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Abstract

Low-bit quantization is challenging to maintain high

performance with limited model capacity (e.g., 4-bit for

both weights and activations). Naturally, the distribution

of both weights and activations in deep neural network are

Gaussian-like. Nevertheless, due to the limited bitwidth of

low-bit model, uniform-like distributed weights and acti-

vations have been proved to be more friendly to quantiza-

tion while preserving accuracy. Motivated by this, we pro-

pose Scale-Clip, a Distribution Reshaping technique that

can reshape weights or activations into a uniform-like dis-

tribution in a dynamic manner. Furthermore, to increase

the model capability for a low-bit model, a novel Group-

based Quantization algorithm is proposed to split the fil-

ters into several groups. Different groups can learn differ-

ent quantization parameters, which can be elegantly merged

into batch normalization layer without extra computational

cost in the inference stage. Finally, we integrate Scale-Clip

technique with Group-based Quantization algorithm and

propose the Group-based Distribution Reshaping Quanti-

zation (GDRQ) framework to further improve the quantiza-

tion performance. Experiments on various networks (e.g.

VGGNet and ResNet) and vision tasks (e.g. classification,

detection, and segmentation) demonstrate that our frame-

work achieves much better performance than state-of-the-

art quantization methods. Specifically, the ResNet-50 model

with 2-bit weights and 4-bit activations obtained by our

framework achieves less than 1% accuracy drop on Ima-

geNet classification task, which is a new state-of-the-art to

our best knowledge.

1. Introduction

In recent years, convolutional neural networks (CNNs)

have achieved significant breakthroughs in a variety of

computer vision tasks, such as image classification [5,

11], object detection [23, 8, 22], and semantic segmen-
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(a) traditional quantization pipeline.

(b) our distribution-reshaping quantization pipeline

(c) uniform distribution for linear quantization

Figure 1. Model quantization pipelines. (a) Traditional model

quantization focus on quantization strategy to determine the

quantization bins and fine-tuning based on the given pre-trained

weights. (b) Our distribution-reshaping quantization optimizes

both pre-trained weights and quantization strategy, so as to jointly

reduce the quantization loss while improve the perfromance. (c)

We reshape the weights into uniformly-distributed to adapt the lin-

ear quantization.

tation [31, 14], etc. These deep neural networks are

usually computational-intensive and resource-consuming,

which restricts them to be deployment on resource-limited

devices (e.g., ARM and FPGA). To improve the hardware

efficiency, many researchers have proposed to quantize the

weights and activations into low-bit [10, 36], especially in a

linear quantization way.

Nevertheless, quantization means that we need to rep-

resent floating-point models with fewer linear discrete val-
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ues. Thus quantization could results in performance degra-

dation inevitably because of the indifferentiability and lim-

ited expression capacity of deep neural networks. To alle-

viate the performance degradation, traditioanl quantization

pipelines adopt post-training quantization and quantization-

aware training to recovery the performance. These tradi-

tioanl quantization pipelines focus on the strategy to deter-

mine the quantization bins to adapt the pre-trained model,

such as minimizing the KL-divergence between the original

weights and quantized weights when training [34, 9, 32, 6,

16, 27, 4].

Actually, we observe that pre-trained model with dif-

ferent distribution also play different role in quantization,

while they are ignored in previous methods. Therefore,

we propose to optimize both the pre-trained model and

the quantization bins together. We theoretically analyze

that uniformly-distributed pre-trained models result in less

quantized-loss and is more friendly to linear quantization.

Subsequently we propose a simple but effective technique

named scale-clip technique to reshape the pre-trained mod-

els into uniformly-distributed, and optimize the quntiza-

tion bins to quntize the pre-trained models. Experiments

shows uniformly-distributed pre-trained model with scale-

clip technique can improve the quantization performance

significantly. Furtherly, to better utilize the low-bit expres-

sion capacity, we adopt group-based quantization, that is to

cluster the filters into groups for quantizing.

In this paper, with the integration of the distribu-

tion reshaping method and group-based quantization, we

propoe the Group-based Distribution Reshaping Quantiza-

tion frameworks, that reshapes the pre-trained models into

more uniformly-distributed for better quantization. Our

GDRQ framework has the following advantages. (1) Mod-

els directly use uniform quantization expression, which is

easy to be deployed on resource-limited devices. (2) Our

proposed Distribution Reshaping method can optimize the

original distribution of weights and activations more quan-

tized uniform, which fully utilizes the capacity of low-

bit representation while retains performance. (3) Group-

based quantization can enhance the low-bit model’s capac-

ity while not impact the deployment. (4) Our framework is

generally useful to all vision tasks with different network

complexity. The main contributions of this paper can be

summarized as follows:

1. Good Distribution for Linear Quantization:

We theoretically and experimentally proved that

uniformly-distributed pre-trained model can help the

quantized models to achieve higher accuracy.

2. Scale-Clip for Distribution Reshaping: We pro-

pose a simple yet effective technique named scale-

clip to reshape the pre-trained floating-point model to

be uniformly-distributed, which not affect the perfor-

mance of float-point model.

3. GDRQ framework: We incorporate the Distribu-

tion Reshaping method and Group-based quantization

into our quantization framework, and validate that our

framework outperforms state-of-art methods in a vari-

ety of networks and tasks.

2. Related Work

Convolution neural networks have achieved remarkable

performance and have been widely used in a variety of com-

puter vision tasks. To deploy the CNN models on resource-

limited devices (e.g., mobile phones or self-driving cars),

many model compression algorithms [3, 24] have been pro-

posed to reduce the model’s storage as well as to accelerate

inference.

Quantization Quantization can be used for reducing the

number of bits required to represent weights and activa-

tions. Quantization techniques can be roughly categorized

into non-uniform quantization and uniform quantization.

Non-uniform quantization usually contains scalar and vec-

tor quantization. [17, 32] quantize the network as loga-

rithmic numbers. BalanceQ [35] selects the quantization

bins by Histogram Equalization while [20] takes weighted

entropy as the measurement. [29] regards convolution and

full-connected layers as inter product operations and thus

transfer the product quantization into the network quanti-

zation. FFN [26] approximates weight matrices using the

weighted sum of the outer product of several vector pairs

with ternary entries vectors, which facilitates the network

deployment on fixed-point computation architectures.

Most of the above methods require more bits to represent

numbers during arithmetic computation, making it incon-

venient to be deployed on resource-limited devices. Uni-

form quantization is more hardware friendly. Researches

are focusing on designing an effective quantization train-

ing framework to deal with the indifferentiability of quan-

tization. Previous works (e.g.,DoReFa-Net [34]) utilize

straight-through estimator (STE) to estimate the quantiza-

tion gradient. Ristretto [9] proposes to calculate gradients

with quantized parameters while updating the gradients on

the latent floating-point weights. Some works [4, 21, 15, 27]

focus on extremely low-bit quantization training strategy

and obtain quantization levels by minimizing reconstruc-

tion error. ELQ [33] adopts an incremental training strategy,

which fixes part of weights and updates the rest to compen-

sate for the degradation of performance. HWGQ [2] intro-

duces clipped and long-tailed ReLU versions to remove out-

liers and utilizes Half Wave Gaussian Quantizer to optimize

the quantization intervals of activations.



Figure 2. *

(a) Group-based Distribution Reshaping Quantization

Figure 3. *

(b) Inference for Group-based Distribution Reshaping Quantization
Figure 4. Overview of our quantization framework. (a) illustrates the main flow of the distribution reshaping for group-based quantization.

Weights are divided into several groups and their distributions are respectively clipped with different thresholds Tw
i and reshaped into

uniformly-distributed. Then the linear quantization is performed on the reshaped distribution of each weight group. In (b), during the test

phase, different clipping thresholds for each group can be merged into following batch normalized layer.

Based on clipped ReLU, PACT [12] further adaptively

learns and determines the clipping parameter α during

training for uniform quantization. There are other re-

cent work [19, 13] that theoretically reveals the advan-

tages of clipped ReLU in training quantized models. Cur-

rently, there are also some interesting works like HAQ and

MPQ [28, 25] focusing on how to search the proper bit

for the weights and activations with the help of reinforce-

ment learning. Although great progress has been made in

uniform quantization approaches, the non-negligible perfor-

mance decrease in large scale datasets still exists.

3. Method

In this paper, we model the linear quantization task as

a quantized-loss optimization problem. Our basic quanti-

zation pipeline compose of post-training quantization and

quantization-aware training. Traditional quantization re-

searches focus on the quantization strategy to determine the

proper quantization bins to quantize the pre-trained model.

However, they actually ignore the role that the pre-trained

model play in optimizing the quantized-loss. Therefore,

quantization often causes significant performance drop,

even fine-tuning cannot recovery the drop. To address this

issue, we propose to optimize both the pre-trained model

and the quantization bins. We theoretically and experimen-

tally prove that uniformly-distributed pre-trained weights is

more friendly to linear quantization and fine-tuning. Then

we propose a simple technique named scale-clip to reshape

the weights into uniformly-distributed weights while not af-

fect the pre-trained model performance. Finally, we pro-

pose to incorporate the group-based quantization into our

distribution-reshaping pipelines. In the following, we first

describe the linear quantization formulation (Section 3.1)

and then detail our solution.

3.1. Linear Quantization

Before presenting the detailed framework, some pre-

liminary knowledge of linear quantization are introduced.

We denote the convolutional weights as W = {Wi|i =
1, · · · , n}. For each weight atom w ∈ Wi, linear quantiza-

tion linearly discretizes it as Eq. 1.

Q(w;α) = [
clamp(w,α)

s
] · s, (1)

where clamp(·, α) is to truncate the values into [−α, α], [·]
is the rounding operation and α is the clipping value. The

scaling factor s is defined as Eq. 2.

s(α) =
α

2nw−1 − 1
(2)

For activations, the linear quantization truncates the values

into the range [0, α] since the activation values are non-

negative after the ReLU layer. For brevity, we respectively

denote the weight quantization and activation quantization

as Q(W;α) and Q(A;α).

3.2. Good Distribution for Linear Quantization

Quantization means that we need to represent floating-

point models with fewer linear discrete values to achieve

similar accuracy. And quantization often cause the quan-

tized weights to have significant quantized-loss, resulting in

the accuracy drop. Like signal-to-noise ratio (SNR), here
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Figure 5. We respectively quantize the Ws which obey: (a)

Laplace-like distribution, (b) Gaussian-like distribution and (c)

Uniform-like distribution into Q(W) as Eq. 12 with nw = 4
and || · ||p = || · ||1, where red lines means the quantization bins.

We calculate quantized-loss as Eq. 3. Comparatively, uniform dis-

tribution better fits the uniform quantization.

we define the quantized-loss as Eq. 3

QL(W, Q(W;α)) =
||W −Q(W;α)||p

||W||p
, (3)

where || · ||p denotes the p-norm and here we take || · ||p as

||·||1. Note that we can also rewrite Eq. 3 in KL divergence.

Given the pre-trained float-point model, traditional quan-

tization methods focus on the strategy to determine the

quantization bins to adapt the pre-trained model with the

formulas

α∗ = min
α

||W −Q(W;α)||p
||W||p

(4)

However, we observe that pre-trained model with differ-

ent distribution also play different roles in quantized-loss

optimization. Most of the weights in convolutional lay-

ers distribute near-zero areas, (e.g., Laplace distribution or

Gaussian distribution). These distributions often produce

large quantized-loss compared to uniform distribution. We

respectively generate three data distribution examples ((a)

Laplace distribution, (b) Gaussian distribution and (c) uni-

form distribution) composed of 1000 samples, illustrated in

Fig. 5. The optimal α∗ for (a), (b) and (c) are calculated

as α∗

a = 8.11, α∗

b = 9.01 and α∗

c = 9.18 according to

Eq. 4. The corresponding quantized-loss of uniform distri-

bution is 0.059 while quantized-loss about Laplace distribu-

tion reaches 0.133. Therefore, uniform-like distribution is

more friendly to linear quantization to reduce the quantized-

loss.

Furtherly, we experimentally prove that uniformly-

distributed pre-trained model can help the quantized models

to achieve higher accuracy in Section 4.1. Therefore, differ-

ent from the traditional works [25, 7], we focus on optimize

both the pre-trained model and quantization bins. We divide

the quantized-loss optimization into two steps, that is, op-

timizing the pre-trained model firstly, then optimizing the

quantization bins.

3.3. Scale­Clip for Distribution Reshaping

In this part, we introduce the scale-clip technique to train

the pre-trained model, to reshape the model into uniformly-

distributed while not affect its perormance.

To start with, we explore the relationship between

the two statistical measures of the uniform distribution:

max(|W|) and mean(|W|). The density function of the

uniform-distribution is defined as Eq. 5.

p(w) =

{

C, w ∈ [−T, T ]

0, else
(5)

where C = 1
2T . Suppose W follows uniform distribution

in [−T, T ], max(|W|) = T . Then mean(|W|) can be ap-

proximated as Eq. 6.

mean(|W|) ≈

∫

p(w)|w|dw

=

∫ T

−T

1

2T
|w|dw =

T

2

(6)

Thus we have T as Eq. 7.

T = max(|W|) ≈ 2 · mean(|W|) (7)

Based on this relationship, we provide a simple yet ef-

fective scale-clip technique, to reshape the distribution of a

floating-point model into uniform distribution dynamically

during training stage, which has the formulation as Eq. 8:

clip(w) =







Tw, w ≥ Tw

w, w ∈ (−Tw, Tw)
−Tw, w ≤ −Tw

(8)

where

Tw = k · mean(|W|). (9)

The clipping benefits from the proposed Distribution Re-

shaping method with the following intuitive analysis: when

k is near 2, to compensate the lost energy from clipping out-

liers, more values around zero tend to become larger values.

Eventually, the W reaches the limiting case, that is the dis-

tribution of W tends to be uniform. However, when k ≪ 2,

more outliers will be clipped while there are not enough

shifted values to compensate for the lost energy, resulting

in the W converging to zero. When k ≫ 2, the distri-

bution gradually becomes Gaussian-like and eventually the

proposed method will have little impact on distribution re-

shaping.



Activation A can also adopt scale-clip technique. Nev-

ertheless, the statistical measures of A are dependent on the

data and unstable in the training process. Thus, we can not

directly employ Eq. 9 on activation quantization. To handle

this, a large k should be chosen to adapt to the changeable

statistical measures mean(A). In addition, to achieve stable

quantization, we introduce a new update strategy of T a in

the training process as Eq. 10 to dynamically satisfy Eq. 11.

T a = T a + λ▽T a

= T a + λ(T a − k · mean(|A|)).
(10)

T a = argmin
T

1

2
||T − k · mean(|A|)||22. (11)

Therefore, the distribution reshaping method can reshape

the distribution of activation as a uniform-like distribution

while maintaining the performance.

Note that clipped method has already been widely used

in training the deep neural network, such as gradient clip-

ping [1, 18] for avoiding exploding gradients and activa-

tion clipping for training quantization model [10, 12]. In

our work, we just took advantage of the clipped method as

part of our optimization and compared with activation clip-

ping [10, 12], we further analyze the reasons for the advan-

tages of the chipped method for uniform quantization and

theoretically analyze how to set a reasonable threshold.

3.4. Group­based Quantization

In this part, to increase representative capacity of the

low-bit model, we further adopt the group-based quantiza-

tion that splits the filters W into several groups, then quan-

tizing the grouped filters by search different α to determine

different quantization bins.

Actually, to achieve better performance, the intuitive so-

lution is that different filters should adopt different α and

scaling factor s(α) in the quantization process. For in-

stance, we split the trained weight filters from the first con-

volutional layer in ResNet-18 on CIFAR-100 into 8 groups,

and calculate the optimal α for each group filters, respec-

tively. Fig. 6 illustrates that the optimal α (the blue bar) for

all the filters is not always consistent with the optimal αl

(the orange bar) for each group filters. In addition, the αls

for group filters provide strong diversity for quantization,

which will enhance the network capacity without extra bit

width. As Fig. 4 illustrates, the scaling factor s(αl) for each

group filters can be gracefully merged into BN layer. Com-

pared to convolution layer, linear operations in BN layer

cost negligible resources in resource-limited devices.

Finally, we provide the implementation details of

Group-based Quantization as followings:

i) Decomposing convolution filters W into group Gl =
{W(l−1)∗gs+1, · · · ,Wl∗gs}, l = 1, · · · , n

gs
, where gs is

group size.
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Figure 6. Optimal α for first convolutional layer’s weights W of

trained ResNet-18. Blue bar represents the optimal α∗ for W

while orange bars correspond to each group filters.

ii) Quantizing the group filters Gl with αl calculated by

the following form

α∗

l = argmin
α

||Gl −Q(Gl;α)||1
||W||1

. (12)

3.5. Group­based Distribution Reshaping Quanti­
zation Framework

In this section, we integrate distribution reshaping and

group-based quantization into the Group-based Distribution

Reshaping Quantization (GDRQ) framework, and introduce

the implementation details of GDRQ framework.

By applying the Distribution Reshaping on each group

filters, we clip the Gl with αl = k · mean(|Gl|) and re-

shape the distribution of each group’s filters as uniform-

like. The training and inference operation are also demon-

strated in Fig. 4. Subsequently, the reshaped group filters

are quantized with scaling factor s(αl). In the inference

stage, we merge the scaling factors s(αl) into BN layers, so

that the weights in different groups will share the same uni-

form quantization range, which is equivalence to traditional

quantization setting. Therefore we can also easily deploy

the quantized low-bit model into resource-limited devices

under our GDRQ framework. The key operations in our

quantization framework are illustrated in Alg. 1.

4. Experiment

We conduct experiments to validate our proposed Distri-

bution reshaping method and Group-based Quantization in

Section 4.1 and Section 4.2. Extensive experiments on vari-

eties of networks and tasks to demonstrate the effectiveness

of our GDRQ framework are shown in Section 4.3, Section

4.4 and Section 4.5.

4.1. Distribution Reshaping method validation

In this part, we conduct experiments in two steps: (1)

validating that Distribution Reshaping method can reshape



Algorithm 1 Group-based Distribution Reshaping Quanti-

zation Framework

Require: bit width nw and na

Ensure: Low-bit inference model

Cluster the filters into groups Gl

while Training do

for each layer do

for each group filters Gl do

Reshape the Gl into uniform-like with Tw
l

Quantize the group filters into nw-bit

end for

Reshape the activations into uniform-like with T a

Quantize activations into na-bit

end for

end while

for each layer and group filters do

Merge the αl (that is Tw
l ) into BN layer

end for
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Figure 7. The blue bars show the weight distribution of the first

convolutional layer with Distribution Reshaping using different

Scale-Clip factors. The gray bars show the weight distribution of

the first convolution layer trained without Distribution Reshaping.

the distribution of weights into a different shape, especially

when kw is near 2 the shape is uniform-like, (2) validating

that uniform distribution facilitates reducing the quantized-

error as well as promotes the low-bit model’s performance.

Reshaping Effect The experiments are performed on

CIFAR-100 dataset. As our focus is on the validation

of Distribution Reshaping method, we set different kw ∈
{2, 2.5, 3, 4,∞} shown in Eq. 9 and impose the Distribu-

tion Reshaping method on the convolutional weights to train

five floating-point ResNet-18 where kw = means there is no

reshaping.

In Fig. 7, we present the first convolutional weights’
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Figure 8. (a) Quantized-loss of the first convolutional layer’s

weights. The regular curve is the QL trained without Scale-Clip.

(b) Top-1 accuracy of different kw with different bit.

distribution of the five floating-point models. As kw de-

creases, the distribution becomes flatter with little outliers,

especially when kw = 2, the distribution becomes almost

uniform. This phenomenon corresponds to the effectiveness

of our Distribution Reshaping method.

Performance Comparison We quantize all convolutional

layers’ weights of above five floating-point ResNet18 into

nw-bit (from 2-bit to 8-bit), and compute the quantized-loss

of first convolutional layers’ weights as Eq. 3.

In Fig. 8(a), the quantized-loss tends to decrease when

bitwidth increases, and for same bitwidth, larger kw tends

to have smaller quantized-loss, green curves (kw = 2) is

lower than other curves(kw > 2) This results shows that

uniform quantization indeed reduce the quantized-loss.

Fig. 8(b) presents the Top-1 accuracy of the low-bit mod-

els after finetuning with 50 epochs. The results are consis-

tent with the results shown in Fig. 8(b), that kw = 2 pro-

motes the low-bit model to achieve better final performance.

Thus we can conclude that restricting weight to be uniform-

like outperforms those with Gaussian-like or Laplace-like

distribution.

4.2. Group­based Quantization Validation

In this part, we conduct experiments to validate the con-

sistent effectiveness of our Group-based Quantization and

GDRQ framework. The experiments are also performed

on ResNet-18(stride is 1 in the first block) and CIFAR-

100. Based on the trained floating-point ResNet-18, we use

Group-based Quantization to cluster the convolutional fil-

ters into groups by group sizes gs = [1, 4, 16,−1], where

gs = −1 is the special case of layer quantization. Then we

respectively quantize all convolutional layer’s weights into

2-bit and 3-bit with Group-based Quantization and fine-tune

these low-bit models for 50 epochs.

The overall performance of our Group-based Quantiza-

tion is shown in Table 1. For 2-bit weights, the floating-

point model just obtains less than 3% accuracy drop by

Group-based Quantization with gs = 1, while other group

sizes obtain much accuracy drop, even the 2-bit model fails



Table 1. Top-1 Accuracy (%) of ResNet-18 with nw = 2

Fine tune float 1 4 16 -1

without finetuning 73 69.3 50 20 1

After 50 epochs - 71.3 69.5 68.1 64.9

Table 2. Top-1 Accuracy (%) of ResNet-18 on CIFAR-100 with

GDRQ framework

group size 1 4 16 -1

float 73 73 73 73

2-bit 0.1 0.1 0.1 0.1

Binary -1.6 -1.4 -1.4 -1.7

with quantization by layer. The result of 3-bit is consistent

with 2-bit.

After recovering the accuracy drop with finetuning, 2-

bit ResNet-18 by Group-based Quantization with gs = 1
achieves 71.3 with less than 1% accuracy drop, while 2-bit

quantized ResNet-18 by layer, that is gs = −1 obtains more

than 7% accuracy drop. The curves in Fig. 9 also shows that

gs = 1 always achieves better performance than quantiza-

tion by layer and other group size. Table 1 and Fig. 9 both

show that low-bit models achieve better performance with

group-size decreasing. Thus Group-based Quantization can

reduce the low-bit model’s quantized-loss as well as pro-

mote the final performance. We believe this is caused by

Group-based Quantization increasing the low-bit model’s

capacity.

Further, we impose the Distribution Reshaping on each

group filters and quantize ResNet-18 into low-bit model.

The overall performance of the GDRQ framework is shown

in Table 2.

The floating-point models trained with different group

size achieve similar performance. This result shows that

applying the Distribution Reshaping on group filters doesn’t

affect the model’s performance. and even all 2-bit ResNet-

18 have little accuracy drop. To compare the performance

with different group sizes, we further binarize the weight.

Group-based quantization also achieves better performance

in binarized model. However, small group size is not al-

ways better, since when group size is equal to 1, the bina-

rized model doesn’t outperform other models. We think this

is because that when imposing the Distribution Reshaping

on a too-small number of weights, the distribution will be

unstable. Thus, we suggest we should choose the proper

group size between increasing low-bit model’s capacity and

keeping the stable statistical measures for Distribution Re-

shaping.

4.3. VGG­16 & ResNet­50 on ImageNet

We quantize two typical CNN models using our Group-

based Distribution Reshaping Quantization framework:

VGG-16 and ResNet-50, which represents two different

CNN architectures respectively. Both models are fine-tuned

Table 3. Top-1 Accuracy (%) of VGG-16-BN in different bit

width. [2,4] denotes 2-bit for weights and 4-bit for activations.

Model float [2,2] [2,4] [4,4] [2,8]

Ours 72.6 69.8 71.7 72.5 72.3

on the ImageNet dataset (ILSVRC-12). Top-1 and Top-5

classification performance are reported on the 50k valida-

tion set.

VGG-16 on ImageNet As described previously, we im-

pose Distribution Reshaping method by group to train the

floating-point model. To shape the distribution of activation

layer, we also add the Distribution Reshaping in ReLU lay-

ers similar to [2]. We use SGD with mini-batch size of 512,

and other parameters are kept as the original VGG paper.

As Table 3, we compare the bitwidth of na and nw with

[2, 4] bit, [4, 4]bit, [2, 8] bit, [4, 8] bit, since these bitwidths

are more practical. In Table 3, compared to floating-point

model, the low-bit VGG-16-BN with 4-bit weights and 4-

bit activations has little accuracy drop. This demonstrates

that under our GDRQ framework the 4-bit VGG-16-BN can

fully hold the performance. With lower bitwidth such as 2-

bit weights, the VGG-16 gets less than 1% accuracy drop.

Even 2-bit weights and 2-bit activation could almost reaches

70%.

ResNet-50 on ImageNet The proposed quantization

framework is also effective to compress the ResNet-50 ar-

chitecture, which achieves state-of-art classification accu-

racy on ImageNet. During the process of training floating-

point ResNet-50, Distribution Reshaping is also imple-

mented by groups.

The overall performance of our quantization framework

on quantized ResNet-50 is shown in Table 4. There should

note that the Top-1 accuracy of floating-point ResNet is less

than 76%, however we implement the ResNet-50 without

adding Distribution Reshaping but get similar performance.

The reason may be that we adopt improper training hyper-

parameters on multi-GPUs. Even so, the low-bit ResNet-50
outperforms other methods such as SY Q and FGQ. For

example, [4, 4]-bit and [2, 8]-bit ResNet-50 with our quanti-

zation framework obtains 0.3% accuracy drop, while SY Q

obtains more than 3% accuracy drop. Compared to floating-

point ResNet-50, [2, 4]-bit still has less than 1% accuracy

drop.

4.4. Comparison on PASCAL­VOC Detection

In this section, we conduct our GDRQ framework in

detection task with Faster-RCNN on PASCAL-VOC. Note

that we use ResNet-50 as backbone with pretrained model

on ImageNet for Faster-RCNN. Results: From Table 5, we

notice that the mAP of low-bit fixed point models have lit-
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Figure 9. Loss and Accuracy with different group size gs during the fine-tuning stage. Orange curves denote the loss (dash line) and the

accuracy of gs = 1 varies with epochs. Blue curves denote the loss (dash line) and the accuracy of gs = −1 changing with epochs.

Table 4. Top-1 Accuracy (%) of ResNet-50 with three different

models in different bit on ImageNet.

Model float [2,2] [2,4] [4,4] [2,8]

SYQ 76 - 70.9 - 72.3

FGQ - - 68.4 - 70.8

DoreFa-Net - - - 71.4 -

Ours 74.8 70.6 73.9 74.5 74.5

Table 5. mAP of PASCAL-VOC.‘*’ denotes that activations are

not quantized.

Model float [5,8] [4,8] [4,4] [2,4]

Park et al. 77.61 77.1∗ 77∗ 72.9 66

Yin et al. 77.46 76.99∗ 74.4∗ - -

Ours 79.0 79.0 78.8 78.5 78.3

tle degradation compared to the floating-point models, even

[2, 4] bit models, even models with 2-bit weights and 4-bit

activations only drop 0.7% compared to the floating-point

model. We compare our quantized detection results with

[20] and [30]. Note that the networks in [20] and [30] are

modified version of Faster-RCNN as R-FCN. And although

they adopt an non-uniform quantization scheme which takes

non-uniform discrete values and has more expressive abil-

ity, our method is much better than their results since our

[2, 4] bit model has no decline.

4.5. Comparison on Cityscape Segmentation

In this part, we conduct our Scale-Clip method in seg-

mentation tasks with PSPNet on Cityscapes. Note that we

also use ResNet-50 as backbone for PSPNet.

Results: From Table 6, we can also observe that the

mIoU of low-bit fixed point models have little degradation,

Table 6. mIoU of Cityscapes.

Model float [8,8] [4,8] [4,4] [2,4]

Ours 75.6 75.66 75.29 75.62 74.7

even models with 2-bit weights and 4-bit activations only

drops 0.9% co mpared to the floating-point model. As for

segmentation, up to our knowledge, there is no open quanti-

zation result on large datasets reported, especially in low-bit

quantization, so we don’t compare our segmentation results.

5. Conclusion

In this paper, we develop a group-based distribution re-

shaping quantization framework by incorporating our Dis-

tribution Reshaping method and Group-based Quantiza-

tion for uniform quantization. We elaborate experiments

in CIFAR-100, ImageNet, COCO, VOC, and network in

ResNet-18, ResNet-50, VGG demonstrates our method

generalize well to various dataset, tasks, and backbone net-

work. We also make a new record for ImageNet low-bit

quantization state-of-the-art. Our uniform quantization can

easily support FPGA deployment.
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