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Abstract

We propose a novel multi-task learning architecture,

which allows learning of task-specific feature-level at-

tention. Our design, the Multi-Task Attention Network

(MTAN), consists of a single shared network containing a

global feature pool, together with a soft-attention module

for each task. These modules allow for learning of task-

specific features from the global features, whilst simulta-

neously allowing for features to be shared across different

tasks. The architecture can be trained end-to-end and can

be built upon any feed-forward neural network, is simple

to implement, and is parameter efficient. We evaluate our

approach on a variety of datasets, across both image-to-

image predictions and image classification tasks. We show

that our architecture is state-of-the-art in multi-task learn-

ing compared to existing methods, and is also less sen-

sitive to various weighting schemes in the multi-task loss

function. Code is available at https://github.com/

lorenmt/mtan.

1. Introduction

Convolutional Neural Networks (CNNs) have seen great

success in a range of computer vision tasks, including im-

age classification [11], semantic segmentation [1], and style

transfer [13]. However, these networks are typically de-

signed to achieve only one particular task. For more com-

plete vision systems in real-world applications, a network

which can perform multiple tasks simultaneously is far

more desirable than building a set of independent networks,

one for each task. This is more efficient not only in terms

of memory and inference speed, but also in terms of data,

since related tasks may share informative visual features.

This type of learning is called Multi-Task Learning

(MTL) [20, 14, 6], and in this paper we present a novel ar-

chitecture for MTL based on feature-level attention masks,

which add greater flexibility to share complementary fea-

tures. Compared to standard single-task learning, training

multiple tasks whilst successfully learning a shared repre-

sentation poses two key challenges:

Shared Features

Task-Specific
Attention Modules

Task-Specific
Attention Modules

Figure 1: Overview of our proposal MTAN. The shared net-

work takes input data and learns task-shared features, whilst

each attention network learns task-specific features, by ap-

plying attention modules to the shared network.

i) Network Architecture (how to share): A multi-task

learning architecture should express both task-shared

and task-specific features. In this way, the network is en-

couraged to learn a generalisable representation (to avoid

over-fitting), whilst also providing the ability to learn

features tailored to each task (to avoid under-fitting).

ii) Loss Function (how to balance tasks): A multi-task

loss function, which weights the relative contributions of

each task, should enable learning of all tasks with equal

importance, without allowing easier tasks to dominate.

Manual tuning of loss weights is tedious, and it is prefer-

able to automatically learn the weights, or design a net-

work which is robust to different weights.

However, most prior MTL approaches focus on only one

of these two challenges, whilst maintaining a standard im-

plementation of the other. In this paper, we introduce a uni-

fied approach which addresses both challenges cohesively,

by designing a novel network which (i) enables both task-

shared and task-specific features to be learned automati-

cally, and consequently (ii) learns an inherent robustness to

the choice of loss weighting scheme.

The proposed network, which we call the Multi-Task At-

tention Network (MTAN) (see Figure 1), is composed of a

single shared network, which learns a global feature pool

containing features across all tasks. Then for each task,
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rather than learning directly from the shared feature pool,

a soft attention mask is applied at each convolution block

in the shared network. In this way, each attention mask

automatically determines the importance of the shared fea-

tures for the respective task, allowing learning of both task-

shared and task-specific features in a self-supervised, end-

to-end manner. This flexibility enables much more expres-

sive combinations of features to be learned for generali-

sation across tasks, whilst still allowing for discriminative

features to be tailored for each individual task. Further-

more, automatically choosing which features to share and

which to be task specific allows for a highly efficient archi-

tecture with far fewer parameters than multi-task architec-

tures which have explicit separation of tasks [26, 20].

MTAN can be built on any feed-forward neural network

depending on the type of tasks. We first evaluate MTAN

with SegNet [1], an encoder-decoder network on the tasks

of semantic segmentation and depth estimation on the out-

door CityScapes dataset [4], and then with an additional

task of surface normal prediction on the more challenging

indoor dataset NYUv2 [21]. We also test our approach with

a different backbone architecture, Wide Residual Network

[31], on the recently proposed Visual Decathlon Challenge

[23], to solve 10 individual image classification tasks. Re-

sults show that MTAN outperforms several baselines and is

competitive with the state-of-the-art for multi-task learning,

whilst being more parameter efficient and therefore scaling

more gracefully with the number of tasks. Furthermore, our

method shows greater robustness to the choice of weight-

ing scheme in the loss function compared to baselines. As

part of our evaluation of this robustness, we also propose a

novel weighting scheme, Dynamic Weight Average (DWA),

which adapts the task weighting over time by considering

the rate of change of the loss for each task.

2. Related Work

The term Multi-Task Learning (MTL) has been broadly

used in machine learning [2, 8, 6, 17], with similarities to

transfer learning [22, 18] and continual learning [29]. In

computer vision, multi-task learning has been used to for

learning similar tasks such as image classification in mul-

tiple domains [23], pose estimation and action recognition

[9], and dense prediction of depth, surface normals, and se-

mantic classes [20, 7]. In this paper, we consider two impor-

tant aspects of multi-task learning: how can a good multi-

task network architecture be designed, and how to balance

feature sharing in multi-task learning across all tasks?

Most multi-task learning network architectures for com-

puter vision are designed based on existing CNN architec-

tures. For example, Cross-Stitch Networks [20] contain one

standard feed-forward network per task, with cross-stitch

units to allow features to be shared across tasks. The self-

supervised approach of [6], based on the ResNet101 archi-

tecture [30], learns a regularised combination of features

from different layers of a single shared network. UberNet

[16] proposes an image pyramid approach to process im-

ages across multiple resolutions, where for each resolution,

additional task-specific layers are formed top of the shared

VGG-Net [27]. The Progressive Networks [26] uses a se-

quence of incrementally-trained networks to transfer knowl-

edge between tasks. However, architectures such as Cross-

Stitch Networks and Progressive Networks require a large

number of network parameters, and scale linearly with the

number of tasks. In contrast, our model requires only a

rough 10% increase in parameters for per learning task.

On the balancing of feature sharing in multi-task learn-

ing, there is extensive experimental analysis in [20, 14],

with both papers arguing that different amounts of sharing

and weighting tend to work best for different tasks. One

example of weighting tasks appropriately is with the use

of weight uncertainty [14], which modifies the loss func-

tions in multi-task learning using task uncertainty. Another

method is that of GradNorm [3], which manipulates gradi-

ent norms over time to control the training dynamics. As an

alternative to using task losses to determine task difficulties,

Dynamic Task Prioritisation [10] encourages prioritisation

of difficult tasks directly using performance metrics such as

accuracy and precision.

3. Multi-Task Attention Network

We now introduce our novel multi-task learning archi-

tecture, the Multi-Task Attention Network (MTAN). Whilst

the architecture can be incorporated into any feed-forward

network, in the following section we demonstrate how to

build MTAN upon an encoder-decoder network, SegNet

[1]. This example configuration allows for image-to-image

dense pixel-level prediction, such as semantic segmenta-

tion, depth estimation, and surface normal prediction.

3.1. Architecture Design

MTAN consists of two components: a single shared net-

work, and K task-specific attention networks. The shared

network can be designed based on the particular task, whilst

each task-specific network consists of a set of attention

modules, which link with the shared network. Each at-

tention module applies a soft attention mask to a particular

layer of the shared network, to learn task-specific features.

As such, the attention masks can be considered as feature

selectors from the shared network, which are automatically

learned in an end-to-end manner, whilst the shared network

learns a compact global feature pool across all tasks.

Figure 2 shows a detailed visualisation of our network

based on VGG-16 [27], illustrating the encoder half of Seg-

Net. The decoder half of SegNet is then symmetric to VGG-

16. As shown, each attention module learns a soft attention

mask, which itself is dependent on the features in the shared
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Figure 2: Visualisation of MTAN based on VGG-16, showing the encoder half of SegNet (with the decoder half being

symmetrical to the encoder). Task one (green) and task two (blue) have their own set of attention modules, which link with

the shared network (grey). The middle attention module has its structure exposed for visualisation, which is further expanded

in the bottom section of the figure, showing both the encoder and decoder versions of the module. All attention modules have

the same design, although their weights are individually learned.

network at the corresponding layer. Therefore, the features

in the shared network, and the soft attention masks, can be

learned jointly to maximise the generalisation of the shared

features across multiple tasks, whilst simultaneously max-

imising the task-specific performance due to the attention

masks.

3.2. Task Specific Attention Module

The attention module is designed to allow the task-

specific network to learn task-related features, by applying

a soft attention mask to the features in the shared network,

with one attention mask per task per feature channel. We

denote the shared features in the jth block of the shared net-

work as p(j), and the learned attention mask in this layer for

task i as a
(j)
i . The task-specific features â

(j)
i in this layer,

are then computed by element-wise multiplication of the at-

tention masks with the shared features:

â
(j)
i = a

(j)
i ⊙ p(j) , (1)

where ⊙ denotes element-wise multiplication.

As shown in Figure 2, the first attention module in the

encoder takes as input only features in the shared network.

But for subsequent attention modules in block j, the input is

formed by a concatenation of the shared features u(j), and

the task-specific features from the previous layer â
(j−1)
i :

a
(j)
i = h

(j)
i

(

g
(j)
i

([

u(j); f (j)
(

â
(j−1)
i

)]))

, j ≥ 2 (2)
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Here, f (j), g
(j)
i , h

(j)
i are convolutional layers with batch

normalisation, following a non-linear activation. Both g
(j)
i

and h
(j)
i are composed of [1× 1] kernels presenting the ith

task-specific attention mask in block j. f (j) is composed

of [3× 3] kernels representing a shared feature extractor for

passing to another attention module, following by a pooling

or sampling layer to match the corresponding resolution.

The attention mask, following a sigmoid activation to en-

sure a
(j)
i ∈ [0, 1], is learned in a self-supervised fashion

with back-propagation. If a
(j)
i → 1 such that the mask be-

comes an identity map, the attended feature maps are equiv-

alent to global feature maps and the tasks share all the fea-

tures. Therefore, we expect the performance to be no worse

than that of a shared multi-task network, which splits into

individual tasks only at the end of the network, and we show

results demonstrating this in Section 4.

3.3. The Model Objective

In general multi-task learning with K tasks, input X and

task-specific labels Yi, i = 1, 2, · · · ,K, the loss function

is defined as,

Ltot(X,Y1:K) =

K
∑

i=1

λiLi(X,Yi). (3)

This is the linear combination of task-specific losses Li with

task weightings λi. In our experiments, we study the effect

of different weighting schemes on various multi-task learn-

ing approaches.

For image-to-image prediction tasks, we consider each

mapping from input data X to a set of labels Yi as one task

with total three tasks for evaluation. In each loss function,

Ŷ represents the network’s prediction, and Y represents the

ground-truth label.

• For semantic segmentation, we apply a pixel-wise cross-

entropy loss for each predicted class label from a depth-

softmax classifier.

L1(X,Y1) = −
1

pq

∑

p,q

Y1(p, q) log Ŷ1(p, q). (4)

• For depth estimation, we apply an L1 norm comparing

the predicted and ground-truth depth. We use true depth

for the NYUv2 indoor scene dataset, and inverse depth in

CityScapes outdoor scene dataset as standard, which can

more easily represent points at infinite distances, such as

the sky:

L2(X,Y2) =
1

pq

∑

p,q

|Y2(p, q)− Ŷ2(p, q)|. (5)

• For surface normals (only available in NYUv2), we ap-

ply an element-wise dot product at each normalised pixel

with the ground-truth map:

L3(X,Y3) = −
1

pq

∑

p,q

Y3(p, q) · Ŷ3(p, q). (6)

For image classification tasks, we consider each dataset

as one task for which each dataset represents each individ-

ual classification task for one domain. We apply standard

cross-entropy loss for all classification tasks.

4. Experiments

In this section, we evaluate our proposed method on two

types of tasks: one-to-many predictions for image-to-image

regression tasks in Section 4.1 and many-to-many predic-

tions for image classification tasks (Visual Decathlon Chal-

lenge) in Section 4.2.

4.1. Image­to­Image Prediction (One­to­Many)

In this section, we evaluate MTAN built upon SegNet

[1] on image-to-image prediction tasks. We first introduce

the datasets used for validation in Section 4.1.1, and sev-

eral baselines for comparison in Section 4.1.2. In Section

4.1.3, we introduce a novel adaptive weighting method, and

in Section 4.1.4 we show the effectiveness of MTAN with

various weighting methods compared with single and multi-

task baseline methods. We explore how the performance

of our method scales with task complexity in Section 4.1.5

and we show visualisations of the learned attention masks

in Section 4.1.6.

4.1.1 Datasets

CityScapes. The CityScapes dataset [4] consists of high

resolution street-view images. We use this dataset for two

tasks: semantic segmentation and depth estimation. To

speed up training, all training and validation images were

resized to [128 × 256]. The dataset contains 19 classes for

pixel-wise semantic segmentation, together with ground-

truth inverse depth labels. We pair the depth estimation

task with three levels of semantic segmentation using 2, 7

or 19 classes (excluding the void group in 7 and 19 classes).

Labels for the 19 classes and the coarser 7 categories are

defined as in the original CityScapes dataset. We then fur-

ther create a 2-class dataset with only background and fore-

ground objects. The details of these segmentation classes

are presented in Table 1. We perform multi-task learning

for 7-class CityScapes dataset in Section 4.1.4. We compare

the 2/7/19-class results in Section 4.1.5, with visualisation

of these attention maps in Section 4.1.6.

NYUv2. The NYUv2 dataset [21] is consisted with

RGB-D indoor scene images. We evaluate performances
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on three learning tasks: 13-class semantic segmentation de-

fined in [5], true depth data which is recorded by depth cam-

eras from Microsoft Kinect, and surface normals which are

provided in [7]. To speed up training, all training and vali-

dation images were resized to [288× 384] resolution.

Compared to CityScapes, NYUv2 contains images of in-

door scenes, which are much more complex since the view-

points can vary significantly, changable lighting conditions

are present, and the appearance for each object class shifts

widely in texture and shape. We evaluate performance on

different datasets, together with different numbers of tasks,

and further with different class complexities, in order to at-

tain a comprehensive understanding on how our proposed

method behaves and scales under a range of scenarios.

2-class 7-class 19-class

background

void void

flat road, sidewalk

construction building, wall, fence

object pole, traffic light, traffic sign

nature vegetation, terrain

sky sky

foreground
human person, rider

vehicle carm truck, bus, caravan, trailer, train, motorcycle

Table 1: Three levels of semantic classes for the CityScapes

data used in our experiments.

4.1.2 Baselines

Most image-to-image multi-task learning architectures are

designed based on specific feed-forward neural networks,

or implemented on varying network architectures, and thus

they are typically not directly comparable based on pub-

lished results. Our method is general and can be applied to

any feed-forward neural network, and so for a fair compar-

ison, we implemented 5 different network architectures (2

single-task + 3 multi-task) based on SegNet [1], which we

consider as baselines:

• Single-Task, One Task: The vanilla SegNet for single

task learning.

• Single-Task, STAN: A Single-Task Attention Network,

where we directly apply our proposed MTAN whilst only

performing a single task.

• Multi-Task, Split (Wide, Deep): The standard multi-

task learning, which splits at the last layer for the final

prediction for each specific task. We introduce two ve-

rions of Split: Wide, where we adjusted the number of

convolutional filters, and Deep, where we adjusted the

number of convolutional layers, until Split had at least

as many parameters as MTAN.

• Multi-Task, Dense: A shared network together with

task-specific networks, where each task-specific network

receives all features from the shared network, without

any attention modules.

• Multi-Task, Cross-Stitch: The Cross-Stitch Network

[20], a previously proposed adaptive multi-task learning

approach, which we implemented on SegNet.

Note that all the baselines were designed to have at least

as many parameters than our proposed MTAN, and were

tested to validate that our proposed method’s better perfor-

mance is due to the attention modules, rather than simply

due to the increase in network parameters.

4.1.3 Dynamic Weight Average

For most multi-task learning networks, training multiple

tasks is difficult without finding the correct balance between

those tasks, and recent approaches have attempted to ad-

dress this issue [3, 14]. To test our method across a range

of weighting schemes, we propose a simple yet effective

adaptive weighting method, named Dynamic Weight Aver-

age (DWA). Inspired by GradNorm [3], this learns to av-

erage task weighting over time by considering the rate of

change of loss for each task. But whilst GradNorm requires

access to the network’s internal gradients, our DWA pro-

posal only requires the numerical task loss, and therefore

its implementation is far simpler.

With DWA, we define the weighting λk for task k as:

λk(t) :=
K exp(wk(t− 1)/T )
∑

i exp(wi(t− 1)/T )
, wk(t− 1) =

Lk(t− 1)

Lk(t− 2)
,

(7)

Here, wk(·) calculates the relative descending rate in the

range (0,+∞), t is an iteration index, and T represents a

temperature which controls the softness of task weighting,

similar to [12]. A large T results in a more even distri-

bution between different tasks. If T is large enough, we

have λi ≈ 1, and tasks are weighted equally. Finally, the

softmax operator, which is multiplied by K, ensures that
∑

i λi(t) = K.

In our implementation, the loss value Lk(t) is calculated

as the average loss in each epoch over several iterations.

Doing so reduces the uncertainty from stochastic gradient

descent and random training data selection. For t = 1, 2,

we initialise wk(t) = 1, but any non-balanced initialisation

based on prior knowledge could also be introduced.

4.1.4 Results on Image-to-Image Predictions

We now evaluate the performance of our proposed MTAN

method in image-to-image multi-task learning, based on

the SegNet architecture. Using the 7-class version of the
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CityScapes dataset and 13-class version of NYUv2 dataset,

we compare all the baselines introduced in Section 4.1.2.

Training. For each network architecture, we ran experi-

ments with three types of weighting methods: equal weight-

ing, weight uncertainty [14], and our proposed DWA (with

hyper-parameter temperature T = 2, found empirically to

be optimum across all architectures). We did not include

GradNorm [3] because it requires a manual choice of sub-

set network weights across all baselines, based on their spe-

cific architectures, which distracts from a fair evaluation of

the architectures themselves. We trained all the models with

ADAM optimiser [15] using a learning rate of 10−4, with

a batch size of 2 for NYUv2 dataset and 8 for CityScapes

dataset. During training, we halve the learning rate at 40k

iterations, for a total of 80k iterations.

Results. Table 2 and 3 shows experimental results for

CityScales and NYUv2 datasets across all architectures, and

across all loss function weighting schemes. Results also

show the number of network parameters for each architec-

ture. Our MTAN method performs similarly to our base-

line Dense in the CityScapes dataset, whilst only having

less than half the number of parameters, and outperforms all

other baselines. For the more challenging NYUv2 dataset,

our method outperforms all baselines across all weighting

methods and all learning tasks.

#P. Architecture Weighting

Segmentation Depth

(Higher Better) (Lower Better)
mIoU Pix Acc Abs Err Rel Err

2 One Task n.a. 51.09 90.69 0.0158 34.17
3.04 STAN n.a. 51.90 90.87 0.0145 27.46

Equal Weights 50.17 90.63 0.0167 44.73
1.75 Split, Wide Uncert. Weights [14] 51.21 90.72 0.0158 44.01

DWA, T = 2 50.39 90.45 0.0164 43.93

Equal Weights 49.85 88.69 0.0180 43.86
2 Split, Deep Uncert. Weights [14] 48.12 88.68 0.0169 39.73

DWA, T = 2 49.67 88.81 0.0182 46.63

Equal Weights 51.91 90.89 0.0138 27.21

3.63 Dense Uncert. Weights [14] 51.89 91.22 0.0134 25.36
DWA, T = 2 51.78 90.88 0.0137 26.67

Equal Weights 50.08 90.33 0.0154 34.49
≈2 Cross-Stitch [20] Uncert. Weights [14] 50.31 90.43 0.0152 31.36

DWA, T = 2 50.33 90.55 0.0153 33.37

Equal Weights 53.04 91.11 0.0144 33.63

1.65 MTAN (Ours) Uncert. Weights [14] 53.86 91.10 0.0144 35.72
DWA, T = 2 53.29 91.09 0.0144 34.14

Table 2: 7-class semantic segmentation and depth estima-

tion results on CityScapes validation dataset. #P shows

the number of network parameters, and the best perform-

ing combination of multi-task architecture and weighting is

highlighted in bold. The top validation scores for each task

are annotated with boxes.

In particular, our method has two key advantages. First,

due to the efficiency of having a single shared feature pool

with attention masks automatically learning which features

to share, our method outperforms other methods without re-

quiring extra parameters (column #P), and even with signif-

icantly fewer parameters in some cases.

Second, our method maintains high performance across

different loss function weighting schemes, and is more ro-

bust to the choice of weighting scheme than other meth-

ods, avoiding the need for cumbersome tweaking of loss

weights. We illustrate the robustness of our method to the

weighting schemes with a comparison to the Cross-Stitch

Network [20], by plotting learning curves in Figure 3 with

respect to the performance of three learning tasks in NYUv2

dataset. We can clearly see that our network follows simi-

lar learning trends across various weighting schemes, com-

pared to the Cross-Stitch Network which produces notably

different behaviour across the different schemes.
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Figure 3: Validation performance curves on the NYUv2

dataset, across all three tasks (semantics, depth, normals,

from left to right), showing robustness to loss function

weighting schemes on the Cross-Stitch Network [20] (top)

and our Multi-task Attention Network (bottom).

Figure 4 then shows qualitative results on the CityScapes

validation dataset. We can see the advantage of our multi-

task learning approach over vanilla single-task learning,

where the edges of objects are clearly more pronounced.

4.1.5 Effect of Task Complexity

For further introspection into the benefits of multi-task

learning, we evaluated our implementations on CityScapes

across different numbers of semantic classes, with the depth

labels the same across all experiments. We trained the net-

works with the same settings as in Section 4.1.4, with an

additional multi-task baseline Split (the standard version),

which we found to perform better than the other modified

versions. All networks are trained with equal weighting.

Table 4 (left) shows the validation performance improve-

ment across all multi-task implementations and the single-

task STAN implementation, plotted relative to the perfor-

mance of the vanilla single-task learning on the CityScapes

dataset. Interestingly, for only a 2-class setup, the single-

task attention network (STAN) performs better than all

1876



Type #P. Architecture Weighting

Segmentation Depth Surface Normal

(Higher Better) (Lower Better)
Angle Distance Within t

◦

(Lower Better) (Higher Better)
mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

Single Task
3 One Task n.a. 15.10 51.54 0.7508 0.3266 31.76 25.51 22.12 45.33 57.13

4.56 STAN n.a. 15.73 52.89 0.6935 0.2891 32.09 26.32 21.49 44.38 56.51

Multi Task

Equal Weights 15.89 51.19 0.6494 0.2804 33.69 28.91 18.54 39.91 52.02
1.75 Split, Wide Uncert. Weights [14] 15.86 51.12 0.6040 0.2570 32.33 26.62 21.68 43.59 55.36

DWA, T = 2 16.92 53.72 0.6125 0.2546 32.34 27.10 20.69 42.73 54.74

Equal Weights 13.03 41.47 0.7836 0.3326 38.28 36.55 9.50 27.11 39.63
2 Split, Deep Uncert. Weights [14] 14.53 43.69 0.7705 0.3340 35.14 32.13 14.69 34.52 46.94

DWA, T = 2 13.63 44.41 0.7581 0.3227 36.41 34.12 12.82 31.12 43.48

Equal Weights 16.06 52.73 0.6488 0.2871 33.58 28.01 20.07 41.50 53.35
4.95 Dense Uncert. Weights [14] 16.48 54.40 0.6282 0.2761 31.68 25.68 21.73 44.58 56.65

DWA, T = 2 16.15 54.35 0.6059 0.2593 32.44 27.40 20.53 42.76 54.27

Equal Weights 14.71 50.23 0.6481 0.2871 33.56 28.58 20.08 40.54 51.97
≈3 Cross-Stitch [20] Uncert. Weights [14] 15.69 52.60 0.6277 0.2702 32.69 27.26 21.63 42.84 54.45

DWA, T = 2 16.11 53.19 0.5922 0.2611 32.34 26.91 21.81 43.14 54.92

Equal Weights 17.72 55.32 0.5906 0.2577 31.44 25.37 23.17 45.65 57.48

1.77 MTAN (Ours) Uncert. Weights [14] 17.67 55.61 0.5927 0.2592 31.25 25.57 22.99 45.83 57.67

DWA, T = 2 17.15 54.97 0.5956 0.2569 31.60 25.46 22.48 44.86 57.24

Table 3: 13-class semantic segmentation, depth estimation, and surface normal prediction results on the NYUv2 validation

dataset. #P shows the number of network parameters, and the best performing combination of multi-task architecture and

weighting is highlighted in bold. The top validation scores for each task are annotated with boxes.

Input Image

Grouth Truth

(Semantic)

Vanilla

Single-Task

Learning

Multi-Task

Attention

Network

Grouth Truth

(Depth)

Vanilla

Single-Task

Learning

Multi-Task

Attention

Network

Figure 4: CityScapes validation results on 7-class semantic labelling and depth estimation, trained with equal weighting. The

original images are cropped to avoid invalid points for better visualisation. The red boxes are regions of interest, showing the

effectiveness of the results provided from our method and single task method.

multi-task methods since it is able to fully utilise network

parameters in a simple manner for the simple task. How-

ever, for greater task complexity, the multi-task methods

encourage the sharing of features for a more efficient use of

available network parameters, which then leads to better re-

sults. We also observe that, whilst the relative performance

gain increases for all implementations as the task complex-

ity increases, our MTAN method increases at a greater rate.
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Method #P. ImNet. Airc. C100 DPed DTD GTSR Flwr Oglt SVHN UCF Mean Score

Scratch [23] 10 59.87 57.10 75.73 91.20 37.77 96.55 56.3 88.74 96.63 43.27 70.32 1625

Finetune [23] 10 59.87 60.34 82.12 92.82 55.53 97.53 81.41 87.69 96.55 51.20 76.51 2500

Feature [23] 1 59.67 23.31 63.11 80.33 45.37 68.16 73.69 58.79 43.54 26.8 54.28 544

Res. Adapt.[23] 2 59.67 56.68 81.20 93.88 50.85 97.05 66.24 89.62 96.13 47.45 73.88 2118

DAN [25] 2.17 57.74 64.12 80.07 91.30 56.54 98.46 86.05 89.67 96.77 49.38 77.01 2851

Piggyback [19] 1.28 57.69 65.29 79.87 96.99 57.45 97.27 79.09 87.63 97.24 47.48 76.60 2838

Parallel SVD [24] 1.5 60.32 66.04 81.86 94.23 57.82 99.24 85.74 89.25 96.62 52.50 78.36 3398

MTAN (Ours) 1.74 63.90 61.81 81.59 91.63 56.44 98.80 81.04 89.83 96.88 50.63 77.25 2941

Table 4: Left: CityScapes performance gain in percentage for all implementations compared with the vanilla single-task

method. Right: Top-1 classification accuracy on the Visual Decathlon Challenge online test set. #P is the number of parame-

ters as a factor of a single-task implementation. The upper part of table presents results from single task learning baselines;

lower part of table presents results from multi-task learning baselines.

4.1.6 Attention Masks as Feature Selectors

To understand the role of the proposed attention modules, in

Figure 5 we visualise the first layer attention masks learned

with our network based on CityScapes dataset. We can see

a clear difference in attention masks between the two tasks,

with each mask working as a feature selector to mask out

uninformative parts of the shared features, and focus on

parts which are useful for each task. Notably, the depth

masks have a much higher contrast than the semantic masks,

suggesting that whilst all shared features are generally use-

ful for the semantic task, the depth task benefits more from

extraction of task-specific features.

Input Image Semantic Mask Semantic Features

Shared Features Depth Mask Depth Features

Input Image Semantic Mask Semantic Features

Shared Features Depth Mask Depth Features

Figure 5: Visualisation of the first layer of 7-class semantic

and depth attention features of our proposed network. The

colours for each image are rescaled to fit the data.

4.2. Visual Decathlon Challenge (Many­to­Many)

Finally, we evaluate our approach on the recently in-

troduced Visual Decathlon Challenge, consisting of 10 in-

dividual image classification tasks (many-to-many predic-

tions). Evaluation on this challenge reports per-task ac-

curacies, and assigns a cumulative score with a maximum

value of 10,000 (1,000 per task) based on these accuracies.

The complete details about the challenge settings, evalua-

tion, and datasets used, can be found at http://www.

robots.ox.ac.uk/˜vgg/decathlon/.

Table 4 (right) shows results for the online test set of the

challenge. As consistent with the prior works, we apply

MTAN built on Wide Residual Network [31] with a depth

of 28, widening factor of 4, and a stride of 2 in the first

convolutional layer of each block. We train our model us-

ing a batch size of 100, learning rate of 0.1 with SGD, and

weight decay of 5 · 10−5 for all 10 classification tasks. We

halve the learning rate every 50 epochs for a total of 300

epochs. Then, we fine-tune 9 classification tasks (all ex-

cept ImageNet) with a learning rate 0.01 until convergence.

The results show that our approach surpasses most of the

baselines and is competitive with the current state-of-the-

art, without the need for complicated regularisation strate-

gies such as applying DropOut [28], regrouping datasets by

size, or adaptive weight decay for each dataset, as required.

5. Conclusions

In this work, we have presented a new method for multi-

task learning, the Multi-Task Attention Network (MTAN).

The network architecture consists of a global feature pool,

together with task-specific attention modules for each task,

which allows for automatic learning of both task-shared

and task-specific features in an end-to-end manner. Exper-

iments on the NYUv2 and CityScapes datasets with mul-

tiple dense-prediction tasks, and on the Visual Decathlon

Challenge with multiple image classification tasks, show

that our method outperforms or is competitive with other

methods, whilst also showing robustness to the particular

task weighting schemes used in the loss function. Due

to our method’s ability to share weights through atten-

tion masks, our method achieves this state-of-the-art per-

formance whilst also being highly parameter efficient.
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and overlap in multi-task learning. In Proceedings of the

29th International Coference on International Conference on

Machine Learning, pages 1723–1730. Omnipress, 2012.

[18] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang

Sun, and Philip S Yu. Transfer feature learning with joint

distribution adaptation. In Proceedings of the IEEE inter-

national conference on computer vision, pages 2200–2207,

2013.

[19] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-

back: Adapting a single network to multiple tasks by learn-

ing to mask weights. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 67–82, 2018.

[20] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Mar-

tial Hebert. Cross-stitch networks for multi-task learning.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3994–4003, 2016.

[21] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob

Fergus. Indoor segmentation and support inference from

rgbd images. In ECCV, 2012.

[22] Sinno Jialin Pan and Qiang Yang. A survey on transfer learn-

ing. IEEE Transactions on knowledge and data engineering,

22(10):1345–1359, 2010.

[23] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.

Learning multiple visual domains with residual adapters. In

Advances in Neural Information Processing Systems, pages

506–516, 2017.

[24] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.

Efficient parametrization of multi-domain deep neural net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 8119–8127, 2018.

[25] Amir Rosenfeld and John K Tsotsos. Incremental learning

through deep adaptation. IEEE transactions on pattern anal-

ysis and machine intelligence, 2018.

[26] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

arXiv preprint arXiv:1606.04671, 2016.

[27] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[28] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way

to prevent neural networks from overfitting. The Journal of

Machine Learning Research, 15(1):1929–1958, 2014.

[29] Sebastian Thrun and Lorien Pratt. Learning to learn.

Springer Science & Business Media, 2012.

[30] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng

Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang.

1879



Residual attention network for image classification. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3156–3164, 2017.

[31] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. In Edwin R. Hancock Richard C. Wilson and William

A. P. Smith, editors, Proceedings of the British Machine Vi-

sion Conference (BMVC), pages 87.1–87.12. BMVA Press,

September 2016.

1880


