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Abstract

Vision-Dialog Navigation (VDN) requires an agent to ask
questions and navigate following the human responses to find
target objects. Conventional approaches are only allowed
to ask questions at predefined locations, which are built
upon expensive dialogue annotations, and inconvenience
the real-word human-robot communication and cooperation.
In this paper, we propose a Self-Motivated Communication
Agent (SCoA) that learns whether and what to communi-
cate with human adaptively to acquire instructive informa-
tion for realizing dialogue annotation-free navigation and
enhancing the transferability in real-world unseen environ-
ment. Specifically, we introduce a whether-to-ask (WeTA)
policy, together with uncertainty of which action to choose,
to indicate whether the agent should ask a question. Then,
a what-to-ask (WaTA) policy is proposed, in which, along
with the oracle’s answers, the agent learns to score ques-
tion candidates so as to pick up the most informative one
for navigation, and meanwhile mimic oracle’s answering.
Thus, the agent can navigate in a self-Q&A manner even in
real-world environment where the human assistance is often
unavailable. Through joint optimization of communication
and navigation in a unified imitation learning and reinforce-
ment learning framework, SCoA asks a question if necessary
and obtains a hint for guiding the agent to move towards the
target with less communication cost. Experiments on seen
and unseen environments demonstrate that SCoA shows not
only superior performance over existing baselines without
dialog annotations, but also competing results compared
with rich dialog annotations based counterparts.

1. Introduction
The richness and generalizability of natural language have

significantly boosted the prosperity of navigation tasks in
which the agents are encouraged to navigate in the indoor
environment to reach the target [1, 27, 3, 34]. In particular,
the Vision-Dialog Navigation (VDN) [26, 35, 20, 18], where
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Figure 1: Our Self-Motivated Communication Agent (SCoA)
learns whether and what to communicate with human adap-
tively to acquire instructive information for guiding the navi-
gation without using any dialog annotations.

the question-answering dialogs can be conducted in a human-
robot communication manner to facilitate the navigation, has
attracted increasing attention in the field of visual navigation.

Cutting-edge practice implements VDN on the premise
of tremendous dialog annotations and the dialog occurs in
hand-crafted locations during navigation. For example, [26,
35] require to annotate question-answering pairs at fixed
locations of the environment in advance to assist the agent
training. On the contrary, Roman et al. [20] utilized these
dialog annotations to pre-train a language model, which is
then plugged into the navigation model for dialog generation
at every given step interval. In [18], dialog happens only if
the agent enters a pre-annotated assistant zone where strong
language instructions and image views are provided by the
oracle to guide the agent to move towards the target.

Despite the progress, the massive dialog annotations re-
quired in existing researches result in two major drawbacks
that barricade the real-world deployment of the trained
agents: First, the communication is inflexible since the
agents are only allowed to ask questions at predefined lo-
cations that may contain bias induced by annotators, not
at the time when communication is needed. Second, the
learning cost is expensive since existing methods are built
upon large amounts of labor-intensive dialog annotations. To
solve the above problems, we argue that the agent should be
able to adaptively communicate with the oracle if necessary,
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and such communication should be built upon no or fewer
human-annotated dialogs to fit real-world applications.

To this end, we propose Self-Motivated Communication
Agent (SCoA), which, as illustrated in Fig. 1, learns to decide
whether and what to communicate with human to acquire
instructive feedback for guiding the navigation when unsure
where to go. As shown in Fig. 2, our SCoA comprises two
major components including a whether-to-ask (WeTA) mod-
ule which learns to predict whether to communicate with
the oracle, and a what-to-ask (WaTA) module which learns
to generate an informative question for moving towards the
target. Specifically, WeTA aims to learn a probability which
is used to suggest the agent communicating with the oracle
when it is uncertain of which action to take. We propose to
model the uncertainty by computing the entropy of the action
probability distribution, which in turn serves as the pseudo
label to guide the learning of our WeTA. As for WaTA, it
first generates some question candidates on-the-fly based
on a small set of direction-related sentences as references1

to get rid of the expensive dialog annotations. By consider-
ing the features of language information of the target and
vision information of the views, we build a question score
vector to pick up the most beneficial question for navigation.
By considering the features of question candidates and the
optimal next-step view observed by the oracle, an answer
score vector is further introduced, which plays as a teacher
to guide the learning of the question scores. In this way, our
agent can navigate in a self-Q&A manner even when the
human is invisible in real-world unseen environment.

Beyond the uncertainty constraint on whether to ask at
each navigation step, we formulate the communication as
well as the navigation in a unified imitation learning and
reinforcement learning framework, which is further equipped
with a communication frequency penalty and a navigation
progress reward. As result, the agent can reach the target
with as little communication cost as possible.

The main contributions in this paper are three-fold:

• Our SCoA tackles the challenging problem of inflexi-
ble and annotation-dependent communication for real-
world vision-dialog navigation by learning to adaptively
determine whether and what to communicate with hu-
man to acquire instructive feedback for navigation.

• The communication and navigation are jointly opti-
mized in the unified framework comprising imitation
learning and reinforcement learning, to drive the agent
to reach target position with less communication cost.

• The performance of our SCoA is demonstrated to be
superior over the baselines without using dialog anno-
tations, and even comparable to the counterparts with

1The size of our sentence set is around twenty, a magnitude reduction
compared with the ten thousand dialog annotations in existing researches.

rich dialog annotations, which proves the ability of our
SCoA to generate informative questions for navigation.

2. Related Work
Vision-Language Navigation. Different from VDN task

which implements navigation in a robot-human commu-
nication manner, the vision-language navigation (VLN)
[1, 27, 3, 25, 33, 34, 12] requires the agent to interpret a
once-for-all natural-language instruction to reach the tar-
get. To foster the community development, Anderson et
al. [1] introduced the first VLN benchmark considering both
photo-realistic environment and human natural language.
Since then, various methods have been proposed. RCM [27]
enforces cross-modal grounding and the self-supervised imi-
tation learning is combined to enhance the generalizability.
To overcome the limited seen environment, Fried et al. [3]
introduced a speaker model and a panoramic representation
to augment the data, while EnvDrop [25] produces “unseen”
triplets of environment, path and instruction to mimic unseen
environment. New paths and instructions are generated in
a self-supervised manner. Hao et al. [5] complemented a
pre-trained model on a large amount of image-text-action
triplets for generic representations of visual environment and
language instructions.

Object Navigation. Object navigation requires an agent
to explore the room and find the target object accurately and
efficiently without cooperation with human users [28], which
differentiates from robot-human VDN tasks as well. Shen et
al. [23] devised a fusion scheme for realizing diverse visual
representations including RGB features, depth features, seg-
mentation features and so on. To learn viewpoint and target
invariant visual servoing for local mobile robot navigation,
Li et al. [11] trained the Q-learning based network in an
end-to-end manner, which also helps improve the robust-
ness of the performance. A hierarchical two-layer structure
was proposed by Ye et al. [31] in which the high-level layer
plans over the sub-goal, and the low-level layer plans over
the atomic actions to achieve the goal position. In [14], the
3D knowledge graph and sub-targets are integrated into a
unified reinforcement learning framework.

Learning by Asking Questions. Recent advances be-
yond the navigation also learn to accomplish their tasks by
asking questions to the oracle [16, 10, 21, 30, 20, 2, 22]. For
example, Vries et al. [2] introduced GuessWhat?! game to
locate an unknown object in the given image by asking a
series of object-related questions. Shen et al. [22] learned
to caption images through a lifetime by generating caption-
related questions. A decision-maker is introduced to learn
when to ask questions by implicitly reasoning about the un-
certainty of the agent and expertise of the teacher. Similar
to the traditional VDN tasks [26, 18, 35, 20], these develop-
ments also suffer inflexible communication and expensive
annotation cost. In contrast, our SCoA differs from these
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Figure 2: Training overview of our SCoA. At each step, WeTA learns to predict a probability bt of asking, supervised by the
entropy of action distribution pa

t measuring the agent’s uncertainty of which action to take. If asking, WaTA firstly generates
question candidates, and then learns question scores αQ

t for these candidates considering the language embedding t̃o and the
vision features Xt. Besides, the answer scores αA

t for the questions provided by the oracle who observes the optimal next
step, are used to guide αQ

t . As such, our agent can navigate in a self-Q&A manner even the oracle is unavailable in real world.

methods in not only the task domain, but also the commu-
nication scheme where whether and what to communicate
with the oracle are self-adaptive without the involvement of
labor-intensive dialog annotations.

3. Methodology

3.1. Preliminaries

Problem Definition. Given a house scan and a starting
position, the agent is required to find a target to in a goal
region by communicating with the oracle when it gets con-
fused and has no idea what to do. The agent needs to decide
whether and what to ask without any question annotations in
this paper. We encode the target to via the word embedding
to get feature t̃o ∈ Rdw and dw is set to 300. At the t-th step,
the agent receives a panoramic view which is then divided
into N = 36 sub-images according to their camera angles of
heading and elevation. Each image is represented by a fea-
ture vector xt,i ∈ Rdf extracted from the pre-trained Resnet-
152 [6], appended with an embedding about heading and
elevation of the camera. The df is set to 2048. The whole fea-
ture set is denoted as Xt = {xt,i}Ni=1 ∈ RN×df . The agent
predicts an action at from an action setAt, which consists of
current navigable viewpoints. Besides, the navigable view-
point feature set is denoted as Zt = {Zt,i}|A|

i=1 ∈ R|At|×df ,
also extracted from the ResNet-152.

Learning Framework. The VDN problem in existing
researches [26, 35, 20] is often optimized with the reinforce-
ment learning where only the navigation action prediction

is organized as a policy πµ (see Sec. 3.3). To support our
motive of self-motivated communication to realize dialogue
annotation-free navigation in real-world unseen environment,
we further introduce a whether-to-ask (WeTA) policy πϕ

(see Sec. 3.2.1) and a what-to-ask (WaTA) policy πκ (see
Sec. 3.2.2). As shown in Fig. 2, SCoA first decides whether
to ask for help via WeTA policy when unsure where to go. If
asking, the agent generates a question to ask via WaTA pol-
icy. During training, the oracle distills its knowledge about
the optimal next step to guide the agent to mimic oracle’s
answering. This enables our agent to navigate in a self-Q&A
manner even when the oracle is unavailable in real-world
applications. The communication is jointly optimized with
navigation in a unified imitation learning and reinforcement
learning framework, driving the agent to reach target position
with less communication cost (see Sec. 3.4).

3.2. Self-Motivated Communication Agent

The agents in existing works [26, 18, 35, 20] are only
allowed to ask questions at predefined locations, leading
to not only labor-intensive learning cost, but also inflexible
human-robot communication in real-world application. To
allow the agent to adaptively decide whether and what to
ask, we propose a self-motivated communication scheme by
introducing two policies of whether to ask and what to ask.

3.2.1 Whether to Ask

To fit the real-world application, the agent should be com-
mitted to adaptively decide whether to ask a question during
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navigation rather than manually pre-defined. To that effect,
at the t-th step, our agent learns to predict the probability
of asking a question, bt ∈ {0, 1}, based on its current state
ht with a whether-to-ask policy πϕ(bt|ht)

2, which is con-
structed by a Multi-Layer Perceptron (MLP), followed by
the Gumbel-Softmax (GS) [4, 7]. The bt is formulated as:

bt = GS
(
MLP(ht)

)
. (1)

During navigation, the agent needs to choose an action so
as to move towards the target to. We denote the action prob-
ability distribution at the t-th step as pa

t . It is intuitive that
the decision is hard to be made if pa

t tends to be a uniform
distribution where each action has the same probability to
be chosen, which on the contrary brings more uncertainty.
In this case, the agent will get confused and need auxiliary
information to choose a wise action. This inspires us that pa

t

can be a valuable hint to guide the learning of our whether-
to-ask policy πϕ. To this end, we introduce the entropy as
a metric [18] to model the uncertainty of pa

t , and define the
pseudo label yt to supervise the whether-to-ask policy πϕ:

yt = one_hot
(
[ H(pa

t ) < ϵ ]+
)
, (2)

where [·]+ returns 1 if the condition of its input satisfies,
and 0 otherwise; H(·) returns the entropy of its input and
ϵ ∈ [0, 1] is a pre-defined threshold. The motivation behind
this is that a high entropy indicates that pa

t would be more
close to the uniform distribution. As such, the agent is
considered to be uncertain about which action to choose, and
thus needs to communicate with the oracle for help. Then,
the learning of our whether-to-ask policy πϕ is regularized
via the cross-entropy loss between bt and yt:

argmin
πϕ

LWeTA(bt,yt;πϕ) = −Eyt

[
log bt

]
. (3)

3.2.2 What to Ask

Our SCoA learns to adaptively decide not only whether to
ask, but also what to ask. To that effect, the WaTA first gen-
erates a question candidate set on-the-fly, and then picks up
the most beneficial question to ask, which significantly dif-
ferentiates our SCoA from existing works [26, 35, 20] where
the question annotations are manually given in advance.

We train an encoder-decoder model [29] which generates
a question for each image patch in the current panoramic
view. The encoder takes as its input the image patch fea-
ture xt,i ∈ Xt associated with two keywords including
“[Obj]” for object label and “[Dir]” for object location. Note
that “[Obj]” and “[Dir]” are detected by an object local-
ization network [32]. The decoder produces a question
set Ct = {ct,i}Ni=1 for the sub-images in the panoramic

2When t = 0, the state h0 is initialized by the target feature t̃o.

view at the t-th navigation step. To this end, instead of
resorting to the expensive dialog annotations, we train the
encoder-decoder model using a small set of direction-related
sentences, which are collected by filling the detected key-
words into question templates (e.g.,“Should I go [Dir] to
the [Obj]?”) widely-used for asking directions3. Then, as
shown in Fig. 2, we encode Ct via a word embedding layer,
followed by a one-layer LSTM to generate question features
Dt = {dt,1, ...,dt,N} ∈ Rdl×N , and dl is set to 512.

We implement the policy πκ(α
Q
t |̃to,Xt,Dt) consid-

ering both language and vision information. Specifically,
αQ

t ∈ RN is a question score vector measuring the impor-
tance of each question feature dt,i ∈Dt from two aspects:
(1) language information which measures the correlation
between the question candidates and the target embedding
t̃o, and (2) vision information which measures the corre-
lation between the question candidates and view features
xt,i ∈Xt. We define the αQ

t as:

αQ
t = σ

(
σ
(
Dt(̃toW

l)T
)︸ ︷︷ ︸

Language information

+

Vision information︷ ︸︸ ︷
σ
(∑

i

Dt(xt,iW
v)T

) )
,

(4)

where σ(·) represents the softmax function, W l ∈ Rdw×dl

and W v ∈ Rdf×dl are learnable weights.
Besides, we also introduce an answer score αA

t ∈ RN

measuring the confidence of the oracle giving a positive an-
swer embedding st,i ∈ Rdl (e.g., “Yes, you should.”) to each
question dt,i ∈ Dt. Specifically, we measure the correla-
tion between the question candidates and the image features
Xopt

t = {xopt
t,i }Ni=1 ∈ RN×df of the optimal panoramic

view at the next step, given by the oracle to compute αA
t as:

αA
t = σ(

N∑
i=1

Dt(x
opt
t,i W

a)T ), (5)

where W a ∈ Rdf×dl is the trainable weights.
The αA

t indeed can be viewed as knowledge of the future
step from the oracle’s observation. Thus, we propose to
distill αA

t to assist the learning of question score αQ
t for the

agent using the KL-divergence as:

argmin
πκ

LWaTA(α
Q
t ,α

A
t ;πκ)

= EαQ
t

[
logαQ

t

]
− EαQ

t

[
logαA

t

]
.

(6)

The insights of our distillation are two-fold: First, during
training, the oracle, who has a great store of knowledge about
the optimal future step, offers affirmative responses, acting
as a teacher to guide the agent to score the questions. Second,
by optimizing the KL-divergence, the difference between the

3Please refer to the supplementary material for more details.
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question score and answer score is minimized. Therefore,
αQ

t plays as not only the question score, but also reflects the
confidence of a “Yes” answer to the corresponding question.
Through this, our agent can navigate in a self-Q&A manner
without the involvement of the oracle in real world.

3.3. Where to Go

Our self-motivated communication enables the agent to
adaptively decide whether and what to ask when commu-
nicating with the oracle. The next lies in which action the
agent should take (where to go) so as to navigate towards to
target with the policy πµ(at|ht, at−1,Xt,Zt).

As distinguished from existing works, our action predic-
tion first takes into consideration the highest-score question
feature and the corresponding answer embedding for the
agent to update its current state ht as:

ht ← ht + bt,0 · [dt,i; st,i]W
d,

s.t. i = argmax
i

αQ
t,i ,

(7)

where [· ; ·] is the concatenation operation, and W d ∈
R2dl×dl is learnable weights. The rationale behind this is
that the question score vector αQ

t constructed in Sec. 3.2.2 re-
flects the relative importance between questions by merging
the language and vision information. Thus, in comparison
with others, the question endowed with the highest score,
can receive the most positive response (e.g., “Yes”) and is
the most informative for moving towards the target.

We compute the attention X̃t between ht and Xt, which,
along with previous action at−1 and ht, is regarded as the
input of a LSTM model to further update the state ht as
ht ← LSTM([X̃t; at−1],ht). The action at is predicted
from a softmax function with the navigable viewpoint feature
set Zt and the updated state ht as:

pa
t = σ(ZtW

pht), (8)

where W p ∈ Rdf×dl are trainable weights. Then, the action
at ∈ At is sampled following the probability distribution
pa
t . The objective function of the action decoder is defined

as:

argmin
πµ

LNav(p
a
t ,p

a∗

t ;πµ) = −Epa∗
t

[
log pa

t

]
, (9)

where pa∗

t is a one-hot vector denoting the teacher’s actions.

3.4. Model Optimization

In this section, we detail our model optimization for learn-
ing the self-motivated agent including the imitation learning
which learns to imitate the behavior of given teachers, and
the reinforcement learning which overcomes the misleading
actions towards the teachers [25], as shown in Fig. 3.
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Figure 3: Optimization of our SCoA. The imitation learn-
ing (LIL) decides whether to ask, what to ask and where
to go at each navigation step. The reinforcement learning
(LRL) drives the agent towards the target position with less
communication cost. (Best view in color)

Imitation Learning. The agent is trained with imitation
learning to mimic the behaviors suggested by the uncertainty
score yt which denotes whether to ask, oracle’s answer αA

t

which denotes what to ask, and teacher’s action pa∗

t which
denotes where to go. To this end, our objective for imitation
learning is defined as:

argmin
πθ

LIL

(
(bt,yt), (α

Q
t ,α

A
t ), (p

a
t ,p

a∗

t );πθ

)
, (10)

where πθ = {πϕ, πκ, πµ}, LIL =
∑

t LWeTA(bt,yt;πϕ)+

LWaTA(α
Q
t ,α

A
t ;πκ) + LNav(p

a
t ,p

a∗

t ;πµ). Our imitation
learning considers both the communication and navigation,
the optimization of which helps the agent learn whether to
ask, what to ask and where to go, so as to move towards the
target, eventually.

Reinforcement Learning. We implement the on-policy
reinforcement learning using Actor-Critic algorithm [17].
The actor is the policy πθ with the parameters θ, which
conducts actions in an environment. The critic computes
state values V πθ to help assist the actor in learning. Besides,
we introduce two types of rewards for the optimization of our
policy models. At the t-th step, we assign policies πκ and
πµ one progress reward rpt following [25], and policy πϕ a
penalty (negative reward) rat which constrains the frequency
of asking questions. Specifically, rat is assigned with -1 when
the agent decides to ask, and 0 otherwise; rpt is assigned with
either +2 if the agent closes to the target, or -2, otherwise.
Thus, we can obtain the joint reward as rjointt = rpt + rat ,
which has four states (-3, -2, +1 and +2) at each navigation
step as illustrated in Fig. 3.

Then, given the state-action-reward (ht, at, r
joint
t ) of

the observation at the t-th step, the A2C algorithm com-
putes the accumulated reward Rjoint

t =
∑T

i=t γ
i−t(rjointt )+

γT−tV (hT+1), where γ ∈ [0, 1) is the discount factor and
T is the maximum number of navigation actions. To obtain
higher rewards, the agent explores to predict correct naviga-
tion actions while raising fewer questions in our framework.
The objective for reinforcement learning is defined as:

argmin
πθ

LRL(at,pt, R
joint
t ,ht;πθ), (11)
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where LRL = −
∑

t atlog(pt)(R
joint
t − V πθ (ht)) +

λRL

∑
t(R

joint
t + γV πθ (ht+1) − V πθ (ht))

2, and λRL is
the weight for balancing the actor and critic. Finally, the
overall objective for our SCoA can be formulated as:

argmin
πθ

LRL + LIL. (12)

4. Experiment
4.1. Settings

Datasets. We evaluate our SCoA on the CVDN [26]
and REVERIE [19]. CVDN contains 2,050 human-human
navigation instances across 83 MatterPort houses. These
instances are further split up into 7k shorter navigation in-
stances, including 4,742 instances for training, 382 instances
for seen validation, 907 instances for unseen validation, and
the others for test. Besides, three types of paths are provided
in CVDN including: (1) Navigator paths which are anno-
tated by humans; (2) Oracle paths which denote the shortest
paths; (3) Mixed paths which consist of either the navigator
path if the end nodes of the navigator and oracle are the
same, and the oracle path, otherwise. We implement most
experiments using 7k shorter navigation instances except for
Tab. 2 with 2,050 navigation. As for REVERIE, it has 21,702
instructions which are then partitioned into: a training set
with 10,466 instructions over 2,353 objects, a seen validation
set with 4,944 instructions over 953 objects, and an unseen
validation set with 3,573 instructions over 525 objects.

Metrics. Four metrics are used, including: (1) Goal
Progress (GP), which indicates the average progress towards
the target; (2) Success Rate (SR), which denotes the per-
centage of reaching the position within three meters of the
target. (3) Oracle Success Rate (OSR), which represents the
percentage of reaching the position closest to the target. (4)
Success rate weighted by Path Length (SPL).

Implementation Details. Our model is implemented us-
ing Pytorch and trained on a Tesla P100 for 20,000 iterations.
For the planner path, the maximum step number T and the
batch size are set to 20 and 80; otherwise, we set T to 80
and batch size to 40. The Adam optimizer [9] with learning
rate of 0.0001 is adopted for updating.

4.2. Ablation Study

This part of experiments mainly focuses on evaluating the
effects of our whether-to-ask module (WeTA) and what-to-
ask module (WaTA), respectively. Without loss of generality,
all experiments are conducted on CVDN using the oracle
paths and we report the performance w.r.t. the Goal Progress
(GP). Note that, we report the performance of our SCoA
based on a self-Q&A manner where the oracle is removed
during testing to mimic the real-world environment.

Effect of WeTA. We start with the analysis of the
whether-to-ask module. To that effect, we compare our

Method
Val Seen

(m)
Val Unseen

(m)
Non-learning Agent
Never 4.1 1.73
Random 5.03 1.74
Always 5.41 1.78
Learning Agent
IC3Net [24] 4.83 1.76
When2com [13] 4.88 1.86
SCoA (Ours) 5.93 1.94

Table 1: We replace the whether-to-ask (WeTA) module in
our SCoA with existing (non-)learning methods to analyze
its effectiveness. Following [24, 13], we show the Goal
Progress (m) on CVDN using the oracle path.

Method
Val Seen

(m)
Val Unseen

(m)
Shortest Path 32.8 29.3
RMMN=3 [20] 14.0 5.6
RMMN=3 + Oracle Stopping [20] 16.8 8.9
SCoA (Ours) 19.52 11.19

Table 2: We replace the what-to-ask (WaTA) module in our
SCoA with existing question generation mechanism [20]
to analyze its effectiveness. Following [20], we show the
Goal Progress (m) on CVDN with 2,050 navigation instances
using the mixed path.

agent against non-learning agents and learning agents. Non-
learning agents: (1) Never: the agent never communicates
with the oracle. (2) Random: the oracle chooses to request
help with a probability of 0.4, which is also the statistical
result of our SCoA. (3) Always: the oracle requests help at
each navigation step. Learning agents: (1) IC3Net [24]:
uses the softmax layer to indicate whether to ask. (2)
When2com [13]: requests help based on the correlation be-
tween the key and query transformed from the observations.
Tab. 1 shows our experimental results. Our WeTA signifi-
cantly outperforms the other methods in both seen and un-
seen environments. Besides, comparing to the non-learning
“Always”, WeTA asks questions if necessary, which requires
less communication cost. Comparing to When2com [13]
where a complex multi-agent perception system has to be
built, our WeTA merits in its simplicity yet effectiveness.

Effect of WaTA. Then, we analyze the effects of our
what-to-ask module from two aspects: the question gener-
ation mechanism and the selected questions. Tab. 2 shows
comparison between existing question generation mecha-
nism [20] and our WaTA. The “shortest path” plays as the
upper bound of expected performance. As can be observed,
compared with RMM [20] which trains an encoder-decoder
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Method
Dialog

Annotation
Val Seen Val Unseen Test Unseen

Oracle Navigator Mixed Oracle Navigator Mixed Oracle Navigator Mixed
Shortest Path ✗ 8.29 7.63 9.52 8.36 7.99 9.58 8.06 8.48 9.76
Random ✗ 0.42 0.42 0.42 1.09 1.09 1.09 0.83 0.83 0.83
Vision Only ✗ 4.12 5.58 5.72 0.85 1.38 1.15 0.99 1.56 1.74
SCoA (Ours) ✗ 5.93 6.70 7.11 1.94 2.91 2.85 2.49 3.37 3.31
Seq2seq [26] ✓ 4.48 5.67 5.92 1.23 1.98 2.10 1.25 2.11 2.35
CMN [35] ✓ 5.47 6.14 7.05 2.68 2.28 2.97 2.69 2.26 2.95
PREVALEN [5] ✓ - - - 2.58 2.99 3.15 1.67 2.39 2.44

Table 3: Performance comparison between our SCoA and existing methods. We show the Goal Progress (m) on CVDN using
the three provided types of paths.
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Figure 4: Effect of selected questions by WaTA. We show
the percentages of selected questions that guide the agent
to approach to (deviate from) the target at different training
iterations (seen validation on CVDN using the oracle path).

framework to generate questions using dialogue annotations,
our WaTA yields a supreme performance even when the
oracle stopping [20] is combined with RMM. This well
demonstrates the feasibility and effectiveness of our question
generation using a small set of direction-related sentences.

To analyze the effectiveness of each selected question, we
calculate the percentages of questions that guide the agent
to approach (deviate from) the target. As shown in Fig. 4,
the percentage of “approaching” goes up as the network
training, denoting that our agent learns to pick up beneficial
questions. Finally, a high percentage of 62.4% is derived,
showing that our agent has a strong ability to distinguish
informative question for moving towards the target.

Effect of Loss Regularization. In Sec. 3.2.1 and
Sec. 3.2.2, we introduce the cross-entropy loss LWeTA and
KL-divergence LWaTA to learn the modules of whether to
ask and what to ask. In Tab. 4, we respectively remove one
of them and show the performance. As can be seen, the
performance of SCoA drops significantly without LWeTA or
LWaTA, which well demonstrates the importance of these
two loss constraints in learning our self-motivated agent.

4.3. Performance Analysis

In this subsection, we conduct an experimental compari-
son with existing VDN methods on CVDN and REVERIE.
Then, we dive into an in-depth insight into how the commu-

Method
Val Seen

(m)
Val Unseen

(m)
SCoA w/o LWeTA 5.49 1.87
SCoA w/o LWaTA 5.78 1.86
SCoA (Ours) 5.93 1.94

Table 4: Performance analyses without LWeTA and LWaTA.
We show the Goal Progress (m) on CVDN using oracle path.

nication and navigation in our SCoA are mutually optimized.
Results on CVDN. We first build three baseline methods:

(1) The Shortest Path Agent takes the shortest path to the
goal which denotes the upper bound of navigation perfor-
mance. (2) The Random Agent chooses a random heading
and moves 5 steps forward each time. (3) The Vision Only
agent ignores language input. Besides, three existing com-
petitors with rich dialog annotations, including Seq2seq [26],
CMN [35] and PREVALEN [5], are introduced for compari-
son. In Tab. 3, our SCoA shows an overwhelming superiority
over the baselines without dialog annotations on both seen
and unseen environments over different types of paths. Par-
ticularly, SCoA even shows comparable results to these with
dialog annotations as inputs, which well demonstrates the
ability of SCoA to generate informative questions for navi-
gation. Furthermore, we add the oracle during testing, and
the results w.r.t. oracle path, navigator path and mixed path
further increase to 6.74, 7.00 and 8.02 on seen validation,
and 2.30, 2.64 and 3.28 on unseen validation.

Results on REVERIE. Tab. 5 shows the performance
comparison on REVERIE. The compared methods take the
annotated instructions as inputs on both the training set and
validation set, while our SCoA gets rid of the instructions.
Instead, it generates dialogs on-the-fly. As can be seen,
compared with the recent advance [19], our SCoA performs
the best in all three evaluation metrics.

Progressive-Suppressive Learning. In Fig. 5, we de-
tailedly analyze the learning of our SCoA by counting the
number of asking questions and the gained joint reward at dif-
ferent navigation steps. We observe that our SCoA learns to
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Method
Val Unseen

SR ↑ OSR ↑ SPL ↑
Random 1.76 11.93 1.01
R2R Teacher Forcing [1] 3.21 4.94 2.80
R2R Student Forcing [1] 12.88 4.20 8.07
RCM [27] 9.29 14.23 6.97
Self-Monitor [15] 8.15 11.28 6.44
FAST-Short [8] 10.08 20.48 6.17
Navigator-Pointer [19] 14.40 28.20 7.19
SCoA (Ours) 16.94 29.29 8.2

Table 5: Performance comparison on the unseen validation
of the REVERIE. Three metrics, including SR (%), OSR
(%) and SPL (%), are introduced.
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Figure 5: The normalized number of asking questions v.s.
the joint reward at different navigation steps on the unseen
validation of CVDN during inference using the mixed path.

navigate in a progressive-suppressive manner. Specifically,
when our agent gets stuck in where to go, it tends to ask
more questions (e.g., point A). This results in the increase
of reward (e.g., point B), which indicates that our agent is
progressively approaching to the target. However, the in-
crease of reward on the contrary suppresses the agent to ask
questions (e.g., point C) to reduce the communication cost
since it has received rich knowledge about the surroundings
of its current position. However, as the agent goes beyond
the surroundings, more auxiliary information is necessary
to support the ongoing exploration. Otherwise, the agent
would pick up wrong actions, resulting in decreasing reward
(e.g., point D). To take back the right direction, the agent
again resorts to asking more questions (e.g., point E). Thus,
our SCoA implements the progressive-suppressive learning
in a closed loop until the agent reaches the target with less
communication cost.

Trajectory Visualization. We visualize one trajectory
example of our SCoA in Fig. 6 to see how our SCoA per-
forms the VDN task, along with the highest-score questions
and the joint rewards (see Fig. 3). As can be observed, the
agent receives negative rewards when it deviates from the

Should I go straight?

Is the direction towards the 
door the correct direction?

A

B

C D

+1

-3

+2
-2

-3

+1 +2 +2 +2

+1

Figure 6: Trajectory visualization of our SCoA. The red dot-
ted line represents the trajectories the agent has traveled, and
the yellow star indicates the target position. The rectangle
box contains the asked questions by the agent and their corre-
sponding scene images. The digits denote the joint rewards
at each step. (Best view in color)

target position. Particularly, the agent gets confused at point
A, and then asks a question of “Should I go straight?”, which
however still leads the agent to a wrong direction thus a
penalty of -3 is received. The agent keeps asking questions
until choosing a right action at point B which returns a re-
ward of +1. Then, it stops communicating with the oracle at
point C since the agent knows the surroundings and starts
to move towards the target, during which, a reward of +2
is received. The ongoing moving leads the agent out of the
surrounds of point C. Thus, the agent asks one more question
of “Is the direction towards the door the correct direction” at
point D for its further exploration.

5. Conclusion
In this paper, we propose the Self-Motivated Commu-

nication Agent (SCoA) to tackle the challenging problem
of inflexible and annotation-dependent communication for
real-world vision-dialog navigation by learning to adaptively
decide whether and what to communicate with human to
acquire instructive information for guiding the navigation.
By jointly learning to communicate and navigate, SCoA ex-
plores to balance the communication benefit and cost. SCoA
significantly outperforms existing baseline methods without
dialog annotations, and even achieves comparable perfor-
mance to the counterparts that use rich dialog annotations as
inputs. Our SCoA gets rid of the limitation of expensive lan-
guage annotations and shows great potential for navigating
in real and open-ended environments.

1601



References
[1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark

Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and
Anton Van Den Hengel. Vision-and-language navigation:
Interpreting visually-grounded navigation instructions in real
environments. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
3674–3683, 2018. 1, 2, 8

[2] Harm de Vries, Florian Strub, Sarath Chandar, Olivier
Pietquin, Hugo Larochelle, and Aaron Courville. Guess-
what?! visual object discovery through multi-modal dialogue.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5503–5512, 2017. 2

[3] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach,
Jacob Andreas, Louis-Philippe Morency, Taylor Berg-
Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell.
Speaker-follower models for vision-and-language navigation.
In Proceedings of the Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 3318–3329, 2018. 1, 2

[4] Emil Julius Gumbel. Statistical theory of extreme values and
some practical applications: a series of lectures, volume 33.
1954. 4

[5] Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and
Jianfeng Gao. Towards learning a generic agent for vision-
and-language navigation via pre-training. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13137–13146, 2020. 2, 7

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. 3

[7] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016. 4

[8] Liyiming Ke, Xiujun Li, Yonatan Bisk, Ari Holtzman, Zhe
Gan, Jingjing Liu, Jianfeng Gao, Yejin Choi, and Siddhartha
Srinivasa. Tactical rewind: Self-correction via backtracking
in vision-and-language navigation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 6741–6749, 2019. 8

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[10] Jiwei Li, Alexander H Miller, Sumit Chopra, Marc’Aurelio
Ranzato, and Jason Weston. Learning through dialogue inter-
actions by asking questions. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2017.
2

[11] Yimeng Li and Jana Košecka. Learning view and target
invariant visual servoing for navigation. In Proceedings of
the International Conference on Robotics and Automation
(ICRA), pages 658–664, 2020. 2

[12] Bingqian Lin, Yi Zhu, Yanxin Long, Xiaodan Liang, Qixiang
Ye, and Liang Lin. Retreat for advancing: Dynamic rein-
forced instruction attacker for robust visual navigation. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2021. 2

[13] Yen-Cheng Liu, Junjiao Tian, Nathaniel Glaser, and Zsolt
Kira. When2com: Multi-agent perception via communication
graph grouping. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4106–4115, 2020. 6

[14] Yunlian Lv, Ning Xie, Yimin Shi, Zijiao Wang, and
Heng Tao Shen. Improving target-driven visual navigation
with attention on 3d spatial relationships. arXiv preprint
arXiv:2005.02153, 2020. 2

[15] Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan AlRegib, Zsolt
Kira, Richard Socher, and Caiming Xiong. Self-monitoring
navigation agent via auxiliary progress estimation. arXiv
preprint arXiv:1901.03035, 2019. 8

[16] Ishan Misra, Ross Girshick, Rob Fergus, Martial Hebert,
Abhinav Gupta, and Laurens Van Der Maaten. Learning by
asking questions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
11–20, 2018. 2

[17] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In Proceedings of the International
Conference on Machine Learning (ICML), pages 1928–1937,
2016. 5

[18] Khanh Nguyen and Hal Daumé III. Help, anna! visual nav-
igation with natural multimodal assistance via retrospective
curiosity-encouraging imitation learning. In Proceedings of
the Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 684–695, 2019. 1, 2, 3, 4

[19] Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang
Wang, Chunhua Shen, and Anton van den Hengel. Reverie:
Remote embodied visual referring expression in real indoor
environments. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
9982–9991, 2020. 6, 7, 8

[20] Homero Roman Roman, Yonatan Bisk, Jesse Thomason, Asli
Celikyilmaz, and Jianfeng Gao. Rmm: A recursive mental
model for dialog navigation. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), pages 1732–1745, 2020. 1, 2, 3, 4, 6, 7

[21] Mrinmaya Sachan and Eric Xing. Self-training for jointly
learning to ask and answer questions. In Proceedings of the
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies (NAACL-HLT), pages 629–640, 2018. 2

[22] Tingke Shen, Amlan Kar, and Sanja Fidler. Learning to cap-
tion images through a lifetime by asking questions. In Pro-
ceedings of the IEEE International Conference on Computer
Vision (CVPR), pages 10393–10402, 2019. 2

[23] William B Shen, Danfei Xu, Yuke Zhu, Leonidas J Guibas,
Li Fei-Fei, and Silvio Savarese. Situational fusion of visual
representation for visual navigation. In Proceedings of the
IEEE International Conference on Computer Vision (CVPR),
pages 2881–2890, 2019. 2

[24] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar.
Learning when to communicate at scale in multiagent cooper-
ative and competitive tasks. arXiv preprint arXiv:1812.09755,
2018. 6

1602



[25] Hao Tan, Licheng Yu, and Mohit Bansal. Learning to navigate
unseen environments: Back translation with environmental
dropout. In Proceedings of the Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), pages 2610–
2621, 2019. 2, 5

[26] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke
Zettlemoyer. Vision-and-dialog navigation. In Proceedings of
the Conference on Robot Learning (CoRL), pages 394–406,
2020. 1, 2, 3, 4, 6, 7

[27] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao,
Dinghan Shen, Yuan-Fang Wang, William Yang Wang, and
Lei Zhang. Reinforced cross-modal matching and self-
supervised imitation learning for vision-language navigation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 6629–6638, 2019. 1,
2, 8

[28] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian.
Building generalizable agents with a realistic and rich 3d
environment. arXiv preprint arXiv:1801.02209, 2018. 2

[29] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua
Bengio. Show, attend and tell: Neural image caption genera-
tion with visual attention. In Proceedings of the International
conference on machine learning (ICML), pages 2048–2057.
PMLR, 2015. 4

[30] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi
Parikh. Visual curiosity: Learning to ask questions to learn
visual recognition. In Proceedings of the Conference on Robot
Learning (CoRL). PMLR, 2018. 2

[31] Xin Ye and Yezhou Yang. Efficient robotic object search via
hiem: Hierarchical policy learning with intrinsic-extrinsic
modeling. arXiv preprint arXiv:2010.08596, 2020. 2

[32] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2921–2929, 2016. 4

[33] Fengda Zhu, Xiwen Liang, Yi Zhu, Qizhi Yu, Xiaojun Chang,
and Xiaodan Liang. Soon: Scenario oriented object navi-
gation with graph-based exploration. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2

[34] Fengda Zhu, Yi Zhu, Xiaojun Chang, and Xiaodan Liang.
Vision-language navigation with self-supervised auxiliary rea-
soning tasks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
10012–10022, 2020. 1, 2

[35] Yi Zhu, Fengda Zhu, Zhaohuan Zhan, Bingqian Lin, Jian-
bin Jiao, Xiaojun Chang, and Xiaodan Liang. Vision-dialog
navigation by exploring cross-modal memory. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10730–10739, 2020. 1, 2, 3, 4, 7

1603


