networks have millions of weights, rendering them both

memory-intensive and computationally expensive. To reduce

the computational cost, the research into network acceleration

∗Equal Contribution

and compression emerges as an active field.

A family of popular compression methods are the DNN

pruning algorithms, which are not only efficient in both mem-

ory and speed, but also enjoy relatively simple procedure and

intuition. This line of research is motivated by the theoret-

ical analysis and empirical discovery that redundancy does

exist in both human brains and several deep models [8, 9].

We can categorize existing researches according to the level

of the object, such as connection (weights)-level pruning,

unit/channel/filter-level pruning, and layer-level pruning [30].

Connection-level pruning is the most widely studied ap-

proach, which produces sparse networks whose weights are

stored as sparse tensors. Although both the footprint mem-

ory and the I/O consumption are reduced [14], such methods

are often not helpful towards the goal of computation accel-

eration unless specifically-designed hardware is leveraged.

This is because the dimensions of the weight tensor remain

unchanged, though many entries are zeroed-out. As a well-

known fact, the MAC operations on random structured sparse

matrices are generally not too much faster than the dense

ones of the same dimension. In contrast, structural pruning

techniques [30], such as unit/channel/filter-level pruning, are

more hardware-friendly, since they aim to produce tensors of

reduced dimensions or having specific structures. Using these

techniques, it is possible to achieve both computation accel-

eration and memory compression on general hardware and is

common for deep learning frameworks.

We consider the structural network pruning problem for a

specific family of neural networks – binary neural networks.

A binary neural network is a compressed network of a general

deep neural network through the quantization strategy. Con-

volution operations in DCNN1 inherently involve matrix mul-

tiplication and accumulation (MAC). MAC operations be-

come much more energy efficient if we use low-precision

(1 bit or more) fixed-point number to approximate weights

and activation functions (i.e., to quantify neurons) [4]. To

1Fully connected layers can be implemented as convolution. Therefore,

in the rest of the paper, we mainly focus on convolutional layers.
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the extreme extent, the MAC operation can even be degen-

erated to Boolean operations, if both weights and activation

are binarized. Such binary networks have been reported to

achieve ∼58x computation saving and ∼32x memory saving

in practice. However, the binarization operation often intro-

duces noises into DNNs [21], thus the representation capacity

of DNNs will be impacted significantly, especially when we

also binarize the activation function. Consequently, binary

neural networks inevitably require larger model size (more

parameters) to compensate for the loss of representation ca-

pacity.

Although Boolean operation in binary neural networks is

already quite cheap, even smaller models are still highly de-

sired for low-power embedded systems, like smart-phones

and wearable devices in virtual reality applications. Even

though quantization (e.g., binarization) has significantly re-

duced the redundancy of each weight/neuron representation,

our experiment shows that there is still heavy redundancy in

binary neural networks, in terms of network topology. In fact,

quantization and pruning are orthogonal strategies to com-

press neural networks: Quantization decrease the precision

of parameters such as weights and activations, while pruning

trims the connections in neural networks so as to attain the

tightest network topology. However, previous studies on net-

work pruning are all designed for full-precision models and

cannot be directly applied for binary neural networks whose

both weights and activations are 1-bit numbers. For example,

it no longer makes any sense to prune filters by comparing

the magnitude or L1 norm of binary weights, and it is non-

sensical to minimize the distance between two binary output

tensors.

We, for the first time, define the problem of simplifying

binary neural networks and try to learn extremely efficient

deep learning models by combining pruning and quantization

strategies. Our experimental results demonstrate that filters

in binary neural networks are redundant and learning-based

pruning filter selection is constantly better than those existing

rule-based greedy pruning criteria (by weight magnitude or

L1 norm).

We propose a learning-based method to simplify binary

neural network with a main-subsidiary framework, where the

main network is responsible for learning representative fea-

tures to optimize the prediction performance, while the sub-

sidiary component works as a filter selector on the main net-

work to optimize the efficiency. The contributions of this pa-

per are summarized as follows:

• We propose a learning-based structural pruning method

for binary neural networks to significantly reduce the

number of filters/channels but still preserve the predic-

tion performance on large-scale problems like the Ima-

geNet Challenge.

• We show that our non-greedy learning-based method is

superior to the classical rule-based methods in selecting

which objects to prune. We design a main-subsidiary

framework to iteratively learn and prune feature maps.

Limitations of the rule-based methods and advantages of

the learning-based methods are demonstrated by theoret-

ical and experimental results. In addition, we also pro-

vide a mathematical analysis for L1-norm based meth-

ods.

• To avoid gradient mismatch of the subsidiary compo-

nent, we train this network in a layer-wise and bottom-up

scheme. Experimentally, the iterative training scheme

helps the main network to adopt the pruning of previous

layers and find a better local optimal point.

2. Related Work

2.1. Pruning

Deep Neural Network pruning has been explored in many

different ways for a long time. [15] proposed Optimal Brain

Surgeon (OBS) to measure the weight importance using the

second-order derivative information of loss function by Tay-

lor expansion. [11] further adapts OBS for deep neural net-

works and has reduced the retraining time. Deep Compres-

sion [14] prunes connections based on weight magnitude and

can achieve great compression ratio. The idea of dynamic

masks [12] is also used for pruning. Other approaches used

Bayesian methods and exploited the diversity of neurons to

remove weights [25, 24]. However, these methods focus on

pruning independent connection without considering group

information. Even though they harvest sparse connections, it

is still hard to attain the desired speedup on hardware.

To address the issues in connection-level pruning, re-

searchers proposed to increase the group-sparsity by apply-

ing sparse constraints to the channels, filters, and even lay-

ers [30, 1, 27, 2]. [17] used LASSO constraints and recon-

struction loss to guide network channel selection. [22] in-

troduced L1-Norm rank to prune filters, which reduces re-

dundancy and preserves the relatively important filters using

a greedy policy. [23] leverages a scaling factor from batch

normalization to pruning channels. To encourage the scal-

ing factor to be sparse, a regularization term is added to the

loss function. On one hand, methods mentioned above are

all designed for full-precision models and cannot be trivially

transferred to binary networks. For example, to avoid intro-

ducing any non-Boolean operations, batch normalization in

binary neural networks (like XNOR-Net) typically doesn’t

have scaling (γ) and shifting (β) parameters [4]. Since all

weights and activation only have two possible values {1,−1},
it is also invalid to apply classical tricks such as ranking filters

by their L1-Norms, adding a LASSO constraint, or minimiz-

ing the reconstruction error between two binary vectors. On

the other hand, greedy policies that ignore the correlations

between filters cannot preserve all important filters.
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Figure 1. Gradient flow of binary neural networks during back-propagation. Rectangles represent the weight tensor and ellipses represent

functional operation. In this paper, we use binary operation as a special quantization function. MAC is short for multiplication and accumulate

operations, or the equivalent substitution like XNOR [4] in BNN.

2.2. Quantization

Recent work shows that full precision computation is

not necessary for the training and inference of DNNs [13].

Weights quantization is thus widely investigated, e.g., to ex-

plore 16-bit [13] and 8-bit [10] fixed-point numbers. To

achieve higher compression and acceleration ratio, extremely

low-bit models like binary weights [6, 20] and ternary

weights[32, 31, 29] have been studied, which can remove

all the multiplication operations during computation. Weight

quantization has a relatively milder gradient mismatch issue

as analyzed in Section 3.1.2, and lots of methods can achieve

comparable accuracy with full-precision counterparts on even

large-scale tasks. However, the ultimate goal for quantization

networks is to replace all MAC operations by Boolean opera-

tions, which naturally desires that both activation and weights

are quantized, even binarized.

The activation function of quantized network has the

form of a step function, which is discontinuous and non-

differentiable. Gradient cannot flow through a quantized

activation function during back-propagation. The straight-

through estimator (STE) is widely adopted to circumvent this

problem, approximating the gradient of step function as 1 in

a certain range [18, 3]. [5] proposed the Half-wave Gaus-

sian Quantization (HWGQ) to further reduce the mismatch

between the forward quantized activation function and the

backward ReLU [26]. Binary Neural Networks (BNN) pro-

posed in [7] and [4] use only 1 bit for both activation func-

tions and weights, ending up with an extremely smaller and

faster network. BNNs inherit the drawback of acceleration

via quantization strategy and their accuracy also needs fur-

ther improving.

3. Approach

Let F i
b ∈ RNi×Hi×Wi denote binary input feature maps

of the i-th layer in an I-layer binary neural network, where

Ni, Hi, and Wi are the number of the input feature maps,

height, and width of the activation map, respectively. Kernel

weights W i
b ∈ RNi+1×Ni×Ki+1×Ki+1 in this layer are con-

volved with the input feature map F i
b into output feature map

F i+1
b . Because both weights and activations are binary, we

remove the subscripts of Fb and Wb for clarity. The goal of

pruning is to remove certain filters W i
n,:,:,:, n ∈ Ω, where Ω

is the indices of pruned filters. If a filter is removed, the cor-

responding output feature map of this layer (which is also the

input feature map of next layer) will be removed, too. Fur-

thermore, the input channels of all filters in the next layer

would become unnecessary. If all filters in one layer can be

removed, the filter-level pruning will upgrade to layer-level

pruning naturally. The goal of our method is to remove as

many filters as possible for binary neural networks which are

already compact and have inferior numerical properties, thus

this task is more challenging compared with pruning a full-

precision model.

3.1. Subsidiary Component And main Networks

We borrow the ideas from binary network optimization

to simplify binary networks. While it sounds tautological,

note that the optimization techniques were originally invented

to solve the quantization problem, but we will show that it

can be crafted to solve the pruning problem for binary net-

works. A new binary network, called subsidiary component,

acts as learnable masks to screen out redundant features in

the main network, which is the network to complete classifi-

cation tasks. Each update of the subsidiary component can be

viewed as the exploration in the mask search space. We try to

find a (local) optimal mask in that space with the help of the

subsidiary component.

The process of training subsidiary and main networks is as

follows:

3.1.1 Feature Learning – the Main Network

For layer i, the weights of subsidiary component M i ∈
RNi+1×Ni×Ki+1×Ki+1 are initialized by the uniform distri-
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Figure 2. Pipline of our method. The main network in this figure is already pre-trained. From left to right: our subsidiary component training

for i-th layer, main network retraining, and subsidiary component training for (i+1)-th layer.

bution: M i = U(−σ, σ). In practice, σ is chosen to

be less than 10−5. To achieve the goal of pruning filters,

all elements whose first index is the same share the same

value. Mn,o1,p1,q1 = Mn,o2,p2,q2 , ∀o, p, q. Filter mask

Oi ∈ RNi+1×Ni×Ki+1×Ki+1 is an output tensor from the

subsidiary component. In the first stage, we use the Iden(·)
function (identity transformation) to get Oi.

Oi = Iden(M i)

We apply the filter mask Oi to screen main network’s weights

W i,

Ŵ i = Oi ⊗W i

, where ⊗ is element-wise product. Ŵ i denotes the weights

of the main network after transformation, which is used to

be convolved with the input feature maps, F i, to produce the

output feature maps F i+1. Then, weights of the main net-

work, W j , j ∈ [1, I], are set to be trainable while weights

of the subsidiary component, M j , j ∈ [1, I], are fixed. Be-

cause subsidiary weights are fixed and initialized to be near-

zero, it will not function in the Feature Learning stage, thus

Ŵ j ≈ W j , j ∈ [1, I]. The whole main binary neural net-

work will be trained from scratch.

3.1.2 Feature Selection – the subsidiary component

Training Subsidiary Component within a Single Layer

i: After training the whole main network from scratch, we

use a binary operator to select features in a layer-wise man-

ner. In opposite to the previous Feature Learning stage, the

weights of all layers W j , j ∈ [1, I] of the main network

and the weights except layer i of the subsidiary component

M j , j ∈ [1, I]/[i] are set to be fixed, while the subsidiary

component’s weights at the current layer M i are trainable

when selecting features for Layer i. The transformation

function for the filter mask Oi is changed from Iden(·) to

Bin(·) (sign transformation + linear affine),

Oi = Bin(M i) =
Sign(M i) + 1

2

By doing this, we project the float-point Mi to binarized num-

bers ranging from 0 to 1. Elements in Oi which are equal to

0 indicate that the corresponding filters are removed and the

elements of value 1 imply to keep this filter.

Since Bin(·) is not differentiable, we use the following

function instead of the sign function in back propagation

when training the subsidiary component M i [18, 3],

f(x) =











x −1 < x < 1

1 x ≥ 1

−1 x ≤ −1

(1)

Apart from the transformation, we also need to add regu-

larization terms to prevent all Oi from degenerating to one,

which is a trivial solution. So the loss function of training

Layer i in the subsidiary component is,

argmin
Mi

Lcross entropy + α · Lreg + β · Ldistill (2)

Lreg = ‖Oi‖1

where Lcross entropy is the loss on data and Ldistill is the

distillation loss defined in (7).

Finally, we fix the layers M j , j ∈ [1, I] in the sub-

sidiary component and layers before i in the main network

(i.e., W j , j ∈ [1, i − 1]), and retrain the main layers after

Layer i (i.e., W j , j ∈ [i, I]).

Bottom-up Layer-wise Training for Multiple Layers:

We showed how to train a layer in the subsidiary compo-

nent above. To alleviate the gradient mismatch and keep away

from the trivial solution during Features Selection, next, we

propose a layer-wise and bottom-up training scheme for the

subsidiary component: Layers closer to the input in the sub-

sidiary component will be trained with priority. As Layer i is

under training, all previous layers (which should have already

been trained) will be fixed and subsequent layers will con-

stantly be the initial near-zero value during training. There

are three advantages of this training scheme.
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First, as in (1), we use STE as in [18, 3] to approximate

the gradient of the sign function. By chain rule, for each acti-

vation node j in Layer i, we would like to compute an “error

term” δij = ∂L
∂ai

j

which measures how much that node is re-

sponsible for any errors in the output. For binary neural net-

works, activation is also binarized by a sign function which

need STE for back-propagation. The “Error term” for binary

neural networks is given by,

δij = Sign′(aij)·
∑

q

wi+1
j,q δi+1

q

(3)
∂Sign(aij)

∂aij
= 1|ai

j
|≤1 (4)

∂L

∂M i
=

∂L

∂Oi
·
∂Oi

∂M i
(5)

∂Oi

∂M i
=

1

2
· 1|Mi|≤1 (6)

where (3) and (5) can be obtained by the chain rule, and (4)

and (6) are estimated from STE, which will introduce gradient

mismatch into back-propagation as shown in Figure 1. We re-

fer (6) as weight gradient mismatch issue and (4) as activation

gradient mismatch issue. They are two open problems in the

optimization of binary neural networks, both caused by the

quantization transform functions like Sign(·). Earlier lay-

ers (for both main and subsidiary networks) which are closer

to the input have more serious gradient mismatch problem

due to the chain rule. Starting from bottom layers, we can

train and fix layers who are harder to train as early as pos-

sible for the subsidiary component. In addition, because of

the retraining part in Features Selection, bottom-up training

scheme allows bottom layers to be fixed earlier, as well. For

a main network with K layers, the i-th layer will be retrained

for i times in total. In other words, gradients for layers with

the most serious gradient mismatch problem are the least fre-

quently propagated, which effectively alleviates the propaga-

tion of error.

Second, the bottom-up layer-wise training scheme helps

the main network to better accommodate the feature distri-

bution shift caused by the pruning of previous layers. As

mentioned before, the main difference in the motivation be-

tween our pruning method and rule-based methods is that we

have more learnable parameters to fit the data by focusing on

the final network output. With the bottom-up and layer-wise

scheme, even if the output of Layer i changes, subsequent

layers in the main network can accommodate this change by

modifying their features.

Lastly and most importantly, we achieve higher prun-

ing ratio by this scheme. According to our experiments, a

straight-forward global training scheme leads to limited prun-

ing ratio. Some layers are pruned excessively and hence

damaged the accuracy, while some layers are barely pruned,

which hurts the pruning ratio. The layer-wise scheme would

enforce all layer to be out of the comfort zone and allow bal-

ancing between accuracy and pruning ratio.

3.1.3 Pipeline

The pipeline of our method is as follows:

1. Initialize weights of subsidiary component M j , j ∈
[1, I] with near-zero σ’s.

2. Set M j , j ∈ [1, I] to be fixed, and train the whole main

network from scratch.

3. Train starting from the first binary kernel. Each layer is

the same as in the algorithm shown below:

• Change the activation function for M i from

Iden(·) to Bin(·). And all other parameters apart

from M i are fixed. Train subsidiary component

according to (2).

• Fix the subsidiary layers M j , j ∈ [1, I] and main

layers before i-th layer W j , j ∈ [1, i − 1], and

retrain main layers after i-th layer W j , j ∈ [i, I].

Algorithm 1 Algorithm of our pipeline

0: for i = 1 to N do:

0: Train Subsidiary component for Layer i :

0: Oi ← Bin(M i) =
Sign(Mi)+1

2

0: Ŵ i = Oi ⊗W i

0: Fix M j , j ∈ [1, N ]/[j], M i is learnable

0: Fix W j , j ∈ [1, N ]
0: Loss = Lcross entropy + α ∗ Lreg + β ∗ Ldistillation

0:

0: ReTrain Main Network:

0: Fix M j , j ∈ [1, N ]
0: Fix W j , j ∈ [1, i− 1], W k is learnable, k ∈ [i, N ]
0: Loss = Lcross entropy

3.1.4 Distillation loss

Though pruning network filters is not an explicit transfer

learning task, the aim is to guide the thin network to learn

more similar output distributions with the original network.

The model is supposed to learn a soft distribution but not a

hard one as proposed in previous traditional classifier net-

works. Hence, we add a distillation loss to guide the training

subsidiary component to be more stable, as shown in Figure

3.

Ldistill = (p‖q) = H(p, q)−H(p) (7)

We set p to be the original binary neural network distribution.

Because the distribution is fixed, the H(p) is a constant and

can be removed from Ldistill. It means that the distillation

loss can be written as

Ldistill = −
M
∑

i=1

log
exp(zi/T )

∑M
j=1 exp(zj/T )

×
exp(ti/T )

∑M
j exp(tj/T )
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where zi and ti represent the final output of the pruned and

original networks before the softmax layer. T is a temperature

parameter for the distillation loss defined in [19]. We set T as

1 in practice. M is the number of classes.
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Train Subsidiary Component Without Disstill Loss
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Figure 3. The learning curve for the Subsidiary Component. The

red line refers to the learning curve without the distillation loss, and

the red background represents the learning curve variance of every

epoch. The green line and background represent the subsidiary com-

ponent learning curve and the variance of each epoch. Clearly, the

distillation loss makes the training procedure more stable.

3.2. Comparison with rule­based methods

Previous methods use rules to rank the importance of each

filter and then remove the top k least important filters. The

rules can be weight magnitude, e.g., measured by the L1

norm, or some other well-designed criteria.

Studies in this line share the same motivation that indi-

vidual filters have their own importance indication, and fil-

ters with less importance can be removed relatively safely.

This assumption ignores interactions among filters. As men-

tioned before, rule-based pruning algorithms use a greedy

way to prune filters, i.e., they assume that individual filters

behave independently and their own importance (or function)

for representation learning. We give a theoretical analysis

in Section 3.3 about this point. In fact, pruning filters inde-

pendently may cause problems when filter are strongly cor-

related. For example, if two filters have learned the same

features (or concepts), these two filters may be pruned out to-

gether by rule-based methods, because their rankings are very

close. Clearly, pruning one of them is a better choice.

However, almost all these criteria are based on value statis-

tics and are completely unsuitable for the binary scenario

with only two discrete values. One possible pruning method

is to exhaustively search the optimal pruning set, but this is

NP-Hard and prohibitive for modern DNNs that have thou-

sands of filters. Our method uses the subsidiary component

to “search” the optimal solution. Our soft “search” strat-

egy is gradient-based and batch-based compared to exhaus-

tive search, and it is much more efficient.

3.3. Relation to L1­Norm pruning

If our main network is full-precision, the L1-Norm based

pruning technique would be strongly relevant to our method,

except that we target at optimizing the final output of the net-

work, whereas the L1-Norm based method greedily controls

the perturbation of the feature map in the next layer.

Suppose that W = [w1; . . . ;wn] is the original filters, and

each row wi ∈ R
1×m is a vectored filter. W ′ = [w′

1; . . . ;w
′
n]

is the pruned filters. For some input Z ∈ R
m×n, each row

of Z can be viewed as a patch sampled from an image. Let

∆wi ≡ wi−w′
i. Then, the L1-Norm approach minimizes the

upper bound of the following problem: max‖x‖∞<T ‖WX−
W ′X‖2. To see this, note

‖(W −W ′)X‖2 = ‖





∆w1X
. . .

∆wnX



 ‖2 ≤
∑

i

‖∆wiX‖2 (8)

≤
∑

i

‖∆wiX‖1 ≤
∑

i

‖∆wi‖1‖X‖∞ ≤
∑

i

‖∆wi‖1T

(9)

where T is a constant. (1) and (2) are derived by Minkowski’s

Inequality and Hölder’s Inequality. To minimize
∑

i ‖∆wi‖1
by zeroing-out a single row wi, obviously, the solution is to

select the one with the smallest L1-Norm.

However, note that this strategy cannot be trivially applied

for binary networks, because the L1-Norm for any filter that

is a {−1,+1} tensor of the same shape is always identical.

3.4. Relation to LASSO regression based least recon­
struction error pruning

Previous work [16] uses the LASSO regression to min-

imize the reconstruction error of each layer: min ‖Y −
∑L

i=1 βiXiWi‖
2
F , ‖β‖0 ≤ C ′. Solving this L0 minimiza-

tion problem is NP-hard, so the L0 regularization is usually

relaxed to L1. In the binary/quantization scenario, activations

only have two/several values and the least reconstruction er-

ror is not applicable. Instead of minimizing the reconstruc-

tion error of a layer, our method pays attention on the final

network output with the help of the learnable subsidiary com-

ponent. We directly optimize the discrete variables of masks

(a.k.a subsidiary component) without the relaxation.

4. Experiments

To evaluate our method, we conduct several pruning ex-

periments for VGG-11, Net-In-Net (NIN), and ResNet-18 on

CIFAR-10 and ImageNet. Since our goal is to simplify binary

neural networks, whose activation and weights are both 1-bit,

all main models and training settings in our experiments in-

herit from XNOR-Net [28]. Since we are, to the best of our

knowledge, the first work to define filter-level pruning for bi-

nary neural networks, we proposed a rule-based method by

ourselves as the baseline. Instead of ranking filters according

to the L1-Norm [22], we use the magnitude of each filter’s

scaling factor (MSF) as our pruning criterion. Inspired by
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[22], we test both the “prune once and retrain” scheme 2 and

the “prune and retrain iteratively” scheme3. Apart from this,

we have done another comparison that we random initialized

the pruned network through our methods, and train a smaller

binary neural network from scratch.

As pointed out in [28] we set weights of the first layer and

last layer as full-precision, which also means that we only do

pruning for the intermediate binary layers. We measure ef-

fectiveness of pruning methods in terms of PFR, the ratio of

the number of pruned filters to original filter number, and er-

ror rate before and after retraining. For error ratio, smaller

is better. For PFR, larger is better. For CIFAR-10, when

training the main network, learning rate starts from 10−4,

and learning-rate-decay is equal to 0.1 for every 20 epochs.

Learning rate is fixed with 10−3 when training the subsidiary

component. For ImageNet, we set a constant learning rate of

10−3 for the subsidiary component and main work.

For fair comparison, we control PFR for each layer of

these methods to be the same to observe the final Retrain-

Error. In Figure ??, MSF-Layerwise refers to the “prune once

and retrain” scheme, and the MSF-Cascade refers the “prune

and retrain iteratively” scheme. The first three figures of ex-

periments were done on the CIFAR-10 dataset. The last figure

refers to results on Imagenet.

4.1. NIN and VGG­11 On CIFAR­10

NIN is a fully convolutional network, using two 1×1 con-

volution layers instead of fully connected layer, and has quite

compact architecture. VGG-11 is a high-capacity network for

classification. VGG-11 on CIFAR-10 consists of 8 convolu-

tional layers(including 7 binary layers) and 1 fully connected

layer. Batch normalization is used between every binary con-

volution and activation layer, which makes the training pro-

cess more stable and converges with high performance. For

both MSF-Layerwise and MSF-Cascade, with the same PFR,

the performance is worse than us. With 30% ∼ 40% of prun-

ing filter ratio, the pruned network error rate only increased

1% ∼ 2%.

4.1.1 Learning Rate is Important

An interesting phenomenon is observed when training sub-

sidiary components for different models. We try different

learning rates in our experiments and observe it impacts final

convergent point a lot as shown in Figure 4. The relatively

smaller learning rate (10−4) will converge with lower accu-

racy and higher pruning number; however, the larger learning

rate (10−3) leads to the opposite result.

One possible explanation is that the solution space of

the high-dimensional manifold for binary neural networks is

2Prune filters of multiple layers at once and retrain them until the original

accuracy is restored
3Prune filters layer by layer and then retrain iteratively. The model is

retrained before pruning the next layer for the weights to adapt to the changes

from the pruning process.

more discrete compared to full-precision networks, so it is

difficult for a subsidiary component to jump out of a locally

optimal point to a better one. Moreover, in the binary sce-

nario, larger learning rate will increase the frequency of value

changing for weights. Our motivation is to use a learnable

subsidiary components to approximate exhaustive search, so

using a larger learning rate will enable the subsidiary com-

ponent to “search” more aggressively. A large learning rate

may be unsuitable for normal binary neural networks like the

main network in this paper, but it is preferred by the sub-

sidiary component.

4.1.2 Initialization of subsidiary component is NOT Sen-

sitive

As mentioned in section 3.1.1, we use the uniform distribu-

tion to initialize the mask. According to the expectation of

the uniform distribution, E(PNR) = 0.5, where PNR is the

ratio of the number of positive elements in subsidiary weights

to size of weights. However, since we use Sign(·), different

PNR may impact the result a lot. We conduct six experi-

ments on different models across different layers and show

that initialization with 0.4, 0.6, 1.0 PNR will all converge

to the same state. However, when PNR is 0.2, final perfor-

mance will be very poor. A possible reason is that the num-

ber of filters thrown out by the initialization is too large, and

due to the existence of the regularization term, the network’s

self-adjustment ability is limited and cannot converge to a

good state. Hence we recommend the PNR to be intialized

to greater than 0.4.
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Figure 4. Learning curve for subsidiary component. We train the

subsidiary component with different learning rate. These curves are

smoothed for directly seeing the trend of the learning Subsidiary

Component. All dotted lines represent the learning curve of the large

learning rate 10−3, the normal lines represent the learning curves of

the small learning rate 10
−4.

4.2. ResNet on CIFAR­10 and ImageNet

Compared with NIN and VGG-11, ResNet has identity

connections within residual block and much more layers. As

the depth of network increases, the capacity of network also

increases, which then leads to more redundancy. From exper-

imental results, we find that when the identification mapping

network has a downsampling layer, the overall sensitivity of

the residual block will increase. Overall result for ResNet on
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Table 1. Overall results

Method Model Original Error(%) Retrain Error(%) PFR(%)

Smaller-Network NIN 15.79% 40.27% 33.05%

MSF-Layerwise NIN 15.79% 19.28% 33.05%

MSF-Cascade NIN 15.79% 17.39% 33.05%

Our Method NIN 15.79% 16.89% 33.05%

Smaller-Network VGG-11 16.13% 18.01% 39.70%

MSF-Layerwise VGG-11 16.13% 19.59% 39.70%

MSF-Cascade VGG-11 16.13% 18.79% 39.70%

Our Method VGG-11 16.13% 18.03% 39.70%

Smaller-Network ResNet-18 12.11% 23.41% 39.89%

MSF-Layerwise ResNet-18 12.11% 16.44% 39.89%

MSF-Cascade ResNet-18 12.11% 14.63% 39.89%

Our Method ResNet-18 12.11% 13.61% 39.89%

MSF-Layerwise ResNet-18 50.02% 51.33 % 21.40%

MSF-Cascade ResNet-18 50.02% 50.56% 21.40%

Our Method ResNet-18 50.02% 49.87% 21.40%

Table 2. FLOPs and Memory usage for our pruned model

FLOPs Speedup Memory Usage Memory saving

ResNet-18

Our Pruned Model 1.46 × 108 12.39× 30.87Mbit 12.11×
XNOR-NET 1.67 × 108 10.86× 33.70Mbit 11.10×
Full-precision Res-Net 1.81 × 109 — 374.1Mbit —-

CIFAR-10 is shown in table (1), and statistics for each layer

can be found in Appendix.

We further verify our method with ResNet-18 on Ima-

geNet. α can be set from 10−7 to 10−9 depending on the

expected PFR, the accuracy and pruning ratio are balanced

before retraining. After 20 epoches retraining for each layer,

the final PFR is 21.4%, with the retrained error has decreased

from 50.02% to 49.87%.

4.3. Efficiency and Memory Usage Analysis

In this section, we will analyze the speedup and memory

saving of our pruned model and compare with XNOR-Net

and full-precision network in ResNet-18.

The memory usage is the summation of number bits of

all weights within one model. In addition, we use FLOPs to

measure the efficiency for our pruned model. Because of the

binary operation can implemented in XNOR operation and

bit-counting in 64 parallel. So the final FLOPS are composed

of the full-precision multiplication plus 1/64 1-bit multiplica-

tion.

We keep the first convolution layer and the last fully-

connected layer to be real-valued and keep other weights

and activations in the whole network are all binarized. As

shown in Table 2, our pruned ResNet-18 model for ImageNet

speed up 12.39× and reduces 12.11× memory usage in the-

ory, but our test accuracy outperformed 0.15% compared with

the full-precision ResNet-18 Model. We also achieves up to

14.10% higher speedup ratio and 9.09% memory saving ratio

compared with XNOR-Net, saying that our model requires

less memory and fewer FLOPs.

5. Conclusion

In this paper, we, for the first time, define the filter-

level pruning problem for binary neural networks and pro-

pose a novel learning-based main/subsidiary network frame-

work. Extensive experimental results on CIFAR and Im-

ageNet demonstrate that the proposed main/subsidiary net-

work framework and the novel training methods show effi-

ciency for pruning of binary neural networks. What’s more,

our method is also friendly to pruning problem for quan-

tized networks. In the future, we will explore more advanced

learning algorithms for subsidiary part of the framework, be-

cause the learning-based framework for pruning has impor-

tant value and will be treated as future work either.
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