This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Implicit Temporal Modeling with Learnable Alignment for Video Recognition

Shuyuan Tu'? Qi Dai?

Zuxuan Wu®? *  Zhi-Qi Cheng*

Han Hu®  Yu-Gang Jiang!*

!Shanghai Key Lab of Intell. Info. Processing, School of CS, Fudan University
2Shanghai Collaborative Innovation Center of Intelligent Visual Computing

3Microsoft Research Asia

Abstract

Contrastive language-image pretraining (CLIP) has
demonstrated remarkable success in various image tasks.
However, how to extend CLIP with effective temporal mod-
eling is still an open and crucial problem. Existing factor-
ized or joint spatial-temporal modeling trades off between
the efficiency and performance. While modeling temporal
information within straight through tube is widely adopted
in literature, we find that simple frame alignment already
provides enough essence without temporal attention. To
this end, in this paper, we proposed a novel Implicit Learn-
able Alignment (ILA) method, which minimizes the tempo-
ral modeling effort while achieving incredibly high perfor-
mance. Specifically, for a frame pair, an interactive point
is predicted in each frame, serving as a mutual informa-
tion rich region. By enhancing the features around the
interactive point, two frames are implicitly aligned. The
aligned features are then pooled into a single token, which
is leveraged in the subsequent spatial self-attention. Our
method allows eliminating the costly or insufficient tempo-
ral self-attention in video. Extensive experiments on bench-
marks demonstrate the superiority and generality of our
module. Particularly, the proposed ILA achieves a top-1 ac-
curacy of 88.7% on Kinetics-400 with much fewer FLOPs
compared with Swin-L and ViViT-H. Code is released at
https://github.com/Francis—Rings/ILA.

1. Introduction

Video recognition is rated as one of the most fundamen-
tal components of video understanding. Numerous down-
stream tasks heavily rely on the basic recognition model,
e.g., action localization [6, 12, 45, 46, 48], detection [7, 19,
24, 30, 73], and video object tracking [16, 57, 75]. Due to
the great potential of video technologies, it has been an ac-
tive research direction over the past few years. Various ap-
proaches have been proposed, including convolution-based
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Figure 1. Top-1 accuracy comparison with state-of-the-art meth-
ods on Kinetics-400 [28] under different FLOPs. ILA achieves
competitive results. Best viewed in color.

methods [49, 55, 53, 10, 60, 18, 17, 76] and transformer-
based methods [3, 5, 20, 15, 31, 36, 50, 61]. Recently,
Contrastive Language-Image Pretraining (CLIP) [41] has
demonstrated strong performance in video domain. Studies
[56, 27, 38, 35, 39, 64, 74] attempt to transfer the powerful
CLIP model to video tasks, which promote the recognition
performance to a brand-new level, showing its general rep-
resentation ability.

Generally, existing methods devise various temporal
modeling schemes to explore the potential of CLIP, includ-
ing the factorized [64] or frame-level [38, 27] temporal at-
tention, and temporal cross attention [35]. All these tailored
methods aim at designing lightweight temporal modules to
reuse the CLIP model. Though considerable improvements
are achieved, such temporal modeling approaches still de-
pend on the complex self-attention, which we argue is not
necessary in CLIP-based framework.

In this paper, we rethink the role of temporal modeling in
general CLIP-based video recognition framework. Unlike
existing approaches rely on temporal attention, we hypoth-
esize that important motion and action clues can be derived
when performing alignment of pairwise frames. As a result,
the costly [36, 5] or insufficient [38, 27, 35] temporal at-
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Figure 2. The proposed ILA employs an implicit and coarse mask
to align the features, which focus on the active interaction region.
We hypothesize the important motion and action clues can be de-
rived from aligned features.

tentions can be avoided, without harming the performance.
While explicit patch alignment is time consuming with low
efficiency, we prioritize only an implicit and coarse align-
ment, aiming at involving the vital temporal signals.

In light of this, we present a novel Implicit Learnable
Alignment (ILA) method for efficient video recognition.
More specifically, ILA employs learnable masks to align
features of two adjacent frames. The alignment is achieved
with the help of an interactive point that is predicted using
a convolution module conditioned on a frame pair. Based
on the point, a corresponding region is generated indicat-
ing close interactions of adjacent frames. The mask is de-
fined as the map of weights implying which region contains
vital information. We then assign higher weights around
the interactive point in the mask, while assigning lower
weights to other positions, suppressing irrelevant signals
among them. By leveraging the generated mask to weight
the frame representations, coarsely aligned features are ob-
tained, as shown in Figure 2. Note all above operations are
performed in parallel among frame pairs to boost the speed.
To efficiently and fully exploit the alignment, the aligned
features are pooled into a single mutual information token.
The token is subsequently concatenated with other frame to-
kens to perform the spatial self-attention, which implicitly
models the temporal relations between frames. Our method
is plugged into each spatial block of vision transformer and
forms the Implicit Spatio-Temporal attention (IST) block,
which allows temporal modeling without the use of the tra-
ditional temporal self-attention.

Our contributions can be summarized as follows: (1)
We propose Implicit Learnable Alignment (ILA) for video
recognition. Our implicit temporal modeling can be seam-
lessly plugged into existing vision transformer models. It
utilizes the coarse alignment as the key temporal signals,

which enables superior temporal modeling at a low com-
putational cost. (2) We show that such a simple frame
alignment already encodes the essence of temporal rela-
tions, which allow eliminating the insufficient temporal
self-attention. (3) Extensive qualitative and quantitative ex-
periments demonstrate the effectiveness and efficiency of
ILA. We achieve 88.7% on Kinetics-400 with low compu-
tation overhead. Our method builds a promising bridge for
CLIP from image processing to video recognition.

2. Related Work

Visual-language representation learning has demon-
strated remarkable success in various tasks [41, 25, 65].
By leveraging contrastive learning between language and
image, a joint representation space is learned. Particu-
larly, CLIP [41] has shown its strong power in open domain
problems, and dozens of approaches are developed, includ-
ing few-shot learning [21, 67], point cloud understanding
[68, 43], video understanding [62, 56, 27], etc.

Recently, several studies extend the existing CLIP model
to the video domain. X-CLIP [38] devises the frame-level
temporal attention to avoid high computation. EVL [35]
employs temporal convolution and cross-attention on top of
the CLIP features. ST-Adapter [39] inserts the spatiotem-
poral adapter into each block, which consists of several 3D
convolution layers. AIM [64] reuses the CLIP self-attention
as the temporal ones via an additional adapter module. Nev-
ertheless, the above methods explore lightweight adapta-
tions of CLIP using insufficient temporal attention, e.g.,
frame-level or local temporal attention. In our work, we at-
tempt to perform temporal modeling with signals emerged
from a simple alignment process, which involves the com-
prehensive temporal clues yet remains simplicity.

Video recognition is the key task in video understanding.
In the convolution era, two-stream networks [49, 55, 71]
and spatiotemporal CNNs [53, 23, 54, 60] are proposed.
The former treats spatial representations and optical flow
images as two independent modules, and the latter employs
(separable) 3D convolution to extract spatiotemporal fea-
tures. Recently, inspired by vision transformers [14, 52,
69, 50, 22], video transformers [5, 36, 15, 3, 42, 1] have
shown promising results compared to CNN methods, due to
their much larger receptive fields. TimeSformer [5] adopts
factored space time attention as a trade-off between speed
and accuracy. ViViT [3] investigates four types of tempo-
ral attention, and selected the global spatiotemporal atten-
tion as the default. Video Swin [36] uses local spatiotempo-
ral attention to model the temporal information. However,
these methods are either computationally intensive or insuf-
ficient in modeling the temporal interactions, resulting in
high model cost or unsatisfactory performance. In contrast,
our method explores how to model the complex temporal
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information with minimal effort, demonstrating the redun-
dancy in existing temporal attention models.

Temporal correspondences reflect the motions in video
and can be used in several video understanding tasks [40,
26, 29, 42, 59, 32]. For example, in video super resolution,
alignment-based methods [47, 9, 51, 58, 11, 34] have been
proposed to keep frames coherent. PSRT-recurrent [47]
points out that patch level alignment can reduce memory
cost when computing optical flow. While in video recog-
nition, the recent ATA [70] adopts Hungarian matching to
align the patches between frames, and then performs tem-
poral attention within aligned patches, followed by the de-
alignment. However, the model is significantly encumbered
with the slow serial alignment, followed by computation-
ally expensive operations to calculate temporal attention. In
contrast, our approach employs learnable masks to align
frames in parallel with an aim to involve important mo-
tion and action clues, thus benefiting the video understand-
ing. Therefore, the alignment in our method is implicit and
coarse.

3. Method

In this section, we elaborate our proposed architecture
in detail. First, we introduce the overview of our ILA in
Section 3.1. Second, we depict the concrete implicit mask-
based alignment in Section 3.2. Finally, we describe the
loss functions of our dedicated framework.

3.1. Architecture Overview

The proposed ILA model consists of several Implicit
Spatio-Temporal attention (IST) blocks. The model is
built upon a pretrained image vision transformer (ViT)
[14]. While previous methods [3, 5] mostly rely on the
ImageNet initialized models, recent approaches [38, 35,
39, 64] have revealed the powerful representation ability
of large-scale visual-language pretrained models [41, 65].
Our method follows the predecessors and is initialized
from the CLIP model [41]. Given an input video clip
X = [X1, .0 Xy X7, X € REXWX3\ve decompose
each frame into % X % non-overlapping patches{x; ; }/%,,
where T, H,W are the number of frames, height and

width, b = Z w = Y. P is the patch size. The
0 _

patches are linearly mapped to embedding vectors z;

0 0 0 0
[zg’l),...,zi)i),...,zgyh)w}, z;i) € R4

ZE?Z.) =Ex;; + e}’ ()

ti o
where E € R?*3P” s the projection matrix, and e?%* is the
spatial positional embedding. We also add a classification
token zgogls for each frame.

The structure of the IST block is illustrated in Figure

3. At each IST block ¢, we align the semantic features of
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Figure 3. The structures of three different models. (a) The divided
spatiotemporal attention in TimeSformer [5]. (b) The frame-level
temporal attention in X-CLIP [38]. (c) The alignment-based tem-
poral modeling in our ILA.
. L (6=1)(E=1)y . .

each consecutive frame pair (z; ', z,_; ’) via finding an
interactive position (as will be introduced in Section 3.2)
per frame, which serves as a mutual information (MI) rich
region. By simply weighting the feature map with higher
weights surrounding the interactive position, the aligned

features a(e), ag?l are obtained:

a,(f), ai@l = Align(zy_l),zi[:ll)). 2)
The aligned features are subsequently mean-pooled into a
single mutual information token Z,Ef,)nut, which is further
concatenated with corresponding frame to perform the spa-

tial Multi-head Self Attention (MSA):

2 e = hug(ay”), (3a)

[Z§Z>7 Zg,zznut = MSA(LN( Z§Z71)7 ZE,ZT)nut])) + [Z££71>a igyé'r)nut}v
(3b)
where LN(-) indicates layer normalization [4]. zﬁefmt is then

dropped before feeding to the MLP, and the output of block
£ is formulated as:

2 = MuLp(LN(z(")) + 209, )

Unlike common supervised frameworks that use one-hot
labels as the target, to fully leverage the pretrained visual-
language model, we follow [38] to optimize the similarity
loss supervised by textual information of categories. For-
mally, the text representation ¢ is computed by inputting
the category name to the text encoder f(-). Then a video-
specific prompt is obtained by querying ¢ among video
representation {sz)}thl (L is the number of IST blocks),
which is further used to enhance c. Finally, the model max-
imizes the cosine similarity between the video and text rep-
resentations if they are matched, otherwise minimizes it.

19938



i =) Convolution

Module

.........

N1y

[ X
Surjood xep
3urjood xep

3 |+ |T=1| Pooling
=
4 T
[=>Dataflow

® Element-wise multiplication

f 1
1 1
. i
H 1. ;
5 1 [ Frame (aligned) feature :
=3 = [Pe-1,P¢] 1 O Align mask !
1
i 1
1
{® '

Mutual information token

Interactive point

Figure 4. Details of the proposed alignment method. For each adjacent frame pair, a convolution module is leveraged to predict one
interactive point per frame, which refers to region with close interactions between frames. A mask is generated by assigning higher
weights around the interactive point, while assigning lower weights to other positions. The mask is then adopted to weight the frame
features, obtaining aligned features. Finally, the aligned features are pooled into a single mutual information token. Best viewed in color.

3.2. Implicit Mask-based Alignment

The IST block employs an implicit mask-based align-
ment component to align the semantic features between two
frames. A previous study [70] had explored patch-level
alignment through Hungarian matching [8], which however
suffered from limited performance and low efficiency. On
one hand, the explicit patch alignment focuses on patch co-
herence across frames, which can eliminate possible bene-
ficial temporal interactions. On the other hand, such align-
ment must be operated frame by frame with cubic time
complexity, incurring significant computational overhead.
In contrast, our implicit alignment attempts to enhance fa-
vorable mutual information and in turn suppress irrelevant
information with learned masks. As such, the key tempo-
ral clues are preserved while allowing flexible and efficient
computation.

Figure 4 illustrates the details of our alignment method,
which is concretely described as follows. In the ¢-th block,
we duplicate each input clip {zge_l)}th1 to form an adja-
cent input pair {(zy—l)7 zge__ll))}thg. Each pair of repre-
sentations are then concatenated along the channel dimen-
sion, which are further fed into a dedicated lightweight con-
volution module for predicting two interactive points:

pié), piejl = Conv(Concat(z,(f*l),Z,Ee_zl)))v (5)
where the convolution module Conv(-) consists of a se-
quence of convolution, normalization and pooling layers.
The interactive points p,@, pgz_)l € R? represent the most
semantically similar positions in two frames, indicating the
region with favorable mutual information. We assume the
closer the position is to the interactive point, the more tem-
poral information it involves. On the contrary, a position

that is far away from the interactive point can contain re-

dundant and irrelevant information, which should be sup-

pressed. To this end, two align masks mf/% mgz_)l € Rhxw
are generated by endowing positions closer to the interac-
tive points with higher weights. Formally, for a spatial po-

sition w in m,(f ), its weight w,, is computed by:

[, if s <4, (©)
Wu = max (0,7 — B (s —3)), if s>,

where dist(-) is the distance function, and 7, d, 8 are the

parameters. The weights of m@l are obtained by similar

calculation with p@l. Note that all the coordinates of po-

sitions are scaled to the range [—1, 1] to facilitate the mask

calculation. The aligned feature representations a,(f), age_)l

are produced by weighting the frame features with the align
masks:

al” =m{"z{"", (7a)
agé_)l = my_)lzgé:ll). (7b)

We hypothesize that the aligned feature can implicitly
preserve the mutual information and already encodes es-
sential temporal information, which could be leveraged to
model the temporal relations across frames. Neverthe-

less, directly replacing zgé_l) with the aligned feature age)

would prejudice the performance, since a,E‘” focuses more
on the interaction region while ignoring the spatial corre-

lations. Instead, we consider agl) as a specific temporal

signal. Thus, we averagely pool the feature into a sin-
gle mutual information token ifﬁwt (Eq. (3a)), which
is further utilized in spatial multi-head self attention (Eq.
(3b)). Note that since we duplicate the input clip to form

frame pairs, there are two aligned features for frame z,E“),
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2 <t <T — 1. For example, agf) can be computed from
both pairs (zy—l), zge__ll)) and (zﬁ_ll)7 zy—l)). In our im-
plementation, only age) computed from (zﬁéil),zgﬁl)) is
exploited for pooling to the mutual information token.

Our simple alignment implicitly introduces cross-frame
cross-location interactions to the model, thus capturing
semantically rich actions. We reveal that the primitive
pairwise interaction already contains sufficient information
for modeling the complex temporal relations, which al-
lows eliminating the costly temporal self-attention in video.
Therefore, there is no additional temporal modeling design
in IST block.

3.3. Training

The loss function of our framework consists of two parts.
The first part is the supervised prompt-enhanced similarity
loss, where the cosine similarity between video representa-
tion v and text representation c is computed by:

L L
v = Avg(MsA([z{"),, ... 25°0.]).
<v,c> (8)
cos(v,c) = —————.
[Vl - [lell

Here Avg(-) is the average pooling. The model maximizes
cos(v,c) if v and ¢ are matched, otherwise minimizes it.
The second part is the alignment loss for aligning pair-
wise frames in each IST block. Particularly, we align the
mean-pooled feature, i.e. the mutual information token

zﬁ@m as in Eq. (3a), using the cosine similarity:
N NG
() < Zg,gnuhzg—)l,mut >
0s; " = ~(0) ~(0) ’ (9)
Hzt,nLutH : Hzt—l,mutH
where cosy) is the similarity score for ¢-th frame pair in

block ¢. The loss function [, is formulated by summing up
the similarity scores:

L T
lo=—>_ cosi”. (10)
=1 t=2

Finally, we optimize Eq. (8) and Eq. (10) simultaneously
with a loss weight parameter ~.

4. Experiments

We evaluate our method on two datasets: Kinetics-
400 [28] and Something-Something-V?2 [37]. Four variants
are considered, namely the ILA model based on ViT-B/32,
ViT-B/16, ViT-L/14, and ViT-L/14@336, respectively. We
sparsely sample 8 or 16 frames to form a video clip, both in
training and inference. Additional implementation, hyper-
parameter details, and more experiments are provided in the
supplementary materials.

4.1. Main Results

Kinetics-400. In Table 1, we report the performance of our
proposed method on Kinetics-400. Comparisons with re-
cent state-of-the-art approaches are listed, including meth-
ods with random initialization, pretrained on ImageNet-
1k/21k pretraining, and pretrained with web-scale data.

Compared to methods pretrained on ImageNet [13],
ILA-VIiT-L with 8 frames outperforms the best competitor
MViTv2-L [33] by 1.9% in accuracy with 4 x fewer FLOPs.
We also observe ILA surpasses other baselines with large
margins, e.g., Swin [36] and TimeSformer [5]. It indicates
the strong representations of the CLIP model, showing the
great potential of large-scale visual-language pretraining.

In comparison with methods pretrained on web-scale im-
ages, e.g. JFT-300M/3B, ILA exhibits significant advan-
tages. Our ILA-ViT-L exceeds ViViT-H by 3.2% with 12x
less computation, and exceeds CoVeR by 0.8%. Note that
CoVeR uses much more training data (3B images) com-
pared to CLIP (400M image-text pairs).

In addition, when compared with the recent CLIP-based
methods, ILA achieves the best performance. ILA-ViT-
B with 16 frames surpasses the typical CLIP-based model
ActionCLIP-B by 1.9% with 2x fewer FLOPs. More-
over, our largest model outperforms the best competitors
X-CLIP-L and EVL-L by 1% with comparable or much
less computation. Though MTV-H performs a little higher
(89.1%) than ILA (88.7%), it employs the WTS dataset
that contains 70M video-text pairs with about 17B images,
which are much larger than that in CLIP. The observations
show that our alignment-based temporal modeling could
capture more comprehensive motion clues than the insuf-
ficient temporal attention of X-CLIP and EVL, without in-
creasing the computational burden.

Something-Something-V2. Table 2 reports the compar-
isons on SSv2. This dataset focuses on the human object
action recognition, in which the open domain semantics are
limited. We assume the rich textual representation of CLIP
language branch can help less. Therefore, we use the cross-
entropy loss with one-hot labels, instead of the visual-text
similarity loss in Eq. (8). We also increase the number
of convolution layers for better alignment. Moreover, we
freeze the weights of CLIP for stability.

SSv2 is a motion-heavy dataset and largely depends
on temporal modeling. Methods pretrained on CLIP usu-
ally produce weaker results compared to those pretrained
on Kinetics-400 . For example, X-CLIP-B only achieves
57.8% in accuracy, while MViTv1-B produces much higher
results (64.7%) with similar computation. Similarly, the re-
sult of EVL-ViT-B is also unsatisfactory (61.7%). This phe-
nomenon can be attributed to three factors. (1) The temporal
modeling in X-CLIP and EVL is insufficient. In pursuit of
high efficiency, X-CLIP and EVL adopt frame-level or local
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Table 1. Comparison with the state-of-the-arts on Kinetics-400. The FLOPs per view of each method is reported. We categorize methods

by different pretraining data.

Model Pretrain Frames Top-1 Top-5 Views FLOPs (G)
Random initialization

MViTv1-B [15] - 64 81.2 95.1 3%3 455
ImageNet pretraining

Uniformer-B [31] IN-1K 32 83.0 95.4 4x3 259
TimeSformer-L [5] IN-21K 96 80.7 94.7 1x3 2380
ATA [70] IN-21K 32 81.9 95.5 4x3 793
Mformer-HR [40] IN-21K 16 81.1 95.2 10x3 959
Swin-L (@384px) [36] IN-21K 32 84.9 96.7 10x5 2107
MViTv2-L (@312px) [33] IN-21K 40 86.1 97.0 5%3 2828
Web-scale image pretraining

ViViT-H/16x2 [3] JFT-300M 32 84.8 95.8 4x3 8316
TokenLearner-L/10 [44] JFT-300M - 85.4 96.3 4x3 4076
CoVeR [660] JFT-3B - 87.2 - 1x3 -
Web-scale language-image pretraining

ActionCLIP-B/16 [56] CLIP-400M 32 83.8 96.2 10x3 563
A6 [27] CLIP-400M 16 76.9 93.5 - -
EVL-ViT-B/16 [35] CLIP-400M 16 83.6 - 1x3 296
EVL-ViT-L/14 [35] CLIP-400M 16 87.0 - 1x3 1350
EVL-ViT-L/14@336px [35] CLIP-400M 32 87.7 - 1x3 6068
X-CLIP-B/16 [38] CLIP-400M 16 84.7 96.8 4x3 287
X-CLIP-L/14 (@336px) [38] CLIP-400M 16 87.7 97.4 4x3 3086
AIM-ViT-L/14 [64] CLIP-400M 16 87.3 97.6 1x3 1868
ST-Adapter-ViT-L/14 [39] CLIP-400M 16 86.9 97.6 1x3 1375
MTV-H [63] WTS 32 89.1 98.2 4x3 3705
ILA-ViT-B/32 CLIP-400M 8 81.3 95.0 4x3 40
ILA-ViT-B/32 CLIP-400M 16 82.4 95.8 4x3 75
ILA-ViT-B/16 CLIP-400M 8 84.0 96.6 4x3 149
ILA-ViT-B/16 CLIP-400M 16 85.7 97.2 4x3 295
ILA-ViT-L/14 CLIP-400M 8 88.0 98.1 4x3 673
ILA-ViT-L/14@336px CLIP-400M 16 88.7 97.8 4x3 3130

temporal attention on top of the CLIP features, which in-
evitably harms the results. (2) Tuning the weights of CLIP
is very challenging, where small perturbations can easily
prejudice the primal CLIP. We assume the reason is that
SSv2 is a dataset with relatively small semantics. Even as-
signing a very small learning rate to CLIP weights and a
large one to other weights, the model is still prone to en-
counter exploding gradients. This phenomenon reduces the
flexibility of parameter tuning, which leads to the insuffi-
cient training of the model. (3) The pretraining on Kinetics
can bring significant advantages compared to pretraining on
CLIP data.

As shown in the table, ILA-ViT-B (8 frames) achieves a
comparable 65.0% with MViTv1-B, which is much higher
than X-CLIP and EVL. Moreover, ILA-ViT-L/14@336px
obtains promising performance referring to 70.2% on top-1
and 91.8% on top-5. It outperforms EVL-VIiT-L/14@336px
by 2.2% on top-1 with 2x fewer frames and over 2x fewer
FLOPs. It indicates that the proposed implicit alignment

can comprehensively model the temporal information with
a low computational cost.

4.2. Ablation Study

Generalization to different backbones. To demonstrate
ILA is a versatile module and can be plugged into vari-
ous backbones, we experiment with a CLIP-based model
(EVL-ViT-B/16, 8frames [35]) as well as an ImageNet-
based architecture (TimeSformer-ViT-B/16, 8frames [5]).
For EVL, we insert our alignment into the CLIP backbone,
while keep others unchanged. For TimeSformer, we replace
the temporal attention with the proposed alignment module.
The results are summarized in Table 3. The utilization of
ILA results in a 0.6% and 1.8% performance gain for the
CLIP-based and ImageNet-based backbones, respectively,
demonstrating ILA is compatible with modern networks.

Effectiveness of implicit alignment. We compare ILA
with ATA [70], an alternative of patch alignment, and other
temporal modeling approaches, i.e. X-CLIP [38], Divided
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Table 2. Performance comparison with the state-of-the-arts on Something-Something-V2. The FLOPs per view of each method is reported.

Model Pretrain Frames Top-1Acc. Top-5Acc. Views FLOPs (G)
ViViT-L [3] IN-21K+K400 16 65.4 89.8 1x3 903
TimeSformer-L [5] IN-21K 96 62.4 81.0 1x3 2380
TimeSformer-HR [5] IN-21K 16 62.2 78.0 1x3 1703
ATA [70] IN-21K 32 67.1 90.8 4x3 793
MViTvl1-B [15] K400 16 64.7 89.2 1x3 70.5
MViTv1-B [15] K400 32 67.1 90.8 1x3 170
Mformer-B [40] IN-21K+K400 16 66.5 90.1 1x3 370
Mformer-L [40] IN-21K+K400 32 68.1 91.2 1x3 1185
Mformer-HR [40] IN-21K+K400 64 67.1 90.6 1x3 959
X-CLIP-B/16 [38] CLIP-400M 8 57.8 84.5 4x3 145
AIM-ViT-B/16 [64] CLIP-400M 8 66.4 90.5 1x3 208
AIM-ViT-L/14 [64] CLIP-400M 32 69.4 92.3 1x3 3836
EVL-ViT-B/16 [35] CLIP-400M 16 61.7 - 1x3 345
EVL-ViT-L/14 [35] CLIP-400M 32 66.7 - 1x3 3216
EVL-ViT-L/14@336px [35] CLIP-400M 32 68.0 - 1x3 3090
ILA-ViT-B/16 CLIP-400M 8 65.0 89.2 4x3 214
ILA-ViT-B/16 CLIP-400M 16 66.8 90.3 4x3 438
ILA-ViT-L/14 CLIP-400M 8 67.8 90.5 4x3 907
ILA-VIT-L/14@336px CLIP-400M 16 70.2 91.8 4x3 3723

Table 3. Generalization ability of ILA on various visual backbones
for Kinetics-400.

Model Pre-training  Acc. (%) FLOPs
EVL [35] CLIP-400M 82.9 150G
EVL +ILA CLIP-400M 83.5 162G
TimeSformer [5] IN-21K 78.0 196G
TimeSformer + ILA IN-21K 79.8 164G

Table 4. Effectiveness of implicit alignment on Kinetics-400. Av-
erage Pooling indicates forming the mutual information token in
Eq. (3a) without alignment.

Model Acc. (%) FLOPs
Baseline 79.8 37G
X-CLIP [38] 80.4 39G
CLIP + Divided ST Attention [5] 80.6 58G
CLIP + Temporal Shift [56] 80.1 37G
CLIP + ATA [70] 81.0 60G
CLIP + Average Pooling 80.4 39G
CLIP + ILA 81.3 40G

Spatio-Temporal Attention [5], Temporal Shift [56], and
Average Pooling. The baseline is employing the loss in Eq.
(8) for CLIP without temporal modeling. Average Pool-
ing indicates forming the mutual information token in Eq.
(3a) without alignment. Table 4 shows the comparison re-

sults. We have the following observations: (1) ILA out-
performs the baseline by 1.5% in top-1 accuracy with mi-
nor additional computational cost. It indicates that ILA can
promote CLIP for video tasks effectively. (2) Compared
to ATA that uses patch-level movement for alignment with
a cubic complexity, ILA offers better results with nearly
2x fewer FLOPs through learning an implicit mask with
a quadratic complexity. (3) ILA also outperforms other ap-
proaches like X-CLIP using temporal attention and tempo-
ral shifting, highlighting the effectiveness of ILA. (4) ILA
achieves better results compared with average pooling, indi-
cating that the improvement results from our implicit align-
ment instead of the pooling operation.

Table 5. Comparison of mutual information on Kinetics-400.
MI (EMD) refers to the average Wasserstein Distance between
neighbouring frames.

Model Acc. (%) MI (EMD)
Baseline 79.8 0.56
X-CLIP [38] 80.4 0.51
CLIP + Divided ST Attention [5] 80.6 0.47
CLIP + ATA [70] 81.0 0.30
CLIP + ILA 81.3 0.13

Comparison of mutual information. In our work, we
assume that ILA can enhance the mutual information be-
tween frames, thereby boosting the recognition perfor-
mance. Here, we compare the mutual information of ILA
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in the last visual layer with other approaches. In partic-
ular, we calculate the averaged Wasserstein Distance (i.e.
Earth Mover’s Distance) [2] between adjacent frames which
is negatively correlated to mutual information. Table 5
presents the results. We observe that models with additional
alignment have lower Wasserstein Distance and higher per-
formance, suggesting that the alignment can indeed corre-
late adjacent frames.

Impact of different aligning strategies. ILA aligns two
consecutive frames and here we experiment with the fol-
lowing alignment strategies: (1) Align-First: each frame is
aligned with the first frame; (2) Align-Middle, each frame
is aligned with the middle frame. We can observe in Table 6
that anchor frame based alignments are inferior to adjacent
alignment. The reason may be that it is not reliable to align
two frames that are too far away.

Table 6. Ablation study of different aligning strategies on K-400.

Aligning Strategy  Topl. (%) Top5. (%)
Align-First 80.7 94.5
Align-Middle 80.8 94.6
Adjacent frame 81.3 95.0

Impact of inserting locations of alignment. We divide the
visual branch of ViT-B/32 (12 blocks) into 4 groups, each
containing 3 blocks. We plug our ILA into each group indi-
vidually for exploring the impact of different inserting loca-
tions. Table 7 shows the results. Per-block insertion of ILA
outperforms the baseline CLIP by 0.6%, 0.7%, 0.6% and
0.5% in accuracy, respectively. We see that inserting ILA
into shallow blocks performs slightly better than inserting it
into deep ones, showing that aligning low-level features can
encode more temporal clues.

Table 7. Comparisons of different inserting locations.

Configuration Acc. (%) FLOPs
None 79.8 37G
Block 1-3 80.4 38G
Block 4-6 80.5 38G
Block 7-9 80.4 38G
Block 10-12 80.3 38G
ILA (Block 1-12) 81.3 40G

Operators in alignment module. To validate the effective-
ness and efficiency of the 2D convolution module in ILA,
we experiment with an alternative choice of window atten-
tion in Eq. (5). Table 8 depicts the comparison results. It
demonstrates that window attention requires high computa-
tional resources and is difficult to optimize, producing lim-
ited results.

Table 8. Evaluation of different operators in Eq. (5). We exper-
iment with an alternative of window attention with size 3 x 3,
instead of the convolution.

Basic Operators Acc. (%) FLOPs
2D Convolution 81.3 40G
Window Attention 80.8 114G

Impact of mutual information token. Here we discuss
different approaches of exploiting the aligned features. ILA
employs a mutual information (MI) token by pooling and
concatenation on aligned features. Another choice is the
element-wise addition between the frame and the aligned
features. In addition, one can also directly concatenate the
tokens of aligned features to frame tokens, resulting 2x to-
kens in spatial attention.

The results are shown in Table 9. It can be observed that
both element-wise addition and direct concatenation per-
form inferior to the ILA. Furthermore, their inference laten-
cies are much higher than ILA. The plausible reason is that
the aligned features are produced by simple mask weighting
of frame features, thus containing much redundant infor-
mation when performing addition or concatenation. Mean-
while, the pooling operation can effectively remove such
irrelevant information and boost the model performance.

Table 9. Ablation study of mutual information (MI) token. ILA
employs a MI token by pooling & concatenation with aligned fea-
tures. Other choices include element-wise addition, or direct con-
catenation.

Implementation Acc. FLOPs Latency (ms)
Element-wise Addition 80.2 44G 64.029
Direct Concat. 80.6 45G 58.548
Pooling & Concat. (ILA) 81.3 40G 47.075

Impact of CLIP initialization. In order to eliminate the
influence of CLIP weights, we initialize the weights of ILA
with ViT-B/16 pretrained on IN-21K, as well as removing
the text branch and using the one-hot labels instead, which
is same to the Swin. The results on K400 are shown on Ta-
ble 10. ILA outperforms Swin by 0.6% on Top-1 accuracy
under the same pretraining setting, indicating the superior-
ity of ILA. The results demonstrate that our proposed model
obtains the promising performance due to ILA itself instead
of language encoder of CLIP or CLIP pretraining weights.

Table 10. Comparison results between ILA and Swin under the
same weight parameters initialization.

Model Pretraining R-1 R-5 Views

Swin-B/32f
ILA (ViT-B/16-32f)

IN-21K 82.7 955 4x3
IN-21K 833 958  4x3
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Figure 5. Visualization of mutual information over time. We draw tracking borders around each interactive point in a fixed size, which the
tracking borders along temporal dimension depict the temporal corresponding mutual information captured by ILA.

Ablation of text representation tuning. In terms of
ILA architecture, We follow X-CLIP to adopt the video-
conditioned text representation tuning. For fair compar-
isons, we run an additional ablation by removing it on K400
with ViT-B/32-8f. In Table 11, we can see that ILA still per-
forms better than X-CLIP even without the video-specific
tuning.

Table 11. Ablation results of text representation tuning.

Model

w/o video-specific text ~ w/ video-specific text

X-CLIP 79.6 80.4
ILA 80.8 81.3

4.3. Additional Comparison Results

Zero-shot results on SSv2. We train ILA and other CLIP-
based competitors on K400 with ViT-B/16-8f and evaluate
on SSv2 in a zero-shot setting, by training an additional lin-
ear classification layer. The results are depicted on Table
12. We see that ILA outperforms two typical competitors
X-CLIP and EVL by 5.8% and 8.7% on Top-1 respectively,
highlighting the effectiveness of ILA.

Table 12. Zero-shot results on SSv2.

Model Pretraining Topl (%) TopS (%)
X-CLIP [38] CLIP-400M 38.1 68.1
EVL [35] CLIP-400M 35.2 65.4
AIM [64] CLIP-400M 39.1 68.7
ILA CLIP-400M 43.9 71.8

Performance on additional benchmark. We evaluate
ILA, X-CLIP [38] and EVL [35] on the temporal under-
standing benchmark [72] which is without static biases. The
results are shown in Table 13. All models are pretrained on
CLIP-400M (ViT-B/16-8f). Top-1 (T) and Top-1 (S) refer
to the traditional accuracy on Temporal-50 and Static-50,
respectively. TS refers to the relative gain of the model on
temporal classes compared to static ones (Temporal score).
In Table 13, we can see that our ILA outperforms X-CLIP

by 6.0% on Top-1 and by 3.8% on temporal score. ILA also
exceeds the best temporal score on RGB modality (5.2%,
R3D) in the paper [72]. The result highlights the effective-
ness of ILA on the temporal understanding benchmark.

Table 13. Performance comparisons on additional benchmark
without static biases.

Model Top-1(T) Top-5(T) Top-1(S) TS
X-CLIP 75.9 94.1 73.6 2.3
EVL 70.7 92.5 68.3 2.4
ILA 81.9 97.4 75.8 6.1

4.4. Visualization of mutual information

We visualize the interactive point at each video frame by
drawing the bounding boxes centered at the points, as il-
lustrated in the Figure 5. The bounding boxes indicate the
regions with rich favorable mutual information, where the
moving boxes show the potential of abilities on tracking
moving objects.

5. Conclusion

We introduced Implicit Learnable Alignment (ILA), a
novel temporal modeling method for video recognition.
ILA performs frame alignment so as to encode motion in-
formation in lieu of the widely used temporal attention oper-
ation. Particularly, ILA employs only an implicit and coarse
feature alignment via a weighting mask. By finding the ac-
tive interaction position in the frame, the mask is generated
with higher weights around that position, and lower weights
on others. Extensive experiments demonstrates the effec-
tiveness and efficiency of ILA, showcasing its promising
adaption ability to CLIP and compatibility with modern vi-
sual backbones.
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