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Abstract

Knowledge distillation which learns a lightweight stu-
dent model by distilling knowledge from a cumbersome
teacher model is an attractive approach for learning com-
pact deep neural networks (DNNs). Recent works fur-
ther improve student network performance by leveraging
multiple teacher networks. However, most of the exist-
ing knowledge distillation-based multi-teacher methods use
separately pretrained teachers. This limits the collaborative
learning between teachers and the mutual learning between
teachers and student. Network quantization is another at-
tractive approach for learning compact DNNs. However,
most existing network quantization methods are developed
and evaluated without considering multi-teacher support
to enhance the performance of quantized student model.
In this paper, we propose a novel framework that lever-
ages both multi-teacher knowledge distillation and net-
work quantization for learning low bit-width DNNs. The
proposed method encourages both collaborative learning
between quantized teachers and mutual learning between
quantized teachers and quantized student. During learning
process, at corresponding layers, knowledge from teach-
ers will form an importance-aware shared knowledge which
will be used as input for teachers at subsequent layers and
also be used to guide student. Our experimental results on
CIFAR-100 and ImageNet datasets show that the compact
quantized student models trained with our method achieve
competitive results compared to other state-of-the-art meth-
ods, and in some cases, surpass the full precision models.

1. Introduction

Deep Convolutional Neural Networks (CNNs) have
achieved tremendous successes in a variety of computer vi-
sion tasks, including image classification, object detection,
segmentation, and image retrieval. However, CNNs gen-
erally require excessive memory and expensive computa-

tional resources, limiting their usage in many applications.
Therefore, a great number of researches have been devoted
to making CNNs lightweight and to improving inference ef-
ficiency for practical applications.

An effective approach is to use low bit-width weights
and/or low bit-width activations. This approach not only
can reduce the memory footprint but also achieves a signif-
icant gain in speed, as the most computationally expensive
convolutions can be done by bitwise operations [25]. Al-
though existing quantization-based methods [4} 24, 25| 32|
341136l 137]] achieved improvements, there are still noticeable
accuracy gaps between the quantized CNNs and their full
precision counterparts, especially in the challenging cases
of 1 or 2 bit-width weights and activations.

Model compression using knowledge distillation is an-
other attractive approach to reduce the computational cost
of DNNs [10, [11} 15 20} 26]]. In knowledge distillation, a
smaller student network is trained to mimic the behaviour of
a cumbersome teacher network. To further enhance the per-
formance of the student network, some works [19, 22, [33]]
propose to distill knowledge from multiple teachers. How-
ever, in those works, teacher models are separately pre-
trained, which would limit the collaborative learning be-
tween teachers. It also limits the mutual learning between
student network and teacher networks.

To improve the compact low bit-width student network,
in this paper, we propose a novel framework — Collaborative
Multi-Teacher Knowledge Distillation (CMT-KD), which
encourages the collaborative learning between teachers and
the mutual learning between teachers and student.

In the collaborative learning process, knowledge at cor-
responding layers from teachers will be combined to form
an importance-aware shared knowledge which will subse-
quently be used as input for the next layers of teachers. The
collaborative learning between teachers is expected to form
a valuable shared knowledge to be distilled to the corre-
sponding layers in the student network. To our best knowl-
edge, this paper is the first one that proposes this kind of
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collaborative learning for knowledge distillation.

It is worth noting that our novel framework design allows
end-to-end training, in which not only the teachers and stu-
dent networks but also the contributions (i.e., importance
factors) of teachers to the shared knowledge are also learn-
able during the learning process. It is also worth noting that
the proposed framework is flexible — different quantization
functions and different knowledge distillation methods can
be used in our framework.

To evaluate the effectiveness of the proposed frame-
work, we conduct experiments on CIFAR-100 and Ima-
geNet datasets with AlexNet and ResNet18 architectures.
The results show that the compact student models trained
with our framework achieve competitive results compared
to previous works.

2. Related work

Our work is closely related to two main research topics
in the literature: network quantization and knowledge dis-
tillation (KD).

Network quantization. Earlier works in network quan-
tization have applied the basic form of weight quantiza-
tion to directly constrain the weight values into the bi-
nary/ternary space without or with a scaling factor, i.e.,
{=1,1} [6], {—c, a} [23], or {—«, 0, a} [18]. Since quan-
tization of activations can substantially reduce complexity
further [25} 130, 134, 136], this research topic attracts more
and more attention [25, 134, 136]. In [25, 30], the authors
propose to binarize both weights and activations to {—1, 1}.
However, there are considerable accuracy drops compared
to full precision networks. To address this problem, the gen-
eralized low bit-width quantization [21} [36] is studied. In
half-wave Gaussian quantization (HWGQ) [4], the authors
propose a practical and simple uniform quantization method
that exploits the statistics of network activations and batch
normalization. In LQ-Nets [34], the authors propose to train
a quantized CNN and its associated non-uniform quantizers
jointly. The approach in Learned Step Size Quantization
(LSQ) [7]] learns uniform quantizers using trainable inter-
val values. In quantization-interval-learning (QIL) [14], the
authors introduce a trainable quantizer that additionally per-
forms both pruning and clipping.

Knowledge Distillation (KD) is a common method in
training smaller networks by distilling knowledge from a
large teacher model [11]. The rationale behind this is to use
extra supervision in the forms of classification probabilities
[[L1], intermediate feature representations [1} 3} [10, 26]], at-
tention maps [28]. Knowledge distillation approaches trans-
fer the knowledge of a teacher network to a student network
in two different settings: offline and online. In the offline
learning, KD uses a fixed pre-trained teacher network to
transfer the knowledge to the student network. Deep mutual
learning [35]] mitigates this limitation by conducting online

distillation in one-phase training between two peer student
models.

Multi-Teacher Knowledge Distillation. The approach
in [29] applies multi-teacher learning into multi-task learn-
ing where each teacher corresponds to a task. Similarly, the
approach in [31]] trains a classifier in each source and uni-
fies their classifications on an integrated label space. The
approach in [33] considers knowledge from multiple teach-
ers equally by averaging the soft targets from different pre-
trained teacher networks. In [19], the authors propose to
learn a weighted combination of pretrained teacher repre-
sentations. Different from [33,[19], in this work, we propose
a novel online distillation method that captures importance-
aware knowledge from different teachers before distilling
the captured knowledge to the student network. In [22], the
last feature map of student network is fed through different
non-linear layers; each non-linear layer is for each teacher.
The student network and the non-linear transformations are
trained such that the output of those non-linear transfor-
mations mimic the last feature maps of the corresponding
teacher networks. The previous works [[19} 22| [33] mainly
learn full precision student models from a set of full pre-
cision pretrained teacher models, while we focus on learn-
ing quantized models. Specifically, we aim to learn a quan-
tized student model with guidance from a set of quantized
teacher models with different precisions. In addition, dif-
ferent from previous works [33} [19, 22] in which teachers
are fixed when training student, our method simultaneously
trains student and teachers using the collaborative and mu-
tual learning.

Quantization + Knowledge distillation. Some works
have tried to adopt knowledge distillation methods to assist
the training process of low precision networks [2} [15] |20,
23, 138]. In Apprentice (AP) [20], the teacher and student
networks are initialized with the corresponding pre-trained
full precision networks. After lowering the precision of the
student network, the student is then fine-tuned using distil-
lation. Due to AP’s initialization of the student, AP might
get stuck in a local minimum in the case of very low bit-
width quantized student networks. Because of the inher-
ent differences between the feature distributions of the full-
precision teacher and low-precision student network, using
a fixed teacher as in [20] can limit the knowledge transfer.
QKD [[15] and Guided-Quantization [38]] mitigate the issue
of AP by jointly training the teacher and student models,
which makes a teacher adaptable to the student model. In
our work, to further mitigate the problem of different feature
distributions between teacher and student models, instead
of using a full-precision teacher model, we propose to use
a set of quantized teacher models. Using quantized models
would help the teachers obtain more suitable knowledge for
a quantized student model to mimic.
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3. Proposed method
3.1. The proposed framework

We propose a novel framework — Collaborative Multi-
Teacher Knowledge Distillation (CMT-KD) as illustrated in
Figure[I] which encourages collaborative learning between
teachers and mutual learning between teachers and student.

First, we propose a novel collaborative learning of mul-
tiple teachers. During the training process, the collabora-
tive learning among a set of quantized teachers forms use-
ful importance-aware shared knowledge at certain layers,
which is distilled to the corresponding layers in the student
network. Second, the learning process between the student
and the teachers is performed in a mutual-learning manner
[35] via ensemble logits Z from teachers logits z” and stu-
dent logits z°.

Furthermore, our framework design allows end-to-end
training, in which not only the teachers and student net-
works but also the contributions (i.e., importance factors) of
teachers to the shared knowledge are also learnable during
the learning process. It is also worth noting that the pro-
posed framework is flexible — different quantization func-
tions [4} 5, 7} [12] |14} 134] and different knowledge distilla-
tion methods [1, 3} [10l 26, 28|] can be used in our frame-
work.

3.2. Collaborative learning of multiple teachers

Teacher model selection is important in knowledge dis-
tillation. In [[15], the authors show that if there is a large
gap in the capacity between teacher and student, the knowl-
edge from teacher may not be well transferred to student.
To control the power of teacher, in our work, we consider
teacher and student models that have the same architecture.
However, teachers are quantized with higher different bit-
widths. The knowledge at corresponding layers from teach-
ers will be fused to form a shared knowledge which will
subsequently be used as input for the next layers of teach-
ers. This forms collaborative learning between teachers. It
is expected that different teachers have different capacities,
and therefore, they should have different contributions to
the shared knowledge. To this end, for each teacher, an
importance factor that controls how much knowledge the
teacher will contribute to the shared knowledge will also be
learned. It is worth noting that the learning of importance
factors will encourage the collaborative learning between
teachers to produce a suitable shared knowledge that the
student can effectively mimic.

Formally, given a quantization function Q(z,b), the i'"
teacher is quantized using Q(W;,b;) and Q(A4;,b;), in
which W; and A; represent for weights and activations, re-
spectively; b; is the bit-width. The shared knowledge F},
of corresponding layers of n teachers at k*" layer index is
formulated as follows

Fr =Y mf«Q(A},b;)
=1 (1
st. Y mF =17 €[0,1],

where 7 represents the importance of teacher i*?. To han-
dle the constraint over 7 in (HI), in the implementation, a
softmax function is applied to ¥ values before they are
used to compute F},. The importance parameters 7 and the
model weights of teachers and student are optimized simul-
taneously via end-to-end training.

3.3. Other components
3.3.1 Quantization function

Quantization function maps a value x € R to a quantized
value T € {q1,¢2, ..., ¢»} using a quantization function Q
with a precision bit-width b. The quantized value is defined
as
7 = Q(x,b). 2)
Different quantization methods have been proposed [4}
7, 14} 125, 134} 136]]. In this paper, we consider the half-
wave Gaussian quantization (HWGQ) [4] as a quantizer to
be used in our framework, which is an effective and simple
uniform quantization approach. To quantize weights and
activations, they first pre-compute the optimal value ¢; by
using uniform quantization for unit Gaussian distribution.
Depending on variance o of weights and activations, the
quantized value of x is expressed as

T =0x%q. 3)

3.3.2 Intermediate features-based distillation

The shared knowledge from teachers will be used to guide
the learning of student. Let F}7 and F}? be the shared fea-
ture map of teachers and the feature map of the student
at k' layers of models, respectively. Let Z be the se-
lected layer indices for intermediate features-based distil-
lation. The intermediate features-based knowledge distilla-
tion loss is defined as follows

Liear = Y D (F,FY), @)
keT
where D is the distance loss measuring the similarity be-
tween features F| ,? and st . Different forms of D can be
applied in our framework. In this work, we consider two
widely used distance losses, i.e., the attention loss [28] and
the FitNet loss[26]].
The attention loss [28]] is defined as follows

QF Q7
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Figure 1: The framework of our proposed collaborative multi-teacher knowledge distillation for low bit-width DNNs. The
collaborative learning among a set of quantized teachers forms useful shared knowledge at certain layers through importance
parameters (7). LT, and L7, are for mutual learning between teachers and student via ensemble logits Z, where Z is calcu-
lated from teachers logits z” and student logits z°. CE means Cross Entropy, and KL means Kullback-Leibler divergence.
D(.) denotes the loss for intermediate features-based distillation that could be attention loss or hint loss (FitNet).

where Q7 and Q7 are the attention maps of features F and
F?, respectively. |||, is the I, norm function that could
be a l; or lo normalization. The attention map for a fea-
ture map F' € R ™ that has c channels is defined as
Q = Y5_1 |Aj|P, where Aj = F(j,:,:) is the j** channel
of F'; |.| is the element-wise absolute function. In our im-
plementation we use p = 2. The FitNet loss [26] is defined
as follows

Dur =Y |E =), 6)
kel

where 7(.) is a convolutional layer that adapts the student
feature map F,f before comparing it to the shared knowl-
edge teacher feature map F{!'. In our method, we follow
existing works [10} 26] in which r(.) a convolutional layer
with a kernel size of 1 x 1.

3.3.3 Mutual learning between teachers and student

In addition to the intermediate features-based distillation,
we also leverage the mutual learning [35] defined on the
logits from networks for learning. The mutual learning al-
lows student to give feedback about its learning to teachers.
This learning mechanism encourages both teachers and stu-
dent to simultaneously adjust their parameters to achieve
an overall learning objective, e.g., minimizing a total loss
function.

The mutual learning [35] applies K L losses on the soft-
max outputs of networks. However, due to the diversity of
the output logits from different networks, this method may
hurt the performance of models. To overcome this issue, we
adopt KDCL-MinLogit [8]], which is a simple and effective
method to ensemble logits from teachers and student. In
particular, this method selects the minimum logit value of
each category.

Let z” and z° be the logit outputs of the combined
teacher model T and a student model S, z1°¢ and 25°¢
be the elements of z” and z° corresponding to the target
class ¢, 1 be the vector with all 1s elements, we denote
zle = 27 — ;T¢1 and 25¢ = 2° — 25¢1. The element Z;
of the ensemble logits Z is computed as follows

Z = min{z] %, 27}, i=1,2,...,m (7)
where 2", zf’c are the it" elements of z7°¢ and z%¢, and
m is the number of classes.

The mutual learning is defined as follows

L3, =T? x KL(p|/p®), (8)

L, =T?x KL(pllp"), 9)

where K L means the Kullback-Leibler divergence and 7 is
the temperature parameter. p, p°, and p” are the soft logits
of Z, z°, and z7, respectively. The soft logit p is defined as

p = softmax(%).
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Finally, the overall loss of our proposed collaborative
and mutual learning in classification task is defined as

L=ax(Lép+Lop) + B x (Lke + Liko) +7 X Leat,

(10)
where «, 3, and -y are the hyper-parameters of total loss
for optimization and Lcg is the standard cross-entropy
loss calculated using the corresponding soft logits and the
ground-truth labels. During the training process, both the
model weights of teachers, student and the importance fac-
tors of teachers, i.e., 7r£C Vi, k, will be updated by minimiz-
ing £, using gradient descent.

4. Experiments
4.1. Experimental setup

Datasets. We conduct experiments on CIFAR-100 [16]
and ImageNet (ILSVRC-2012) [27] datasets. CIFAR-100
dataset consists of 100 classes with the total of 60, 000 im-
ages, where 50, 000 and 10, 000 images are used for train-
ing and testing set, respectively. ImageNet is a large scale
dataset with 1, 000 classes in total. This dataset contains 1.2
million images for training and 50, 000 images for valida-
tion, which is used as test set in our experiments.

Implementation details. We evaluate our proposed
method on two common deep neural networks AlexNet [17]]
and ResNetl8 [9]. Regarding AlexNet, batch normaliza-
tion layers are added after each convolutional layer and
each fully connected layer, which are similar to works done
by [4} 36]. In all experiments, similar to previous works
[34] 38|, in the training, we use the basic augmentation
including horizontal flips, resizing and randomly cropping
that crops images to 227 x 227 and 224 x 224 pixels for
ResNet18 and AlexNet, respectively. We use Stochastic
Gradient Descents with a momentum of 0.9 and a mini-
batch size of 256. The learning rate 7 for network models
is set to 0.1 and 0.01 for ResNet and AlexNet, respectively.
The learning rate for the importance factors (7) in teacher
models is set to [r/10.

When training ResNet18 model on CIFAR-100, we train
the model with 120 epochs. The learning rate is decreased
by a factor of 10 after 50 and 100 epochs. When training
ResNet18 model on ImageNet, we train the model with 100
epochs. The learning rate is decreased by a factor of 10
after 30, 60, and 90 epochs. When training AlexNet model,
for both CIFAR-100 and ImageNet, we train the model with
100 epochs and we adopt cosine learning rate decay.

We set the weight decay to 25e-6 for the 1 or 2-bit pre-
cision and set it to le-4 for higher precisions. Regarding
hyper-parameters of the total loss (I0), we empirically set
a = 1, 8 = 0.5. In our experiments, the shared knowl-
edge is formed at certain layers of teachers and is distilled

Models Bit-width | Top 1 | Top 5

FP 724 | 913
8 bits 70.9 | 90.9
Single model 6 bits 70.8 | 90.8

4 bits 70.7 | 90.8
2 bits 69.4 | 90.5

KD (from FP teacher) 71.3 91.6
Average teacher 71.0 | 91.6
CMT-KD (w/o Att) 2 bits 71.8 | 91.8
CMT-KD (w/o ML) 70.9 | 91.3
CMT-KD 72.1 | 919

Combined teacher 4,6, 8bits | 72.3 91.7

Table 1: Ablation studies on the CIFAR-100 dataset with
AlexNet. The descriptions of settings are presented in Sec-

tion

Models Bit-width | Top 1 | Top 5

FP 753 | 93.1

8 bits 752 | 929

Single model 6 bits 749 | 92.7

4 bits 749 | 925

2 bits 729 | 919

KD (from FP teacher) 75.1 92.8
Average teacher 76.0 | 93.8
CMT-KD (w/o Att) 2 bits 76.5 | 939
CMT-KD (w/o ML) 75.0 | 932
CMT-KD 783 | 944
Combined teacher 4,6,8bits | 79.5 94.9

Table 2: Ablation studies on the CIFAR-100 dataset with
ResNet18. The descriptions of settings are presented in Sec-

tion @

to the correspondence layers of student. Specifically, the
shared knowledge is formed at the last convolutional layers
of each convolution block, i.e., layers 2, 5, and 7 of AlexNet
teachers and from layers 5, 9, 13, and 17 of ResNet18 teach-
ers. Meanwhile, we set v to 100 or 1 when attention loss or
FitNet loss is used in Lf..+. We do not quantize the first
and last layers.

4.2. Ablation studies

We conduct several ablation studies on CIFAR-100 with
ResNet18 and AlexNet to demonstrate the effectiveness of
our proposed method. For ablation studies, we use HWGQ
quantizer [4] for the proposed CMT-KD. In addition, for the
intermediate features-based distillation (L feq:) in the final
loss (eq. (I0)), the attention loss is used. We consider the
following settings.

Single model. We evaluate single models with different
precisions (i.e., full precision, 8-bit, 6-bit, 4-bit, and 2-bit
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precisions) without any distillation methods. The results for
AlexNet and ResNet18 architectures are presented in Table
and Table [2] respectively. With the AlexNet architecture,
the results show that the 4-bit, 6-bit, 8-bit models achieve
comparable results. There are considerable large gaps be-
tween these models and the full precision model. There are
also large gaps between those models and the 2-bit model.
With the ResNet18 architecture, the 8-bit model achieves
comparable results to the full precision model. There is
a small gap between the 6-bit, 4-bit models and the 8-bit
model. Similar to the observation on the AlexNet, there is
a large gap between the 2-bit model and the full precision
model.

Knowledge distillation from the full precision teacher.
In this setting, we train a 2-bit student model with the
knowledge distillation from the full precision teacher, i.e.,
the KD (from FP teacher) setting in Table [T] and Table [2]
For this setting, we follow [[11]], i.e., when training the stu-
dent, in addition to the cross-entropy loss, the softmax out-
puts from the teacher will be distilled to the student. When
AlexNet is used, this setting achieves better performance
than quantized single models. When ResNet18 is used, this
setting achieves comparable results to the 8-bit single quan-
tized model.

Knowledge distillation from an ensemble of multiple
quantized teachers. In this setting, we separately train
three teachers with different precisions, i.e., 4-bit, 6-bit, and
8-bit teachers. The averaged softmax outputs of teachers
are distilled to the 2-bit student. This setting is noted as
“Average teacher” in Table [T] and Table 2] It is worth not-
ing that this setting is also used in the previous work [33].
When AlexNet is used, at the top-1 accuracy, this setting
produces the 2-bit student that achieves comparable perfor-
mance with the quantized single teachers. However, its per-
formance (71.0%) is still lower than the full precision model
(72.4%). When ResNet18 is used, this setting improves the
performance over the full precision model, i.e., the gain is
0.7% for both top-1 and top-5 accuracy.

Effectiveness of collaborative and mutual learning. We
consider different settings of the proposed framework. For
the results in Table [I] and Table 2] when training CMT-
KD models, we use 3 teachers, i.e., 4-bit, 6-bit, and 8-bit
teachers. In those tables, CMT-KD means that the mod-
els are trained with the total loss (I0). CMT-KD (w/o
Att) means that the models are trained with the loss (I0)
but the intermediate features-based component L ¢4 is ex-
cluded. CMT-KD (w/o ML) means that the models are
trained with the loss (I0) but the mutual learning compo-
nent (L3, + £LL,) is excluded. The results show that the
mutual learning loss is more effective than the intermediate

Setting AlexNet ResNetl8
@) Top-1 72.1 78.3
Top-5 91.9 94.4
®) Top-1 71.1 78.1
Top-5 91.2 94.3

Table 3: Impact of the number of teachers on the CMT-KD
2-bit students. The results are on the CIFAR-100 dataset.
(a) Using 4-bit, 6-bit, and 8-bit teachers. (b) Using 4-bit
and 8-bit teachers.

features-based loss. However, both components are neces-
sary to achieve the best results, i.e., CMT-KD.

When AlexNet is used, the full precision (FP) model
slightly outperforms the proposed CMT-KD at top-1 accu-
racy. When ResNetl8 is used, CMT-KD outperforms the
FP model at both top-1 and top-5 accuracy. A significant
gain is achieved, i.e., 3%, at top-1 accuracy. It is worth
noting that when ResNet18 is used, the CMT-KD signifi-
cantly outperforms the 2-bit single model, the 2-bit model
when using the average teacher, and the 2-bit model when
distilling from the FP model. Those results confirm the ef-
fectiveness of the proposed method.

Combined teacher. We also evaluate the performance of
the combined teacher in the collaborative learning in our
proposed method, i.e., the predictions which are made by
the classifier corresponding to the Eg g loss in Figure
Overall, this setting produces the best results, except for
top-1 accuracy with AlexNet architecture. It achieves bet-
ter performance than the “Average teacher” setting. With
ResNet18, this setting significantly outperforms the full pre-
cision model. Those results confirm the effectiveness of the
proposed collaborative learning between teachers.

Impact of the number of teachers. The results in Table
show the impact of the number of teachers on the perfor-
mance of the 2-bit CMT-KD student models. The results
show that using 3 teachers (4-bit, 6-bit, and 8-bit) slightly
improves the performance when using 2 teachers (4-bit and
8-bit).

4.3. Comparison with the state of the art

In this section, we compare our proposed method CMT-
KD against state-of-the-art network quantization methods,
including LQ-Net [34], LQW+CAQ [12], HWGQ [4], and
DoReFa-Net [36]. We also make a comparison between
our approach and methods that apply both distillation and
quantization consisting of PQ+TS+Guided [38], QKD [15],
SPEQ [2]. For CMT-KD, we use three teachers (4-bit, 6-
bit, and 8-bit teachers) to guide the learning of compact
quantized 2-bit weights (K, = 2) and 2-bit activations
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AlexNet ResNet18
Method Top-1 | Top-5 | Top-1 | Top-5
Full precision | 724 [ 913 [ 753 [ 93.1
Ky=1K,=2
LQ-Nets [34] 68.7 [ 905 [ 704 [ 912
LQW +CAQ[12] | 693 | 912 | 72.1 | 916
HWGQ [4] 68.6 | 90.8 | 71.0 | 90.8
CMT-KD-FitNet 69.9 | 913 | 76.1 | 93.7
CMT-KD-Att 704 | 91.1 | 756 | 935
Ky=2K,=2
PQ+TS+Guided [38] | 64.6 | 87.8 | - -
LQ-Net [34] 692 | 91.2 | 70.8 | 913
LQW +CAQ[I2] | 69.9 | 91.3 | 72.1 | 916
HWGQ [4] 69.4 | 905 | 729 | 91.9
CMT-KD-FitNet 70.0 | 90.7 | 78.7 | 94.6
CMT-KD-Att 72.1 | 919 | 783 | 944

Table 4: The comparative results on the CIFAR-100 dataset.
We report the results of CMT-KD when FitNet loss or at-
tention loss (Att) is used for the intermediate features-based
distillation. CMT-KD uses HWGQ quantizer to quantize
teachers and student. The results of HWGQ are reported by
using the official released code.

(K, = 2) students. Meanwhile, we use 2-bit, 4-bit, and 8-
bit teachers to guide the learning of compact quantized 1-bit
weights (K, = 1) and 2-bit activations (K, = 2) students.
We do not consider 1-bit activations because the previous
[4, 1131125, 136] show that 1-bit quantization for activations is
not sufficient for good performance.

Comparative results on CIFAR-100. Table 4| presents
the top-1 and top-5 classification accuracy on CIFAR-
100 dataset of different network quantization methods for
AlexNet and ResNet18. The results of competitors are cited
from [12},138]. We report the results of our CMT-KD when
FitNet loss or attention loss is used for Lf.q; in Eq. @[)
Those models are denoted as CMT-KD-FitNet or CMT-KD-
Att. The quantizer HWGQ [4] is used to quantize teach-
ers and student networks when training CMT-KD mod-
els. Overall, the best CMT-KD models outperform most
of the competitor quantization methods. When AlexNet is
used, the CMT-KD (for both FitNet and Att) models outper-
form the compared quantization methods at top-1 accuracy.
However, the proposed models achieve lower performance
than the FP model at top-1 accuracy. This may be due to the
limit in the capacity of the AlexNet model, which consists
of only 5 convolutional layers.

When ResNetl8 is used, our CMT-KD models outper-
form the full precision model. Especially when using 2-
bit weights and 2-bit activations, the improvements of the

AlexNet ResNet18
Top-1 | Top-5 | Top-1 | Top-5
| 61.8 [ 83.5 [ 703 [ 89.5

Method

Full precision

K,=1,K,=2
DoReFa-Net [36] 49.8 - 53.4 -
LQ-Nets [34] 55.7 | 78.8 | 62.6 | 84.3
HWGQ [4] 527 | 76.3 | 59.6 | 82.2
CMT-KD (HWGQ) 56.2 | 79.1 | 60.6 | 83.5

K,=2 K, =2
DoReFa-Net [36] 48.3 | 71.6 | 57.6 | 80.8
QKD [[15]] - - 674 | 875
PQ + TQ Guided [38] | 52.5 | 77.3 - -
LQ-Net [34] 574 | 80.1 | 649 | 859
SPEQ [2] 59.3 - 67.4 -
HWGQ [4,15] 58.6 | 809 | 65.1 | 86.2
CMT-KD (HWGQ) 592 | 813 | 656 | 86.5
LSQ (with distill) [7] - - 67.9 | 88.1
LSQ* (w/o distill) - - 66.7 | 87.1
CMT-KD (LSQ) 59.3 | 815 | 67.8 | 87.8

Table 5: The comparative results on the ImageNet dataset.
CMT-KD uses the attention loss for the intermediate
features-based distillation. CMT-KD (HWGQ) and CMT-
KD (LSQ) denote models when HWGQ [4] and LSQ [7]
quantizers are used in our framework, respectively. We re-
port experimental results for LSQ (please refer to footnote
1) without distillation in LSQ* row.

CMT-KD-FitNet over the FP model are 3.4% and 1.5% for
top-1 and top-5 accuracy, respectively. It is also worth not-
ing that the proposed models significantly improve over the
HWGQ method [4] which uses HWGQ quantizer to quan-
tize FP models, i.e., with K, = 2,K, = 2, CMT-KD-
FitNet outperforms HWGQ [4] 5.8% at top-1 accuracy.

Comparative results on ImageNet. Table [5|presents the
top-1 and top-5 classification accuracy on ImageNet dataset
of different network quantization methods for AlexNet and
ResNet18. The results of competitors are cited from the cor-
responding papers. At K, = 1 and K, = 2, when using
AlexNet, the proposed CMT-KD significantly outperforms
HWGQ [4]. The gain is 4.5% and 2.8% for top-1 and top-5
accuracy, respectively. For ResNet18, we also achieved an
improvement of 1% compared to HWGQ at top-1 accuracy.
With K, = 2 and K, = 2, the CMT-KD (HWGQ) outper-
forms the HWGQ [4] method by 0.6%, and 0.5% on top-1
accuracy for AlexNet and ResNet18, respectively.

As the proposed framework is flexible to quantizers, we
also report in Table[5]the results when LSQ [[7] quantizer is
used to quantize teacher and student networks in our frame-
work, i.e., CMT-KD (LSQ). LSQ is a quantization method
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Figure 2: The importance factors of the three ResNet18 teachers (4-bit, 6-bit, 8-bit) on the CIFAR-100 dataset during the

training process.

in which the step size is learned during training. When
ResNet18 is used, given the same LSQ quantizer implemen-
tatio our method CMT-KD (LSQ) can boost the top-1 ac-
curacy of LSQ* by 1.1%. However, we note that the results
reported in LSQ [[7] slightly outperforms CMT-KD (LSQ).
It is worth noting that in order to achieve the reported results
(67.9% top-1 and 88.1% top-5), LSQ [[7]] also uses knowl-
edge distillation to distill knowledge from the full precision
model to the quantized mode Our best method CMT-KD
(LSQ) compares favorably to the recent method SPEQ [2]
for both AlexNet and ResNet18 models.

Visualization of the importance factors () of teachers.
Figure 2] visualizes the importance factors of three teachers
(4-bit, 6-bit, 8-bit) when using ResNetl8 architecture for
the teachers and student. The experiment is conducted on
CIFAR-100 dataset. The visualized importance factors are
at the last convolutional layers in each block of ResNet18
during training, i.e., layers 5, 9, 13, 17. They are also the
layers in which the shared knowledge is formed. Figure [2b|
shows that the highest precision teacher (8-bit) does not al-
ways give the highest contributions to the shared knowledge
at all layers. For example, at layer 9, the importance factor
of the 6-bit teacher is higher than the importance factor of
the 8-bit teacher. At the last convolutional layer (i.e., layer
17), the 8-bit teacher dominates other teachers and gives

I'The official source code of LSQ is not available. We adopt the LSQ
quantizer from an un-official implementation from https://github.
com/hustzxd/LSQuantization for our experiments.

“We are unsuccessful in reproducing results reported in LSQ [7]. For
example, without distillation for LSQ, we only achieve a result of 66.7%
for top-1 accuracy when using ResNet18 with K, = 2, K, = 2, while
in [[7]l, the authors reported 67.6% at the same setting.

most of the contributions to the shared knowledge. In addi-
tion, the importance factors are mainly updated at the early
training stage of the framework.

5. Conclusion

In this paper, we propose a novel approach for learning
low bit-width DNNs models by distilling knowledge from
multiple quantized teachers. We introduce the idea of col-
laborative learning that allows teachers to form importance-
aware shared knowledge, which will be used to guide the
student. The proposed framework also leverages the idea
of mutual learning that allows both teachers and student to
adjust their parameters to achieve an overall object func-
tion. The proposed framework allows end-to-end training
in which not only network parameters but also the impor-
tance factors indicating the contributions of teachers to the
shared knowledge are updated simultaneously. The exper-
imental results on CIFAR-100 and ImageNet datasets with
AlexNet and ResNet18 architectures demonstrate that the
low bit-width models trained with the proposed approach
achieve competitive results compared to the state-of-the-art
methods.

References

[1] Jimmy Ba and Rich Caruana. Do deep nets really need to be
deep? In NIPS, 2014.

[2] Yoonho Boo, Sungho Shin, Jungwook Choi, and Wonyong
Sung. Stochastic precision ensemble: self-knowledge distil-
lation for quantized deep neural networks. In AAAL 2021.

[3] Sangdoo Yun Jin Young Choi Byeongho Heo, Minsik Lee.
Knowledge transfer via distillation of activation boundaries
formed by hidden neurons. In AAAZ, 2019.

6442


https://github.com/hustzxd/LSQuantization
https://github.com/hustzxd/LSQuantization

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-
los. Deep learning with low precision by half-wave gaussian
quantization. In CVPR, 2017.

Zhaowei Cai and Nuno Vasconcelos. Rethinking differen-
tiable search for mixed-precision neural networks. In CVPR,
2020.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In NIPS, pages 3123—
3131, 2015.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S. Modha.
Learned Step Size Quantization. In /CLR, 2020.

Qiushan Guo, Xinjiang Wang, Yichao Wu, Zhipeng Yu, Ding
Liang, Xiaolin Hu, and Ping Luo. Online knowledge distil-
lation via collaborative learning. In CVPR, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, No-
jun Kwak, and Jin Young Choi. A comprehensive overhaul
of feature distillation. In /CCV, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling
the Knowledge in a Neural Network. In NIPS Deep Learning
and Representation Learning Workshop, 2014.

Tuan Hoang, Thanh-Toan Do, Tam V Nguyen, and Ngai-
Man Cheung. Direct Quantization for Training Highly Accu-
rate Low Bit-width Deep Neural Networks. In IJCAI, 2020.
Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran EI-
Yaniv, and Yoshua Bengio. Binarized neural networks. In
NIPS, 2016.

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,
Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and
Changkyu Choi. Learning to Quantize Deep Networks by
Optimizing Quantization Intervals With Task Loss. In CVPR,
2019.

Jangho Kim, Yash Bhalgat, Jinwon Lee, Chirag Patel, and
Nojun Kwak. QKD: Quantization-aware Knowledge Distil-
lation. ArXiv, abs/1911.12491, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NIPS, 2012.

Fengfu Li and Bin Liu. Ternary weight networks. In /CLR,
2017.

Yuang Liu, Wei Zhang, and Jun Wang. Adaptive multi-
teacher multi-level knowledge distillation. Neurocomputing,
415, 2020.

Asit Mishra and Debbie Marr. Apprentice: Using Knowl-
edge Distillation Techniques To Improve Low-Precision Net-
work Accuracy. In ICLR, 2018.

Daisuke Miyashita, Edward H. Lee, and Boris Murmann.
Convolutional Neural Networks using Logarithmic Data
Representation. CoRR, abs/1603.01025, 2016.

Seonguk Park and Nojun Kwak. Feature-level ensemble
knowledge distillation for aggregating knowledge from mul-
tiple networks. In ECAI, 2020.

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

6443

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model
compression via distillation and quantization. In /CLR, 2018.
Zhongnan Qu, Zimu Zhou, Yun Cheng, and Lothar Thiele.
Adaptive loss-aware quantization for multi-bit networks. In
CVPR, 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. XNOR-Net: ImageNet Classification Us-
ing Binary Convolutional Neural Networks. In ECCV, 2016.
Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. In /CLR, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. IJCV, 115(3):211-252,
2015.

Zagoruyko Sergey and Komodakis Nikos. Paying more at-
tention to attention: Improving the performance of convolu-
tional neural networks via attention transfer. In /CLR, 2017.
Xu Tan, Yi Ren, Di He, Tao Qin, Zhou Zhao, and Tie-Yan
Liu. Multilingual neural machine translation with knowledge
distillation. In ICLR, 2019.

Wei Tang, Gang Hua, and Liang Wang. How to Train a Com-
pact Binary Neural Network with High Accuracy? In AAAI
2017.

Jayakorn Vongkulbhisal, Phongtharin Vinayavekhin, and
Marco Visentini-Scarzanella. Unifying heterogeneous clas-
sifiers with distillation. In CVPR, 2019.

Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling
Shao, and Heng Tao Shen. TBN: Convolutional Neural Net-
work with Ternary Inputs and Binary Weights. In ECCV,
2018.

Shan You, Chang Xu, Chao Xu, and Dacheng Tao. Learning
from multiple teacher networks. In KDD, 2017.

Dongqging Zhang, Jiaolong Yang, Dongqgiangzi Ye, and Gang
Hua. LQ-Nets: Learned Quantization for Highly Accurate
and Compact Deep Neural Networks. In ECCV, 2018.

Ying Zhang, Tao Xiang, Timothy M. Hospedales, and
Huchuan Lu. Deep Mutual Learning. In CVPR, 2018.
Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. DoReFa-Net: Training Low Bitwidth Con-
volutional Neural Networks with Low Bitwidth Gradients.
CoRR, abs/1606.06160, 2016.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally.
Trained Ternary Quantization. In /CLR, 2017.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu,
and Jan Reid. Towards effective low-bitwidth convolutional
neural networks. In CVPR, 2018.



