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Abstract

Hough voting, as has been demonstrated in VoteNet, is
effective for 3D object detection, where voting is a key step.
In this paper, we propose a novel VoteNet-based 3D detector
with vote enhancement to improve the detection accuracy
in cluttered indoor scenes. It addresses the limitations of
current voting schemes, i.e., votes from neighboring objects
and background have significant negative impacts. Before
voting, we replace the classic MLP with the proposed At-
tentive MLP (AMLP) in the backbone network to get better
feature description of seed points. During voting, we design
a new vote attraction loss (VALoss) to enforce vote centers
to locate closely and compactly to the corresponding object
centers. After voting, we then devise a vote weighting mod-
ule to integrate the foreground/background prediction into
the vote aggregation process to enhance the capability of
the original VoteNet to handle noise from background vot-
ing. The three proposed strategies all contribute to more
effective voting and improved performance, resulting in a
novel 3D object detector, termed VENet. Experiments show
that our method outperforms state-of-the-art methods on
benchmark datasets. Ablation studies demonstrate the ef-
fectiveness of the proposed components.

1. Introduction
3D object detection is an active research topic in com-

puter vision with a wide range of applications, such as

autonomous driving [29], robotic manipulation [39] and

high-level semantic SLAM (Simultaneous Localization and

Mapping) [45]. However, locating and classifying objects

from scanned 3D point clouds in cluttered indoor scenes

is still a challenging problem, without color information in

particular. Although many efforts have been made to im-

prove its performance over past few years [44, 32, 2, 27, 42],

driven by the success of deep learning techniques, the per-
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Figure 1. Comparison with VoteNet. (a) VoteNet. (b) Our ap-

proach. Our approach enhances the voting procedure from three

aspects (i.e., seed enhancement, vote attraction and vote weight-

ing) to get better proposal features.

formance is still far from being satisfactory.

Recently, a deep Hough voting network, VoteNet [28],

was proposed to detect 3D objects directly from scanned

point clouds, and has achieved significant improvements

on several benchmark datasets. This method first samples

seed points from the whole point cloud, and then extracts

high-dimensional features of these seed points using Point-

Net++ [30]. Then, inspired by Hough voting in 2D object

detection, these seed points produce vote centers based on

the extracted features. The voting process is formulated as

center point regression and implemented via MLP (Multi-

Layer Perceptron). These votes are then clustered and ag-

gregated to generate object proposal features, which are

used to classify objects and regress their locations. Voting,

as the essence in VoteNet, plays a vital role in information

aggregation for object detection.

However, there are two disturbing factors in voting using

the current VoteNet architecture, i.e., object-noise: votes

from adjacent objects, and background-noise: votes from

background seed points. As shown in Figure 1, VoteNet

will choose a vote as the cluster center, and then aggregate

information with no difference from all the votes within the

bounding sphere to form the aggregated feature for the cen-
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Figure 2. Motivation of the proposed (a) vote attraction loss and (b) vote weighting. (a) The original vote loss could make votes locate

loosely around the object center, while our attraction loss increases the compactness of these votes. (b) Foreground prediction can make

the detector re-weight votes during vote aggregation to suppress the impact of background noisy votes.

ter. However, since the objects in indoor scenes are highly

cluttered and close to each other, this simple clustering strat-

egy may include votes from other adjacent objects. More-

over, as VoteNet does not apply any constraints or penalty to

votes from background seed points, these background votes

may also be included in the subsequent vote aggregation.

In addition to the two disturbing factors, the voting effec-

tiveness also highly depends on the seed point features. We

argue that the classic MLP features, which merely depend

on the last layer of MLP, lack information from the former

layers, leading to loss of useful information.

As a solution, in this work we propose VENet (Vot-

ing Enhancement Network), a 3D object detector based on

VoteNet. VENet improves the voting procedure in all the

three stages (i.e., before, during and after), by enhancing

feature description of seed points and handling noisy votes

from both adjacent objects and background patches. Specif-

ically, before voting, we first propose an Attentive MLP

(AMLP) to enhance seed point feature description by adap-

tively considering multi-layer information in classic MLP.

Then, during voting, to relieve the negative impact of votes

from adjacent objects, we expect the votes not only to be

close to their ground truth centers, but also to be close to

each other if they belong to the same object, as illustrated in

Figure 2(a). We thus design a novel loss function for seed

point voting, called vote attraction loss, to decrease the in-

ternal distances between votes associated with the same ob-

ject centers. The increased compactness reduces the possi-

bility of gathering information from adjacent objects, i.e.,

the object-noise. Lastly, after voting, to reduce the impact

of meaningless and misleading votes from background seed

points, we propose to predict foreground probability of seed

points, and weight their votes accordingly during aggrega-

tion. That is, we expect votes from seed points with higher

foreground probabilities to contribute more during vote ag-

gregation. As illustrated in Figure 2(b), this strategy can

suppress the negative impact of background votes, i.e., the

background-noise.

The contributions of the work can be summarized as:

• We propose a voting enhancement architecture to im-

prove the voting procedure for Hough voting-based 3D

object detection from point clouds, which obtains new

state-of-the-art performance on public datasets.

• Before voting, we introduce an AMLP (Attentive

MLP) to enhance the feature encoding of seed points.

• During voting, we design a vote attraction loss (VA-

Loss) to enforce votes to locate compactly and closely

to the corresponding object centers.

• After voting, we present a vote weighting module to

integrate foreground seed point prediction into the vote

aggregation to reduce background noise.

2. Related Work
Many efforts have been made to automatically detect 3D

objects in both indoor and outdoor scenes [38, 15, 12, 26,

47, 32, 46, 22], which can be divided into 3 categories based

on the input modalities: 2D, 2D-3D and 3D.

For outdoor scenes, merely taking 2D images as in-

put, GS3D [17] proposed a purely monocular approach

for obtaining coarse cuboid boxes for the objects resulted

from reliable 2D detection. M3D-RPN [1] and some other

works [40, 36] were also proposed for 3D object detection

from monocular 2D images. In multi-sensor processing,

i.e., 2D-3D, [4] and [14] extracted features from LiDAR

bird-view and camera images, and projected 3D proposals

to the corresponding 2D feature maps for the task of 3D

object detection. ContFuse [20] further introduced a con-

tinuous fusion layer to perform feature fusion for camera

image and LiDAR bird-view feature combination. Laser-

Net++ [23] fused image data with LiDAR data, and ex-

panded object detection to 3D semantic segmentation.

Fusing 2D-3D features heavily relies on 2D detectors.

Instead, some works [50, 5, 24, 6, 34] have been proposed

to process 3D point data independently. VoxelNet [50] uni-

fied feature extraction and bounding box prediction into a
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single-stage, end-to-end trainable deep network, which re-

moved the need of manual feature engineering for LiDAR

point clouds. Likewise, PointPillars [16] used a grid-based

feature description with a feature pyramid network. The

whole input point cloud is divided into pillars, whose fea-

tures are combined with anchors to perform joint regression

and classification. Instead of projecting a point cloud to

voxels, PointRCNN [33] directly generated 3D proposals

from point clouds, and then introduced further refinement

for proposals. Fast PointRCNN [5] utilized both a voxel

representation and the raw point cloud data to exploit re-

spective advantages for 3D object detection. LaserNet [24]

used a fully convolutional network to predict a multi-modal

distribution for each point and then fused these distributions

to generate a prediction for each object.

For indoor scenes, works in [21], [29] and [31] inte-

grated both 2D and 3D, and both object and scene con-

text information for indoor 3D object detection from RGB-

D data. In addition, PointFusion [43] introduced a novel

framework, in which the image data and the raw point

cloud data are independently processed by a CNN (Con-

volutional Neural Network) and a PointNet architecture re-

spectively, followed by a fusion network combining their

output results. Instead of utilizing both 2D and 3D infor-

mation, [35] took 3D point data only, and utilized the ge-

ometric and hierarchical contextual information for 3D ob-

ject detection. Recently, with only 3D input, VoteNet [28]

introduced a deep learning-based Hough voting strategy for

3D object detection from point clouds. These methods lo-

cally select a set of seed points to generate votes and then

combine these votes to generate object proposals. Further,

ImVoteNet [27] was built on top of VoteNet and proposed a

3D detection architecture specialized for single-view RGB-

D scenes, which fused 2D votes in images and 3D votes

in point clouds. However, this method may be sensitive to

lighting conditions by using image information. Moreover,

both works [28, 27] ignored negative impact from other

adjacent objects and background seed points in the voting

stage. As a result, the subsequent vote aggregation could

include noisy votes, which affect the final object detection

results. In this work, we target a more effective voting strat-

egy to enhance vote aggregation and tackle these issues by

vote attraction and foreground weighting, using geometry

information alone.

3. Method
Our VENet inherits the deep Hough voting network

(VoteNet) [28] for indoor scene object detection, and im-

proved it with the proposed AMLP (Section 3.1), vote at-

traction loss (Section 3.2), and the vote weighting module

(Section 3.3).

The original VoteNet [28] can be summarized into three

modules, i.e., voting module, vote aggregation module and

object proposal module. The voting module is to regress

object centers from each of the seed points, and the vote ag-

gregation module is to combine features from different seed

points to vote for the object centers. The object proposal

module then classifies and regresses the accurate locations

and sizes of 3D objects from the aggregated features.

Let si = [xi; fi] be a seed point, where xi ∈ R
3 and

fi ∈ R
C are the coordinates and extracted features re-

spectively. According to the set abstraction mechanism in

PointNet++ [30], fi encodes the information of the seed

point si and its surrounding points. In the voting module,

VoteNet uses an MLP layer to simulate the voting proce-

dure via regressing the offset Δxi ∈ R
3, from which the

predicted object center yi is obtained by adding the offset,

i.e., yi = xi +Δxi. A vote regression loss Lvote−reg is de-

fined to supervise the predicted object centers to approach

the ground truth ones.

Lvote−reg =
1

|Spos|
∑
i

‖Δxi −Δx∗
i ‖ 1 [si on object ]

(1)

where Δx∗
i is the ground truth offset, 1 [si on object ] indi-

cates whether a seed point si is on an object surface, and

Spos is the set of all the positive seeds, i.e., those on the

object surfaces.

In Equation 1, due to the use of the indicator function,

seeds on background were discarded during training. How-

ever, during testing, there are no constraints or guidance ap-

plied to background seeds (i.e., those not on object surfaces)

to restrain their voting. On the other hand, for votes from

the foreground (object) seed points, the regression loss in

Equation 1 enforces the closeness of the predicted centers to

their ground truth ones, but not the ‘compactness’ between

those belonging to the same objects, which may result in

some predicted centers adversely affecting the aggregation

for other objects. Therefore, the above vote regression loss

is unable to handle noisy votes. Moreover, the seed point

feature extraction using PointNet++ is through the classic

MLP layers which lack the information from the former lay-

ers. As a result, the extracted features are not informative

enough to support effective voting.

3.1. Attentive MLP

We first introduce an improved MLP, termed Attentive

MLP (AMLP), which is integrated into the backbone of

PointNet++ to get better feature description of seed points.

In VoteNet, the feature description of each seed point is

obtained by simply pooling the feature vectors of its neigh-

boring points at the last layer, which can be seen as the clas-

sic MLP, as shown in Figure 3(a). However, as indicated

in [13], this simple pooling operation does not take into con-

sideration of low- and mid-level features which contain rich

local information. PF-Net [13] addresses this by designing a
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Figure 3. Comparison of different MLP-based feature extraction architectures. (a) Classic MLP gets the pooled feature vector in the last

level; (b) CMLP combines pooled features from multiple levels; (c) the proposed AMLP first assigns different weights to pooled features

according to their importance, and then adaptively combines them. (d) Level Attention Block (LAB). In this illustration, we assume the

number of levels L = 3.

Combined-MLP (CMLP). As shown in Figure 3(b), CMLP

pools the feature vectors at multiple MLP layers, and then

concatenates the pooled features. It improves the perfor-

mance of shape classification with the combined features, as

demonstrated in their experiments. However, we argue that

the combination of multi-layer features could be more adap-

tive. Therefore, we propose an Attentive MLP (AMLP),

which adaptively combines multi-layer features by learning

the weights for the pooled features before concatenation, as

shown in Figure 3(c). That is, our AMLP introduces adap-

tive weights to better measure the importance of features at

different layers inside MLP.

Specifically, for each point p, we first pool features from

each of the layers, generating (c1, · · · , cL). L is the layer

number of perceptrons in MLP. Then instead of directly

concatenating the pooled features like PF-Net, we insert a

Level Attention Block (LAB) at each layer, as shown in Fig-

ure 3(d). In each LAB, a pooled feature vector cl is first fed

into two FC (fully connected) layers with output sizes of

C/4 and C. ReLU is used as the activation function for the

first FC layer. Sigmoid function is used to normalize the

output weights to be in the range of (0, 1). cl is then mul-

tiplied by the learned weights W l and added to itself, i.e.,

cl = cl +W l ∗ cl (2)

where cl is the enhanced feature vector. The enhanced fea-

ture vectors from all layers are then concatenated to form

the combined feature vector which then goes through a fur-

ther FC layer to output the feature description of the desired

size (the same size as the PointNet++ output).

C = FC(Concat(c1, · · · , cl)) (3)

In this way, AMLP enhances the feature descriptions of

seed points.

3.2. Attraction Loss

To reduce the number of false votes from adjacent ob-

jects in vote aggregation, we should not only require votes

to be close to their ground truth object centers, but also en-

force votes to locate compactly with each other when they

are from the same object. To this end, we propose a new

vote attraction loss (VALoss) for better voting supervision,

which tries to minimize the internal distances between votes

associated with the same object centers, as illustrated in Fig-

ure 4(a). In other words, the VALoss is designed to consider

the attractiveness between votes. Specifically, we use the �1
loss to measure the distance between the vote yij and the

average center yi of object i, and design the VALoss as:

Lvote−attr =
1

|Bgt|
∑
i

(
1

|Y i
vote|

∑
j

‖yij − yi‖), (4)

where Bgt is the set of ground truth boxes (each box corre-

sponds to an object), and Y i
vote is the set of votes associated

with the i-th ground truth box. i ∈ {1, ..., |Bgt|} is the in-

dex of ground truth boxes, and j ∈ {1, ..., |Y i
vote|} is the

index of votes. Hence, yij represents the j-th vote of the i-
th ground truth box. yi is the average center of all the votes

associated with the i-th ground truth box, which is calcu-

lated as:

yi =
1

|Y i
vote|

∑
j

yij (5)

The intuition behind the above equations is that good votes

from the same object should all be close to their mean cen-

ter, i.e., locate compactly with each other. Finally, the new

vote loss is:

Lvote = Lvote−reg + αLvote−attr (6)

where Lvote−reg is defined in Equation 1, α is the hyper-

parameter to balance the two loss terms, which is set to 0.5
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Figure 4. (a) Illustration of the vote attraction mechanism. Our vote attraction loss tries to minimize the distance between votes and the

center of these votes, i.e., to make votes locate compactly with each other. Thus, it can reduce the possibility of including votes from

adjacent objects when performing vote aggregation. Note that the vote center is not the same as the real object center. (b) Architecture

of the vote weighting module. The feature maps are of size N × C where N is the number of seed points and C represents the feature

dimension. BCE: Binary Cross Entropy.

in our experiments. The new vote loss incorporates both the

regression term and the attraction term, which is a multi-

task loss pushing votes towards the corresponding ground

truth object centers, while minimizing the internal distances

between votes associated with the same object centers.

3.3. Vote Weighting for Background Suppression

After voting, these votes will be further clustered and

aggregated to generate proposal features. In the original

VoteNet, votes within clusters are treated without differ-

ence, regardless of whether they come from foreground or

background seed points. Intuitively, only votes from the

foreground seed points should contribute to the proposals,

while the ones from the background seed points should

be discarded during aggregation. However, as mentioned,

the current VoteNet architecture cannot suppress the voting

from background seed points during testing.

As a solution, we design a new vote weighting mod-

ule, which assigns different aggregation weights to votes

according to their seed points’ foreground probabilities.

Specifically, as illustrated in Figure 4(b), we first use a

shared MLP with three layers to predict a score for each

seed point, which reflects its possibility of belonging to

foreground. The prediction is trained with the ground truth

foreground/background labels as supervision, which are ob-

tained by checking seed points’ status of inside/outside

ground-truth 3D boxes. The vote features are then enhanced

by re-weighting the original vote features using the pre-

dicted scores. Formally, given the vote feature fi, the re-

weighted vote feature f̃i is formulated as:

f̃i = δ(fi)⊗ fi (7)

where δ(·) = sigmoid(MLP (·)) is the transform function

to predict a foreground confidence between 0 and 1, and

⊗ is element-wise multiplication. The proposed weighting

scheme allows the detector to focus on votes more likely

to be from foreground regions (large weights), and neglect

votes from background (small weights) before aggregation

for object proposal.

4. Experiments
4.1. Experimental Setup

The proposed 3D detector follows the architecture of

deep Hough voting network [28]. To generate fore-

ground/background labels for sample points, we regard all

the points within labeled 3D bounding boxes as foreground

points, and the points outside all boxes as background

points. We optimize the network using the Adam algorithm,

which is trained on an RTX 2080Ti GPU with batch size of

8. We set the initial learning rate to be 0.01, and decay

it by 0.1 at the steps of (120,140,180). We train the net-

work from scratch with 200 epochs in total. Due to several

sub-sampling and other random operations, there is a small

variance with the evaluated mAP results upon convergence

(after around 140 epochs). Thus, the mAP results reported

in the paper are the mean results over training the model for

3 times, in order to reduce the effect of randomness.

4.2. Comparison

Datasets. We evaluate the performance of the pro-

posed VENet on two datasets of indoor scenes: ScanNet

dataset [7] and SUN RGB-D dataset [37]. ScanNet dataset

is a richly annotated dataset of 3D meshes. 3D scenes in
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Feng [9] arXiv2019 48.5 31.08 83.1 85.86 77.5 56.27 30.55 25.1 34.84 4.09 38.5 59.11 35.32 33.7 46.29 88.6 40.27 82.0 20.9

Griffiths [10] ECCV2020 50.2 43.0 70.8 58.3 16.0 44.6 28.0 13.4 58.2 4.9 69.9 74.0 75.0 36.0 58.9 79.0 47.0 77.9 48.2

VoteNet [28] ICCV2019 58.65 36.27 87.92 88.71 89.62 58.77 47.32 38.1 44.62 7.83 56.13 71.69 47.23 45.37 57.13 94.94 54.7 92.11 37.2

GRNet [19] ISPRS2020 59.14 39.45 88.78 89.18 88.34 58.16 48.46 32.7 46.97 4.94 63.48 69.81 48.46 49.06 66.37 94.07 49.7 90.9 35.6

SPOT [8] ECCV2020 59.8 - - - - - - - - - - - - - - - - - -

HGNet [3] CVPR2020 61.3 - - - - - - - - - - - - - - - - - -

SESS [49] CVPR2020 62.1 - - - - - - - - - - - - - - - - - -

GSDN [11] ECCV2020 62.84 41.58 82.5 92.14 86.95 61.05 42.41 40.66 51.14 10.23 64.18 71.06 54.92 40.0 70.54 99.97 75.5 93.23 53.07

DOPS [25] CVPR2020 63.7 53.2 83.3 91.6 82.6 60.5 54.8 45.2 41.0 26.3 51.9 73.7 53.9 49.2 64.7 98.0 71.3 86.6 59.2
LGR-Net [18] arXiv2020 64.1 - - - - - - - - - - - - - - - - - -

MLCVNet [41] CVPR2020 64.5 42.45 88.48 88.98 87.4 63.5 56.93 46.98 56.94 11.94 63.94 76.05 63.94 60.86 65.91 98.33 59.18 87.22 47.89

H3DNet [48] ECCV2020 67.2 49.4 88.6 91.8 90.2 64.9 61.0 51.9 54.9 18.6 62.0 75.9 57.3 57.2 75.3 97.9 67.4 92.5 53.6

VENet(Ours) 67.7 50.4 87.7 92.7 88.1 68.6 60.7 46.0 55.2 18.2 70.2 77.5 59.9 58.4 75.9 95.1 67.2 92.3 54.4

Table 1. Performance comparison on ScanNetV2 Val set.

mAP@0.25 mAP@0.5

VoteNet [28] 57.7 32.9

H3DNet [48] 60.1 39.0

LGR-Net [18] 62.2 -

HGNet [3] 61.6 -

SPOT [8] 60.4 36.3

Feng [9] 59.2 -

MLCVNet [41] 59.2 -

VENet(Ours) 62.5 39.2
Table 2. Performance comparison on SUN RGB-D validation set.

Training time

(s)

Inference time

(s)

# Params

(million)

mAP

@0.25

H3DNet [48] 420 0.70 4.7 67.2

VENet(Ours) 85 0.32 2.8 67.7

Table 3. Performance comparison with the previous state-of-the-

art method, H3DNet [48] on ScanNet dataset.

this dataset are all captured in indoor scenes by portable

RGB-D sensors. Note that our method does not require

RGB information, and directly works on 3D point clouds.

The dataset contains 1,513 scanned indoor scenes with 3D

bounding boxes annotated. It is split into two sets, Train and

Val containing 1,201 and 312 scenes respectively. Results in

this paper are all evaluated on the Val set, as VoteNet does.

SUN RGB-D dataset contains 10,335 scenes captured by

RGB-D sensors from a single view, with 5,285 for training

and 5,050 for validation. Each scene is converted into a 3D

point cloud representation with annotated indoor objects.

Quantitative comparison. Table 1 shows the results on

ScanNet dataset using different 3D object detection meth-

ods. As shown, the proposed VENet outperforms its base-

line VoteNet by 9.0% and achieves the new state-of-the-

art performance in the mAP@0.25 evaluation. Moreover,

VENet achieves the best results in 6 out of the 18 classes,

which doubles that of the second ranked H3DNet [48]

which has best results only in 3 classes. This demonstrates

that the proposed vote enhancement strategies can effec-

tively improve the subsequent object localization and clas-

sification tasks. Table 2 shows results on SUN RGB-D

dataset. For a fair comparison, we only compare the re-

sults from methods using 3D geometric information only.

As shown, the proposed VENet again achieves the state-

of-the-art performance on SUN RGB-D dataset with 62.5%
mAP@0.25. The overall improvement is not as significant

as on ScanNet. We think it is because most scenes in SUN

RGB-D cover smaller areas and have fewer objects (as seen

in Figures 5 and 6), making noisy votes a less prominent

problem in SUN RGB-D.

Speed and model size. The most recent H3DNet [48]

has the second best performance in terms of mAP . Both of

H3DNet and our VENet are developed based on VoteNet.

However, we notice the difference in terms of train-

ing/inference times and model size. As shown in Table 3,

the number of trainable parameters of our network is 2.8
million, while H3DNet is 4.7 million. This indicates the

network architecture of our VENet is simpler and has much

fewer parameters. For training time, H3DNet takes around

420s for one epoch, while VENet takes much less time, 85s.

For inference time, we measure the time for one scene in

ScanNet dataset. As shown, H3DNet takes 0.70s, while

ours is 0.32s. Our model is more than 2× faster than

H3DNet. We reckon it is because voting in H3DNet hap-

pens three times for object, face and edge centers. These

quantitative results demonstrate that our VENet is not only

more effective but also more efficient than H3DNet. More-

over, H3DNet has the assumption that objects should have

obvious structures of faces and edges, while VENet has no

such assumption and is thus more suitable for general object

detection.

Qualitative comparison. Figure 5 and Figure 6 visu-

alize the detection results using VoteNet and the proposed

VENet. We observe that VENet can obtain better detection

results with less false positives and more accurate bounding

boxes than the original VoteNet on both ScanNet and SUN

RGB-D datasets. From Figure 5, we can see that two over-
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(a) Ground truth (b) VoteNet (c) Ours
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Figure 5. Qualitative comparison results of 3D object detection on ScanNetV2. As shown, our voting enhancement strategies enable more

accurate object classification and localization. Note that color is only used for better visualization, and not utilized in our method.

(b) Ground truth (c) VoteNet (d) Ours

tablechair

(a) Image
Figure 6. Qualitative comparison results of 3D object detection on SUN RGB-D.

Method AMLP VALoss VW
SUN

ScanNet
RGB-D

Baseline 57.8 59.6

VENet � 59.1 62.3

VENet � � 61.6 64.8

VENet � � � 62.5 67.7

Table 4. Ablation study on the test dataset (mAP@0.25). VW:

vote weighting. Baseline is trained and evaluated by ourselves.

lapping boxes of the table are detected using VoteNet, while

VENet accurately detects the single bounding box of the ta-

ble. Figure 6 shows that the proposed VENet gives better

detection results with less overlaps compared to VoteNet.

This suggests that the improved compactness of votes re-

duces the sparse distribution of object centers, which con-

tributes to the reduced detection of overlapping boxes.

4.3. Ablation Study

To analyze the importance of the three proposed strate-

gies, we conduct several experiments using different com-

binations of the proposed components on both ScanNet and

SUN RGB-D datasets. We use the original VoteNet as

our baseline model and we train VoteNet from scratch to

get the results using the evaluation strategy in Section 4.1.

The results are presented in Table 4. The second row

shows that the AMLP improves the performance signifi-

cantly from 59.6% to 62.3% on ScanNet. Adding VA-

Classic MLP CMLP AMLP

mAP@0.25 59.6 61.1 62.3
Table 5. Performance comparison with CMLP and classic MLP.

Loss further improves the result to 64.8%, demonstrating

its effectiveness to reduce object-noise in voting. The ad-

ditional improvement to 67.7% with the vote weighting

module further demonstrates the module’s effectiveness to

suppress background-noise in vote aggregation. The best

mAP results are achieved with all the proposed components

equipped, both for ScanNet and SUN RGB-D datasets.

To demonstrate the effectiveness of AMLP, we inde-

pendently compare the detection performances of AMLP,

CMLP [13], and classic MLP on ScanNet dataset. We re-

place classic MLP in VoteNet with AMLP and CMLP. Re-

sults are shown in Table 5. The proposed AMLP achieves

the best performance, which indicates that AMLP has a bet-

ter feature extraction ability.

To illustrate the positive guidance of our attraction loss,

we visualize the voting results in Figure 7. As seen in the

green boxes, VALoss can effectively enforce the votes asso-

ciated with the same object center to locate more compactly

with each other, which helps to reduce noisy information

from other objects and thus improves the performance.
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(a) Input scene (b) Without attraction (c) With attraction
Figure 7. Voting comparison with our VALoss. (c) Votes (blue points) are located more compactly with the proposed loss, compared with

red points in (b), obtained without attraction loss.

0.0

1.0

0.5

(a) Input scene (b) Seed points with predicted weights (c) Votes with predicted weights
Figure 8. Vote weighting result. The predicted weights between 0-1 are mapped to blue-red according to the color bar. As can be seen, the

votes with high predicted weights (c) are almost coming from foreground seed points (b).

To verify the effectiveness of the proposed vote weight-

ing module, we further visualize the predicted weights in

Figure 8. We observe that the predicted weights are almost

consistent with their foreground/background labels, as ob-

served from seed points with weights in Figure 8(b). Also as

observed in Figure 8(c), votes with high weights are closer

to object centers than those with low weights. That is, votes

from object seed points have higher contributions to feature

aggregation, which is as expected.

5. Conclusion

In this paper, we propose a novel 3D object detector,

VENet, with enhanced feature description and vote aggre-

gation based on VoteNet framework. Specifically, before

voting, to enhance the feature description of seed points, we

present an Attentive MLP (AMLP) to adaptively integrate

multi-layer information in classic MLP. During voting, we

design a vote attraction loss (VALoss) to relieve the nega-

tive impact of votes from seed points in adjacent objects, by

enforcing the votes to be not only close to the corresponding

object centers, but also compactly located with each other.

Moreover, after voting, to reduce the meaningless votes

from background seed points, we propose a vote weighting

module to predict foreground probability for seed points,

and use this information to achieve more effective vote ag-

gregation. Our method achieves the state-of-the-art detec-

tion accuracy on the ScanNet and SUN RGB-D datasets

with only geometric information given, demonstrating the

effectiveness of the proposed approach. Although the focus

of this paper is voting based 3D object detection for indoor

scenes, our proposed techniques are generally applicable to

other applications and methods using Hough voting.

In the immediate future work, we plan to explore a more

effective sampling algorithm for vote aggregation. The far-

thest point sampling algorithm currently used equally sam-

ples votes from the whole set, which results in the majority

of votes in the background. One potential solution is to give

higher possibility to sample from foreground votes, which

may reduce the number of false positives.
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