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Abstract

Multi-task learning is commonly used in autonomous

driving for solving various visual perception tasks. It offers

significant benefits in terms of both performance and com-

putational complexity. Current work on multi-task learning

networks focus on processing a single input image and there

is no known implementation of multi-task learning handling

a sequence of images. In this work, we propose a multi-

stream multi-task network to take advantage of using fea-

ture representations from preceding frames in a video se-

quence for joint learning of segmentation, depth, and mo-

tion. The weights of the current and previous encoder are

shared so that features computed in the previous frame can

be leveraged without additional computation. In addition,

we propose to use the geometric mean of task losses as a

better alternative to the weighted average of task losses.

The proposed loss function facilitates better handling of the

difference in convergence rates of different tasks. Experi-

mental results on KITTI, Cityscapes and SYNTHIA datasets

demonstrate that the proposed strategies outperform vari-

ous existing multi-task learning solutions.

1. Introduction

Multi-task learning (MTL) [2] aims to jointly solve mul-

tiple tasks by leveraging the underlying similarities between

independent or interdependent tasks. It is perceived as an

attempt to improve generalization by learning a common

feature representation for multiple tasks. Improvements in

prediction accuracy and reduced computation complexities

are significant benefits of MTL. This allowed deployment

of MTL in various applications in computer vision (espe-

cially scene understanding) [55, 22, 4], natural language

processing [43, 11], speech recognition [57, 50], reinforce-

ment learning [9, 8], drug discovery [34, 25], etc.

MTL networks were mainly built using Convolution

Neural Networks (CNNs). These networks were usually

limited to operate on a single stream of input data. However,

Figure 1: Illustration of MultiNet++ where feature aggrega-

tion is performed to combine intermediate output data ob-

tained from a shared encoder that operates on multiple input

streams (Frames ‘t’ and ‘t-1’). The aggregated features are

later processed by task specific decoders.

numerous works demonstrate using multiple streams of data

as input to CNNs can improve performance drastically com-

pared to using a single stream of input data. Recent at-

tempts that use consecutive frames in a video sequence

for semantic segmentation [46, 51, 48], activity recognition

[19, 49], optical flow estimation [35], moving object de-

tection [47, 56] are examples demonstrating the benefits of

using multiple streams of input data. Similarly, a pair of

images from stereo vision cameras [28] or multiple images

from different cameras of a surround view system of a car

can also be processed as multiple streams of input to CNNs.

Some works considered processing input data from differ-

ent domains [41] to solve certain tasks that require multi-

modal data representations.

These significant benefits demand the construction of

a multi-task learning network that can operate on multi-

ple streams of input data. Thus, we propose MultiNet++,

a novel multi-task network using simple feature aggrega-
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tion methods as shown in Figure 1 to combine multiple

streams of input data, which can be further processed by

task-specific decoders. Figure 1 illustrates a generic way to

aggregate features temporally and we make use of a simple

summation junction to combine temporal features in our ex-

periments. MultiNet++ would be ideal to process video se-

quences for tasks like semantic segmentation, depth estima-

tion, optical flow estimation, object detection and tracking,

etc. with improved efficiency. We also propose a novel loss

strategy for multi-task learning based on geometric mean

representation to prioritize learning of all tasks equally. The

motivation for MultiNet++ is derived from our position pa-

per NeurAll [52] which proposes to move towards a unified

visual perception model for autonomous driving. We pro-

pose to use three diverse tasks namely segmentation, depth

estimation and motion segmentation which make use of ap-

pearance, geometry and motion cues respectively.

The rest of the contents in this paper are structured as

follows. Section 2 reviews related work using feature ag-

gregation for multiple streams of inputs to CNNs and dif-

ferent task loss weighing strategies used in MTL. Section 3

discusses in detail the proposed MultiNet++ network along

with the geometric loss strategy used in this paper. Section

4 presents the experimental results on automotive datasets

mainly KITTI [12], Cityscapes [6] and SYNTHIA [39]. Fi-

nally, Section 5 summarizes the paper with key observations

and concluding remarks.

2. Related Work

2.1. Multi­Task Learning

Multi-task learning typically consists of two blocks,

shared parameters, and task-specific parameters. Shared pa-

rameters are learned to represent commonalities between

several tasks while task-specific parameters are learned to

perform independent processing. In MTL networks built

using CNNs, shared parameters are called encoders as they

perform the key feature extraction and the task-specific pa-

rameters are called decoders as they decode the information

from encoders. MTL networks are classified into hard pa-

rameter sharing or soft parameter sharing categories based

on how they share their parameters. In hard parameter shar-

ing, initial layers or parameters are shared between different

tasks such that these parameters are common for all tasks.

In soft parameter sharing, different tasks are allowed to have

different initial layers with some extent of sharing between

them. Cross stitch [31] and sluice networks [40] are ex-

amples of soft parameter sharing. Majority of the works in

MTL use hard parameter sharing as it is easier to build and

computationally less complex.

The performance of the MTL network is highly depen-

dent on their shared parameters as they contain the knowl-

edge learned from different tasks [2, 1, 38]. Inappropriate

learning of these parameters can induce biased representa-

tions for a particular task which can hurt the performance of

MTL networks. This phenomenon is referred to as negative

transfer learning. In order to prevent it, meaningful feature

representations and balanced learning methods are required.

2.2. Feature Aggregation

Different outputs from initial or mid-level convolution

layers from CNNs (referred to as extracted features) are for-

warded to the next stage of processing using feature aggre-

gation. Feature aggregation is a meaningful way to com-

bine these extracted features. These features can be ex-

tracted from different CNNs operating on different input

data [62, 37] or from a CNN operating on different resolu-

tions of input [24]. Ranjan et al. [36] combines intermediate

outputs from a CNN and passes to next stages of process-

ing. Yu et al. [60] proposed several possibilities of feature

aggregation.

There are plenty of choices to perform feature aggre-

gation. These choices range from using simple concate-

nation techniques to complex Long Short Term Memory

units (LSTMs) [17] or recurrent units. Simple concatena-

tion or addition layers can capture short term temporal cues

from a video sequence. Sun et al. [54] combine spatial and

temporal features from video sequences for human activity

recognition and Karpathy et al. [19] combine features from

inputs separated by 15 frames in a video for classification.

Hei Ng et al. [32] proposed several convolution and pool-

ing operations to combine features for video classification

while Sistu et al. [51] used simple 1×1 bottleneck convolu-

tions to combine features from consecutive frames for video

segmentation.

In automotive or indoor robotic visual perception prob-

lems, simple concatenation techniques perform well but

they fall short in some applications like video captioning

[10, 33] or summarization [42] where long term depen-

dencies are required. LSTMs in such cases offer a better

alternative [59, 45]. Convolution-LSTMs (Conv-LSTMs)

[58, 53] and 3D convolutions [18] are other options. How-

ever, these options incur additional computational complex-

ity and they are needed mainly for aggregation of features

that are significant for long term dependencies.

2.3. Multi­Task Loss

With the growing popularity of MTL, it is worth con-

sidering the possibility of imbalances in training an MTL

network. It is often observed that some tasks dominate oth-

ers during the training phase [14]. This dominance can be

attributed to variations in task heuristics like complexities,

uncertainties, and magnitudes of losses etc. Therefore an

appropriate loss or prioritization strategy for all tasks in an

MTL is a necessity.

Early works in MTL [55, 22], use a weighted arith-



Figure 2: Illustration of the MultiNet++ network operating on consecutive frames of input video sequence. Consecutive

frames are processed by a shared siamese-style encoder and extracted features are concatenated and processed by task specific

segmentation, depth estimation and moving object detection decoders.

metic sum of individual task losses. Later, several works

attempted to balance the task weights using certain task

heuristics discussed earlier. Kendall et al. [20] proposed

to use homoscedastic uncertainty of tasks to weigh them.

This approach requires explicit modeling of uncertainty and

more importantly, the task weights remain constant.

GradNorm [3] is another notable work in which Chen et

al. proposes to normalize gradients from all tasks to a com-

mon scale during backpropagation. Lui et al. [26] proposed

Dynamic Weight Average (DWA) which uses an average of

task losses over time to weigh the task losses. Guo et al.

[14] on the other hand proposed dynamic task prioritization

where the changes in the difficulty of tasks adjust the task

weights. This allows distributing focus on harder problems

first and then on less challenging tasks. On another hand,

Liu et al. devised a different strategy to use a reinforce-

ment learning based approach to learn optimal task weights.

However, this method isn’t simple and it brings additional

complexity to the training phase.

In contrast to modeling multi-task problem as a sin-

gle objective problem, Sener and Koltun [44] proposed

to model it as a multi-optimization problem. Zhang and

Yeung [61] proposed a convex formulation for multi-task

learning and Desideri [7] proposed a multiple-gradient de-

scent algorithm. In summary, these strategies either involve

an explicit definition of loss function using task heuristics

or require complex optimization techniques. Therefore, a

loss strategy with minimal design complexities will be well

suited for multi-task learning to accommodate a virtually

unlimited number of joint tasks.

3. Proposed Solution

We introduce our novel multi-task network MultiNet++,

that is capable of processing multiple streams of input data.

The proposed architecture is scalable and can be readily

applied in any multi-task problem. In the following sub-

section, we discuss how we built our MultiNet++ network

shown in Figure 2.

3.1. Multi­stream Multi­task Architecture

MultiNet++ is a simple multi-task network with the abil-

ity to process multiple streams of input data. It is built us-

ing three main components, 1) Encoders that feed multiple

streams of input into the network, 2) Feature aggregation

layers that concatenate the encoded feature vectors from

multiple streams and 3) Task-specific decoders that operate

on aggregated feature space to perform task-specific oper-

ations. In this paper, we use MultiNet++ for joint seman-

tic segmentation, depth estimation and moving object de-

tection (or simply motion) on video sequences. We share

the encoder between two consecutive frames from a given

video sequence as shown in Figure 2. This can significantly

reduce the computational load as the encoders require a

daunting number of parameters. These input frames can be

selected sparsely or densely from a video sequence by ob-

serving its motion histogram. One can also choose to pass



keyframes as proposed by Kulhare et al. [23].

Our encoders are selected by removing fully connected

layers from ResNet-50 [16]. Outputs from ReLU [15] acti-

vation at layers 23, 39 and 46 from ResNet-50 [16] encoder

are extracted and sent to feature aggregation layers. These

feature maps extracted from different streams of inputs are

concatenated and sent to task-specific decoders as shown in

Figure 1. Segmentation decoder is built using FCN8 [27]

architecture that comprises of 3 upsampling layers and skip

connections from aggregated feature maps as shown in Fig-

ure 2. The final layer consists of softmax [13] units to pre-

dict pixel-wise classification labels. Similarly, we construct

a motion decoder by changing the number of output classes

in softmax units. Depth decoder is built by replacing soft-

max with regression units.

3.2. Geometric Loss Strategy

We discussed the importance of a loss strategy that re-

quires minimal effort during design phase in Section 2.3.

The commonly used loss combination function is arithmetic

mean and it suffers from differences in the scale of the indi-

vidual losses. This is partially alleviated by weighted aver-

age of the losses but it is difficult to tune manually. We were

motivated to explore geometric loss combination which is

invariant to the scale of the individual losses. Thus we ex-

press the total loss of a multi-task learning problem as ge-

ometric mean of individual task losses. We refer to this as

Geometric Loss Strategy (GLS). For an n-task problem with

task losses ‘L1’,‘L2’ . . . ‘Ln’, we express total loss as:

LTotal =

n
∏

i=1

n

√

Li (1)

For example, in a 3-task problem with losses ‘L1’,‘L2’ and

‘L3’, we express total loss:

LTotal =
3

√

L1L2L3 (2)

Equations 1 and 2 are quite popular in geometric program-

ming. This loss function is differentiable and can be opti-

mized using an optimizer like Stochastic Gradient Descent

(SGD). In fact, this definition makes sure that all tasks are

making progress. We adapt our loss function to focus or

give more attention to certain tasks by introducing Focused

Loss Strategy (FLS) where we multiply geometric mean of

losses of focused tasks to existing loss function. In this case,

we define loss function with focus on m (m ≤ n) important

tasks as:

LTotal =

n
∏

i=1

n

√

Li ×

m
∏

j=1

m

√

Lj (3)

Equation 3 provides an opportunity to focus on important

tasks in a multi-task learning problem. Here we assume that

the tasks are ordered in terms of priority so that first m tasks

out of the total n tasks gets higher weightage.

Application of log function converts the product of

losses to sum of log of individual losses and thus can be in-

terpreted to be equivalent to normalizing individual losses

and then adding them. However, it is computationally com-

plex to make use of log function.

4. Experiments and Results

In this section, we discuss the datasets used for evaluat-

ing the efficacy of the proposed models. Later, we discuss

in detail how we constructed the proposed models and pro-

vide a complexity analysis of each. We also discuss the op-

timization strategies used during the training phase. Finally,

we provide the results obtained along with a discussion.

4.1. Datasets

KITTI [12], Cityscapes [6] and SYNTHIA [39] are pop-

ular automotive datasets. KITTI has annotations for several

tasks including semantic segmentation, depth estimation,

object detection, etc. However, these annotations were done

separately for each task and the input is not always com-

mon across the tasks. KITTI Stereo 2015 [30, 29] dataset

provides stereo images for depth estimation. A subset of

these images is labeled for KITTI semantic segmentation

[12]. This dataset consists of 200 train images and 200

test images. Cityscapes [6] dataset provides both segmenta-

tion and depth estimation annotations for ≈ 3500 images.

Motion labels for these datasets are provided by Vertens

et al. [56]. SYNTHIA [39] is a synthetic dataset that pro-

vides segmentation and depth annotations for raw video se-

quences simulated in different weather, light conditions and

road types. KITTI [12] and Cityscapes [6] provide segmen-

tation labels for 20 categories while SYNTHIA [39] dataset

provides segmentation labels for 13 categories.

Annotations KITTI[12] Cityscapes[6] SYNTHIA[39]

Segmentation X X X

Depth X X X

Motion X X ×

# Train 200 2,975 888

# Validation 200 500 787

# Type Real Real Synthetic

Table 1: Summary of the automotive datasets used in our

experiments.

In KITTI [12] and Cityscapes [6] datasets, images are

sampled and annotated sparsely from raw videos. This

poses a challenge to approaches that use temporal methods

for segmentation or motion detection tasks in videos. In

addition to KITTI [12] and Cityscapes [6] datasets, we use

SEQS-02 (New York-like city) and SEQS-05 (New York-



Method
KITTI & Cityscapes SYNTHIA

Encoder Segmentation Depth Motion Total Encoder Segmentation Depth Total

1-Task Segmentation, Depth or Motion

1-Task 23.58M 0.18M - - 23.77M 23.58M 0.14M - 23.68M

1-Task 23.58M - 3.88K - 23.59M 23.58M - 3.87K 23.59M

1-Task 23.58M - - 8.33K 23.60M - - - -

2-Task Segmentation and Depth

1-Frame 23.58M 0.18M 3.88K - 23.77M 23.58M 95.34K 3.88K 23.69M

2-Frames 23.58M 0.26M 7.46K - 23.86M 23.58M 0.14M 7.46K 23.74M

2-Task Segmentation and Motion

1-Frame 23.58M 0.18M - 8.33K 23.78M - - - -

2-Frames 23.58M 0.26M - 15.50K 23.86M - - - -

3-Task Segmentation, Depth and Motion

1-Frame 23.58M 0.18M 3.88K 8.33K 23.79M - - - -

2-Frames 23.58M 0.26M 7.46K 15.50K 23.87M - - - -

Table 2: Comparative study: Parameters needed to construct 1-task segmentation, depth and motion, 2-task segmentation and

depth, 2-task segmentation and motion and 3-task segmentation, depth and motion models. We compare 2-task and 3-task

models that operate on 1-frame and 2-frames.

like city) from SYNTHIA dataset for training and valida-

tion respectively in our experiments. These sequences pro-

vide segmentation and depth annotations for consecutive

images in a video sequence. Thus they are more suitable

for evaluating our multi-task model which operates on mul-

tiple streams of input data. Table 1 provides a summary of

different properties of the 3 datasets discussed so far.

4.2. Model Analysis

We constructed several models to evaluate the benefits

of the proposed MultiNet++. We build 3 single task base-

line models for segmentation, depth and motion tasks us-

ing ResNet-50 [16] as an encoder and different task-specific

decoders as discussed in Section 3.1. Segmentation de-

coder predicts pixel-wise labels from 20 different categories

for input in KITTI [12] & Cityscapes [6] datasets, while

the decoder predicts from 13 categories in SYNTHIA [39]

dataset. Depth decoder outputs a 16-bit integer at every

pixel location to predict depth and motion decoder predicts

a binary classification label for every pixel to classify as

moving or static object. These models process one frame

of input data. We also constructed 2-task and 3-task mod-

els that operate on a single frame and 2 consecutive frames

of an input video sequence. MultiNet++ refers to models

that operate on 2 consecutive frames which are built using

feature aggregation as discussed in Section 3.1. Table 2 pro-

vides details about number parameters required to construct

different models.

Majority of computational load arises from ResNet-50

[16] encoder. Due to this property, 2-task and 3-task mod-

els required the almost same number of parameters as 1-

task model. This is one of the main reasons why multi-task

networks are computationally efficient and favor embedded

deployment. We build our 2-frame models with relatively

very little increase in complexity (≈ 100K parameters) by

reusing the encoder between 2-frames. In 2-frames model,

the aggregated features are larger in size when compared to

the 1-frame model. It resulted in an increase of parameters.

4.3. Optimization

We implemented our proposed models using Keras [5].

In all our experiments, we re-size the input images to

224×384. We used only 2-frames for feature aggregation

because adding more frames would increase computational

complexity with insignificant performance gains as demon-

strated by Sistu et al. [51]. In our multi-task learning net-

works, we define the loss functions for each task separately

and feed them to our geometric loss strategy (GLS) pro-

posed in Section 2.3. For semantic segmentation and mo-

tion, we use pixel-wise cross-entropy loss for C classes av-

eraged over a mini-batch with N samples as shown in Equa-

tion 4.

LSeg or LMotion = −
N
∑

j=1

C
∑

i=1

yi,j log(pi,j) (4)

For depth estimation, we use Huber loss as defined in

Equation 5 with δ =250.

LDepth =

{

1

2
[y − ŷ]

2
: |y − ŷ| ≤ δ

δ (|y − ŷ| − δ/2) : otherwise
(5)

The total loss LTotal is defined as:

LTotal =
3

√

LSegLDepthLMotion (6)



Method
KITTI Cityscapes SYNTHIA

Segmentation Depth Motion Segmentation Depth Motion Segmentation Depth

1-Task Segmentation, Depth or Motion

1-Task 81.74% - - 78.95% - - 84.08% -

1-Task - 75.91% - - 60.13% - - 73.19%

1-Task - - 98.49% - - 98.72% - -

2-Task Segmentation and Depth

Equal weights 74.30% 74.47% - 73.76% 59.38% - 63.45% 71.84%

GLS (ours) 81.50% 74.92% - 79.14% 60.15% - 86.87% 73.60%

MultiNet++ 81.01% 73.95% - 83.07% 60.15% - 88.15% 78.39%

2-Task Segmentation and Motion

Equal weights 80.14% - 97.88% 78.46% - 98.25% - -

GLS (ours) 81.52% - 97.93% 77.63% - 98.83% - -

MultiNet++ 81.75% - 98.15% 78.86% - 98.65% - -

3-Task Segmentation, Depth and Motion

Equal weights 77.14% 76.15% 97.83% 72.71% 60.97% 98.20% - -

GLS (ours) 82.20% 76.54% 97.92% 77.38% 61.56% 98.72% - -

MultiNet++ 80.06% 73.94% 97.94% 82.36% 62.74% 98.21% - -

Table 3: Improvements in learning segmentation, depth estimation and motion detection as multiple tasks using equal weights,

proposed geometric loss strategy (GLS) and 2 stream feature aggregation with GLS (MultiNet++) vs independent networks

(1-Task) on KITTI, Cityscapes and SYNTHIA datasets.

Figure 3: Left to Right: Input Image, Single Task Network outputs, MultiNet++ Output, Ground Truth. More qualitative

results of MultiNet++ model can be accessed via this link https://youtu.be/E378PzLq7lQ.



(a) KITTI Segmentation (b) KITTI Depth (c) KITTI Motion

(d) Cityscapes Segmentation (e) Cityscapes Depth (f) Cityscapes Motion

Figure 4: Change of validation loss (X-axis) over several epochs (Y-axis) during training phase for 1-Task model vs 3-Task

models for segmentation, depth and motion tasks on KITTI [12] and Cityscapes [6] datasets.

We optimize this loss function in our training phase us-

ing Adam optimizer [21]. Accuracy is used as an evaluation

metric for segmentation and motion tasks while regression

accuracy is used for depth estimation.

4.4. Results

In Table 3, we compare the results of 2-task models

and 3-task models using our geometric loss strategy (GLS)

against naive equal task weight method. We also compare

their performances with 1-task segmentation, depth and mo-

tion models. Our GLS method shows significant improve-

ments in performance over equal weights method in both 2-

task and 3-task models. In Table 4, we compare the results

of 3-task models using our geometric loss strategy (GLS)

against naive equal task weights, uncertainty weight method

proposed by Kendal et al. [20] and Dynamic Weight Aver-

age (DWA) proposed by Liu et al. [26]. In Figure 4 (4a, 4b,

4c, 4d, 4e and 4f), we show how validation loss for these

models change over time during training phase. Our models

using GLS demonstrated faster convergence on all tasks. In

3-task models solving for segmentation, depth, and motion,

depth is usually the most complex task. Figures 4b and 4e

show that depth estimation on KITTI [12] and Cityscapes

[6] requires longer convergence time compared to segmen-

tation (Figures 4a and 4d) and motion tasks (Figures 4c and

4f). In these cases, our GLS method has shown faster con-

vergence compared to uncertainty [20] and DWA [26] meth-

ods. While solving for multiple tasks, uncertainty [20] and

DWA [26] weigh the tasks that converge quickly higher than

Method Segmentation Depth Motion

KITTI

1-Task 81.74% 75.91% 98.49%

Equal weights 77.14% 76.15% 97.83%

Uncertainty [20] 78.93% 75.73% 98.00%

DWA [26] 80.05% 74.48% 97.78%

GLS (ours) 82.20% 76.54% 97.92%

Cityscapes

1-Task 78.95% 60.13% 98.72%

Equal weights 72.71% 60.97% 98.20%

Uncertainty [20] 77.32% 60.44% 98.63%

DWA [26] 78.05% 59.34% 98.45%

GLS (ours) 77.38% 61.56% 98.72%

Table 4: Comparative Study: Performance of 1-Task, equal

weights, 3-task uncertainty [20], Dynamic Weight Average

(DWA) [26] and proposed geometric loss strategy (GLS) on

KITTI and Cityscapes datasets.

the others. This led to faster convergence in segmentation

and motion tasks but late convergence in depth task. In such

circumstances, the encoder parameters might be biased to-

wards segmentation and motion tasks. This can result in im-

balanced learning of depth task. Our GLS method expresses

the total loss as the geometric mean of individual losses, so

it doesn’t prioritize one task higher than others. In this way,

we achieve balanced training and improved performances

compared to other techniques.

In Table 3, we also compare 2-task and 3-task mod-



(a) Input Images (b) 1-Task (c) Equal Weights (d) GLS (e) MultiNet++ (f) Ground Truth

Figure 5: Comparison of Semantic Segmentation results: 1-Task Segmentation vs 3-Task models on KITTI dataset.

els with our novel MultiNet++ which uses both feature

aggregation (for 2-frame input) and GLS. In KITTI [12]

dataset, input images are sparsely sampled from raw video

sequences which hinder the performance gains of Multi-

Net++. In Cityscapes [6] dataset, MultiNet++ outperforms

single task models by 4% and 3% for segmentation and

depth tasks respectively as they provide images sampled

closely compared to KITTI dataset. These improvements

are much better in SYNTHIA [39] dataset (4% and 5%

for segmentation and depth estimation tasks respectively)

as they provide continuous frames of video sequences. We

achieve similar performances for motion task compared to

1-task models.

We compare qualitative results of MultiNet++ with 1-

task segmentation model on Cityscapes [6] dataset in Figure

3. The main difference between 1-task models and 3-task

models is that the latter have learned representations from

other tasks using a common encoder. Knowledge acquired

through these representations helps 3-task model to iden-

tify semantic boundaries better compared to 1-task model.

It is clearly evident that MultiNet++ model has improved

performance. Our models detect traffic signs, lights and

other near range objects better compared to other models

on KITTI dataset [12] as shown in Figure 5.

5. Conclusion

We introduced an efficient way of constructing Multi-

Net++, a multi-task learning network that operates on mul-

tiple streams of input data. We demonstrated that our geo-

metric loss strategy (GLS) is robust to different task heuris-

tics like complexity, magnitude, etc. We achieved balanced

training and improved performances for a multi-task learn-

ing network solving different tasks namely segmentation,

depth estimation and motion on automotive datasets KITTI,

Cityscapes, and SYNTHIA. Our GLS strategy is easy to im-

plement and most importantly it allows for balanced learn-

ing of a large number of tasks in multi-task learning without

requiring explicit loss modeling when compared to other

multi-task learning loss strategies. In the future, we would

like to explore the benefits of multi-task learning networks

using our efficient feature aggregation and loss strategies for

multi-modal data.

Acknowledgements

Authors would like to thank their employer for support-

ing fundamental research. Authors would also like to thank

Dr. Aditya Viswanathan and Dr. Thibault Julliand for help-

ful discussions.



References

[1] H. Bilen and A. Vedaldi. Universal representations: The

missing link between faces, text, planktons, and cat breeds.

arXiv preprint arXiv:1701.07275, 2017. 2

[2] R. Caruana. Multitask learning. Machine Learning,

28(1):41–75, Jul 1997. 1, 2

[3] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich.

Gradnorm: Gradient normalization for adaptive loss balanc-

ing in deep multitask networks. In ICML, 2018. 3

[4] S. Chennupati, G. Sistu., S. Yogamani., and S. Rawashdeh.

Auxnet: Auxiliary tasks enhanced semantic segmentation for

automated driving. In Proceedings of the 14th International

Joint Conference on Computer Vision, Imaging and Com-

puter Graphics Theory and Applications - Volume 5: VIS-

APP,, pages 645–652. INSTICC, SciTePress, 2019. 1

[5] F. Chollet et al. Keras. https://keras.io, 2015. 5

[6] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In Proc. of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. 2, 4, 5, 7, 8

[7] J.-A. Désidéri. Multiple-gradient descent algorithm (mgda)

for multiobjective optimization. Comptes Rendus Mathema-

tique, 350(5-6):313–318, 2012. 3

[8] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine.

Learning modular neural network policies for multi-task and

multi-robot transfer. In 2017 IEEE International Conference

on Robotics and Automation (ICRA), pages 2169–2176, May

2017. 1

[9] P. Dewangan, S. P. Teja, K. M. Krishna, A. Sarkar, and

B. Ravindran. Digrad: Multi-task reinforcement learning

with shared actions. CoRR, abs/1802.10463, 2018. 1

[10] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan,

S. Guadarrama, K. Saenko, and T. Darrell. Long-term recur-

rent convolutional networks for visual recognition and de-

scription. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 39(4):677691, Apr 2017. 2

[11] D. Dong, H. Wu, W. He, D. Yu, and H. Wang. Multi-task

learning for multiple language translation. In ACL, 2015. 1

[12] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

robotics: The kitti dataset. International Journal of Robotics

Research (IJRR), 2013. 2, 4, 5, 7, 8

[13] I. Goodfellow, Y. Bengio, and A. Courville. Deep learn-

ing. MIT Press, pages 189–191, 2016. http://www.

deeplearningbook.org. 4

[14] M. Guo, A. Haque, D.-A. Huang, S. Yeung, and L. Fei-

Fei. Dynamic task prioritization for multitask learning. In

European Conference on Computer Vision, pages 282–299.

Springer, 2018. 2, 3

[15] R. H. Hahnloser and H. S. Seung. Permitted and forbidden

sets in symmetric threshold-linear networks. In Advances

in Neural Information Processing Systems, pages 217–223,

2001. 4

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 770–

778, June 2016. 4, 5

[17] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural Comput., 9(8):1735–1780, Nov. 1997. 2

[18] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural

networks for human action recognition. IEEE transactions

on pattern analysis and machine intelligence, 35(1):221–

231, 2013. 2

[19] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, 2014. 1, 2

[20] A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using

uncertainty to weigh losses for scene geometry and seman-

tics. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018. 3, 7

[21] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization, 2014. 7

[22] I. Kokkinos. Ubernet: Training a universal convolutional

neural network for low-, mid-, and high-level vision using

diverse datasets and limited memory. In 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 5454–5463, July 2017. 1, 2

[23] S. Kulhare, S. Sah, S. Pillai, and R. Ptucha. Key frame ex-

traction for salient activity recognition. In 2016 23rd Inter-

national Conference on Pattern Recognition (ICPR), pages

835–840, Dec 2016. 4

[24] J. Lee and J. Nam. Multi-level and multi-scale feature

aggregation using pretrained convolutional neural networks

for music auto-tagging. IEEE signal processing letters,

24(8):1208–1212, 2017. 2

[25] S. Liu. Exploration on Deep Drug Discovery: Represen-

tation and Learning. PhD thesis, University of Wisconsin-

Madison, 2018. 1

[26] S. Liu, E. Johns, and A. J. Davison. End-to-end multi-task

learning with attention. arXiv preprint arXiv:1803.10704,

2018. 3, 7

[27] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3431–3440, 2015. 4

[28] L. Ma, J. Stückler, C. Kerl, and D. Cremers. Multi-view

deep learning for consistent semantic mapping with rgb-d

cameras. In 2017 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), pages 598–605. IEEE,

2017. 1

[29] M. Menze, C. Heipke, and A. Geiger. Joint 3d estimation

of vehicles and scene flow. In ISPRS Workshop on Image

Sequence Analysis (ISA), 2015. 4

[30] M. Menze, C. Heipke, and A. Geiger. Object scene flow.

ISPRS Journal of Photogrammetry and Remote Sensing

(JPRS), 2018. 4

[31] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. Cross-

stitch networks for multi-task learning. 2016 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

Jun 2016. 2

[32] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan,

O. Vinyals, R. Monga, and G. Toderici. Beyond short snip-

pets: Deep networks for video classification. 2015 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), Jun 2015. 2



[33] R. M. Oruganti, S. Sah, S. Pillai, and R. Ptucha. Image de-

scription through fusion based recurrent multi-modal learn-

ing. In 2016 IEEE International Conference on Image Pro-

cessing (ICIP), pages 3613–3617. IEEE, 2016. 2

[34] B. Ramsundar, S. Kearnes, P. Riley, D. Webster, D. Konerd-

ing, and V. Pande. Massively multitask networks for drug

discovery. 2015. arXiv preprint arXiv:1502.02072, 2015. 1

[35] A. Ranjan and M. J. Black. Optical flow estimation using a

spatial pyramid network. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

4161–4170, 2017. 1

[36] R. Ranjan, V. M. Patel, and R. Chellappa. Hyperface: A deep

multi-task learning framework for face detection, landmark

localization, pose estimation, and gender recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

41(1):121135, Jan 2019. 2

[37] H. Rashed., S. Yogamani., A. El-Sallab., P. Křek, and M. El-
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