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Abstract

Recent work on 4D point cloud sequences has attracted
a lot of attention. However, obtaining exhaustively labeled
4D datasets is often very expensive and laborious, so it is
especially important to investigate how to utilize raw unla-
beled data. However, most existing self-supervised point
cloud representation learning methods only consider ge-
ometry from a static snapshot omitting the fact that se-
quential observations of dynamic scenes could reveal more
comprehensive geometric details. To overcome such is-
sues, this paper proposes a new 4D self-supervised pre-
training method called Complete-to-Partial 4D Distillation.
Our key idea is to formulate 4D self-supervised represen-
tation learning as a teacher-student knowledge distilla-
tion framework and let the student learn useful 4D repre-
sentations with the guidance of the teacher. Experiments
show that this approach significantly outperforms previ-
ous pre-training approaches on a wide range of 4D point
cloud sequence understanding tasks. Code is available at:
https://github.com/dongyh20/C2P.

1. Introduction

Recently, there is a surge of interest in understanding
point cloud sequences in 4D (3D space + 1D time) [7, 8,
11, 21, 30]. As the direct sensor input for a wide range
of applications including robotics and augmented reality,
point cloud sequences faithfully depict a dynamic environ-
ment regarding its geometric content and object movements
in the context of the camera ego-motion. Though widely
accessible, such 4D data is prohibitively expensive to an-
notate in large scale with fine details. As a result, there
is a strong need for leveraging the colossal amount of un-
labeled sequences. Among the possible solutions, self-
supervised representation learning has shown its effective-
ness in a wide range of fields including images [2, 12, 13],
videos [6, 9, 15, 22, 28] and point clouds [16, 24, 31, 33, 34].

*Equal contribution with the order determined by rolling dice.
†Corresponding author.

Figure 1. We propose a complete-to-partial 4D distillation (C2P)
approach. Our key idea is to formulate 4D self-supervised rep-
resentation learning as a teacher-student knowledge distillation
framework in which students learn useful 4D representations un-
der the guidance of a teacher. The learned features can be trans-
ferred to a range of 4D downstream tasks.

We therefore aim to fill in the absence of self-supervised
point cloud sequence representation learning in this work.

Learning 4D representations in a self-supervised man-
ner seems to be a straightforward extension of 3D cases.
However, a second thought reveals its challenging nature
since such representations need to unify the geometry and
motion information in a synergetic manner. From the ge-
ometry aspect, a 4D representation learner needs to under-
stand 3D geometry in a dynamic context. However, most
existing self-supervised point cloud representation learn-
ing methods [16, 24, 34] only consider geometry from a
static snapshot, omitting the fact that sequential observa-
tions of dynamic scenes could reveal more comprehensive
geometric details. From the motion aspect, a 4D represen-
tation learner needs to understand motion in the 3D space,
which requires an accurate cross-time geometric associa-
tion. Nevertheless, existing video representation learning
frameworks [6, 9, 22] mostly model motion as image space
flows so geometric-aware motion cues are rarely encoded.
Due to such challenges, 4D has been rarely discussed in the
self-supervised representation learning literature, with only
a few works [4, 23] designing learning objectives in 4D to
facilitate static 3D scene understanding.

To address the above challenges, we examine the na-
ture of 4D dynamic point cloud sequences, and draw two
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main observations. First, most of a point cloud sequence
depicts the same underlying 3D content with an optional
dynamic motion. Motion understanding could help aggre-
gate temporal observations to form a more comprehensive
geometric description of the scene. Second, geometric cor-
respondences across time could help estimate the relative
motion between two frames. Therefore better geometric un-
derstanding should facilitate a better motion estimation. At
the core are the synergetic nature of geometry and motion.

To facilitate the synergy of geometry and motion, we de-
velop a Complete-to-Partial 4D Distillation (C2P) method.
Our key idea is to formulate 4D self-supervised represen-
tation learning as a teacher-student knowledge distillation
framework and let the student learn useful 4D representa-
tions with the guidance of the teacher. And we present a
unified solution to the following three questions: How to
teach the student to aggregate sequential geometry for more
complete geometric understanding leveraging motion cues?
How to teach the student to predict motion based upon bet-
ter geometric understanding? How to form a stable and
high-quality teacher?

In particular, our C2P method consists of three key de-
signs. First, we design a partial-view 4D sequence genera-
tion method to convert an input point cloud sequence which
is already captured partially into an even more partial se-
quence. This is achieved by conducting view projection of
input frames following a generated camera trajectory. The
generated partial 4D sequence allows bootstrapping multi-
frame geometry completion. This is achieved by feeding
the input sequence and the generated partial-view sequence
to teacher and student networks respectively and distill the
teacher knowledge to a 4D student network. Second, the
student network not only needs to learn completion by mim-
icking the corresponding frames of the teacher network, but
also needs to predict the teacher features of other frames
within a time window, to achieve so-called 4D distillation.
Notice the teacher feature corresponds to more complete ge-
ometry, which also encourages the student to exploit the
benefit of geometry completion in motion prediction. Fi-
nally, we design an asymmetric teacher-student distillation
framework for stable training and high-quality representa-
tion, i.e., the teacher network has weaker expressivity com-
pared with the student but is easier to optimize.

We evaluate our method on three downstream tasks
including indoor and outdoor scenarios: 4D action seg-
mentation on HOI4D [21], 4D semantic segmentation on
HOI4D [21], 4D semantic segmentation on Synthia 4D [27]
and 3D action recognition on MSR-action3D [17]. We
demonstrate significant improvements over the previous
method(+2.5% accuracy on HOI4D action segmentation,
+1.0% mIoU on HOI4D semantic segmentation, +1.0%
mIoU on Synthia 4D semantic segmentation and +2.1% ac-
curacy on MSR-Action3D).

The contributions of this paper are fourfold: First, we
propose a new 4D self-supervised representation learning
method named Complete-to-Partial 4D Distillation which
facilitates the synergy of geometry and motion learning.
Second, we propose a natural and effective way to generate
partial-view 4D sequences and demonstrate that it can work
well as learning material for knowledge distillation. Third,
we find that asymmetric design is crucial in the complete-
to-partial knowledge distillation process and we propose a
new asymmetric distillation architecture. Fourth, extensive
experiments on three tasks show that our method outper-
forms previous state-of-the-art methods by a large margin.

2. Related Work
4D Point Cloud Sequence Understanding. Unlike 3D

static scenes, Understanding 4D point cloud sequences re-
quire more focus on leveraging spatiotemporal information
to perceive complete geometry and sensitive motion. There
are many 4D sequence-based tasks [17,21,27] that have re-
ceived extensive attention, such as 4D semantic segmenta-
tion [21,27], 3D action recognition [17], 4D action segmen-
tation [21], etc. These tasks tend to have high computa-
tional overhead, as 4D data require a large memory occupa-
tion. According to the representation, existing 4D backbone
can be categorized into voxel-based [5,18], and point-based
methods [7,8,19,30]. The state-of-the-art approach is based
on the transformer architecture [7, 30], which is often diffi-
cult to optimize and requires a large amount of labeled data
for training. An under-explored problem for 4D sequence
understanding is how to learn spatio-temporal features in
an unsupervised manner to reduce the difficulty of network
optimization and the amount of labeled data required. We
proposed a new unsupervised contrastive knowledge distil-
lation approach to learn 4D representation.

3D Representation Learning. Benefiting from the rapid
development of 2D representational learning [12, 13, 20],
3D representational learning [23, 24, 32, 34] has also been
widely explored. Existing methods can be grouped into
generative-based methods [1, 29, 32, 33], and context-based
methods [26, 31, 35]. For generative-based [1, 29, 32]
methods, PSG-Net [1] propose to learn representation by
reconstructing point cloud objects with seed generation.
OcCo [29] utilize a U-net to complete occluded point cloud
objects. Point-Bert [32] learn the representation for Trans-
formers by recovering masked object parts. For context-
based methods, PointContrast [31] propose contrasting dif-
ferent views of scene point clouds at point-level. CSC [14]
adopt a spatial partition to improve pointcontrast. Ran-
domRooms [26] construct pseudo scenes with synthetic ob-
jects for contrastive learning. SelfCorrection [3] learn the
informative representation by distinguishing and restoring
destroyed objects. DepthContrast [35] extend to contrast
with multiple representations (points and voxels) at scene-
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Figure 2. Overview of our method. Our method can be divided into three main parts, partial-view generation, asymmetric twin network
feature extraction, and complete to partial 4D knowledge distillation. (a) In the partial-view generation part, our goal is to generate a
sequence of partial-views related to the perspective. (b) Asymmetric teacher-student network can perform 4D knowledge distillation in a
better and more stable way. (c) Then the knowledge from the teacher network within a time window is distilled into the features of a frame
extracted by the student network.

level. Due to the high dimensionality of 4D data and the re-
quired computational overhead, most of the existing meth-
ods cannot be directly extended to 4D data. DCGLR [10] is
most relevant to us, which first constructs the global point
cloud set and the local point cloud set by cropping the full
point cloud with different cropping ratios and then distill-
ing knowledge from the local branch to the global branch.
Our goal is to investigate how to extract high-quality spatio-
temporal features at the scene-level to help 4D downstream
tasks, so we use teacher network to distill 4D complete in-
formation to the student network using contrastive learning.

4D Representation Learning. 4D Representation
Learning is still a relatively new field, and thanks to the ex-
perience in 3D, researchers have gradually started to focus
on how to exploit information from 4D sequences. 4Dcon-
trast [4] proposes to exploit 4D motion information to im-
prove the effectiveness of 3D tasks. However, due to the
memory overhead, it is difficult to use this point-level com-
parison learning method on long 4D sequences. STRL [16]
uses temporal-spatial contrastive learning to learn good rep-
resentations of 3D objects. Although pre-trained on 4D
data, both of these methods are designed to learn static 3D
representations. Our approach broadens this scope to use
4D data for pre-training to improve the understanding of
dynamic scenes, and to our knowledge, our approach is also
the first exploration in this direction.

3. Method

In this paper, we propose a new 4D self-supervised rep-
resentation learning method named Complete-to-Partial 4D

Distillation. To avoid ambiguity, we first emphasize the
definitions of complete and partial. The “complete” rep-
resents an original input 4D point cloud sequence, which
was obtained through the natural collection. A “complete
point cloud” may still be a geometrically incomplete point
cloud, but it can be fully described as complete compared
to the new 4D point cloud sequence we generate. The
“partial” represents a synthetic point cloud generated from
the captured data, which is significantly less complete than
the original point cloud, so we call it a “partial 4D point
cloud sequence”. In this paper, the definitions of partial and
partial-view are not distinguished since we are generating
new data through the camera view.

Our main idea is to distill the spatial-temporal informa-
tion of a complete point cloud sequence into a partial point
cloud sequence so that the neural network can extract strong
features in a self-supervised manner.

The overview of our method is shown in Figure 2. Our
method is divided into three main parts, partial-view gen-
eration, asymmetric twin network feature extraction, and
complete to partial 4D knowledge distillation. In the partial-
view generation part, our goal is to generate a sequence of
partial-views related to the perspective. Since this approach
can generate a wide variety of 4D sequences, various mo-
tion patterns during the point cloud change can be simu-
lated. After this, the partial-view sequences are fed to the
student network and the complete point cloud sequences
are fed to the teacher network. We design an asymmetric
teacher-student network to perform 4D knowledge distil-
lation in a better and more stable way. The teacher net-
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work has a weaker representational capacity, which facili-
tates the student network to distill stable information in an
easy-optimized manner. Finally, the knowledge from the
teacher network within a time window is distilled into the
features of a frame extracted by the student network, which
makes the student network not only learn the geometric
completeness but also capture the motion information from
the spatial-temporal context and the geometric change in-
formation of the foreground-background. Since the student
network is distilling spatio-temporal features from a time
window of the teacher network, we call the method a 4D
knowledge distillation framework.

In the rest of this section, we will introduce our method
in detail. We first show how to generate the partial point
cloud sequence in section 3.1. Then we present the asym-
metric teacher-student network design in section 3.2. In
section 3.3, We illustrate in detail how to distill 4D spatio-
temporal information from complete point cloud sequences
to partial point cloud sequences.

3.1. Generating partial-view 4D sequences

A static 3D point cloud can generate new point clouds
with different views. These new data can reflect the geo-
metric properties of the same 3D object/scene in a comple-
mentary way. Inspired by this observation, different 4D se-
quences can be generated according to different trajectories.
We think it is a natural idea to use different motion trajec-
tories in 4D data to generate a large number of partial-view
4D sequences. These new trajectories are all descriptions
of the same “complete 4D sequence”, but the differences in
their poses and occlusion patterns can reflect the real phys-
ical world comprehensively.

We define the “complete point cloud sequence” with se-
quence length L as S = {s1, s2, . . . , sL} where each si
denotes one frame. For each frame, it consists of N points,
Pi = {pi1, pi2, . . . , piN}, where each point pi is a vector of
both coordinates and other features such as color and nor-
mal. We generate the “partial point cloud sequence” by
sampling a natural camera trajectory and occluding invisi-
ble points from the camera view. Figure 3 show the process
of partial-view 4D sequences generation. And we will de-
scribe how to sample natural camera trajectory and how to
do occlusion sampling in detail.

Sampling Natural Camera Trajectory. Based on the
camera trajectory we can generate a new 4D sequence and
sample the visible points according to the camera pose of
each frame, which naturally fits the real physical world bet-
ter than random sampling. Moreover, random sampling is
not consistent, which hinders the network from learning
spatio-temporal contextual information from the data. We
believe that a natural camera trajectory can simulate the mo-
tion of the 3D world well, so the new 4D data generated is
more conducive to learning spatio-temporal features of the

Figure 3. Illustration of partial-view sequences generation.

network. We also verified this in our experiments.
Specifically, we first determine a sphere on which our

trajectory can be approximated as a curve. The center of
the sphere is the same as the center of the point cloud and
the radius is the distance between the center of the point
cloud and the original camera position. For each position
on the sphere, it can actually be determined by two angles θ
and ϕ. The θ determines the angle on the horizontal plane
and ϕ determines the angle on the vertical plane. We de-
fine the sphere coordinates of the original camera position
as (π2 , 0). For the horizontal movement, we have two move-
ment modes: one is from − 5

12π to 5
12π (left to right from the

original camera view), and the other is from 5
12π to − 5

12π
(right to left from the original camera view). Each move
pattern has a horizontal angle change of 150 degrees, and
we set the angle change evenly for adjacent frames. For the
vertical movement, we assign only ± 5 degrees of continu-
ous interference to the trajectory. In addition to horizontal
and vertical movement, randomly zooming in and out is also
included in our trajectory.

Occlusion Sampling. Based on each camera track, we
can sample visible points and drop invisible points based
on occlusion relationships. This generates a more realistic
partial-view point cloud. Occlusion sampling is done per
frame with the same camera intrinsic and different camera
view-point. Given a camera with its view-point and intrin-
sic matrix, we need to first transform the point cloud in the
world coordinate system into the camera coordinate system.
suppose the intrinsic matrix is K, and the view-point is de-
scribed by [R|t] where R is the rotation matrix and t is the
translation vector. Then for a point P = (x, y, z)T in the
world coordinate system, the position P̃ = (x̃, ỹ, z̃)T in the
camera coordinate system will be P̃ = K[R|t][P] where [P]
is the screw representation (x, y, z, 1)T . After the projec-
tion, we obtain a new 4D sequence that is realistic and nat-
ural. In the camera coordinate system, we will project the
point clouds back into a depth image with 2D pixels. Invisi-
ble points will have the same 2D pixel coordinate as visible
points but have a larger depth value. In this way we can de-
termine the points to be occluded and get the partial-view
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depth image. Then we just map the depth image back into
point clouds via the inverse view change transformation and
get the partial point cloud. Repeating the above operation,
we can easily obtain a large number of camera traces and
the corresponding 4D partial-view sequences.

3.2. Asymmetric Distillation Architecture

Most of the current 4D backbone of state of the art is
based on Transformer’s architecture. Such expressive trans-
former architecture is quite challenging to optimize. We ex-
perimentally find it will negatively influence the teacher’s
features if we directly mirror the teacher network as such
expressive architecture due to the optimization difficulty.
With low-quality teacher features, the distillation perfor-
mance also decreases. Based on this, we remove the trans-
former in the teacher network to weaken the teacher’s ex-
pression ability. Although the teacher’s expression ability
is restricted, but it gets easier to optimize.

So unlike previous 2D/3D distillation work, we designed
an asymmetric knowledge distillation framework to per-
form easy optimization. Specifically, we design the student
network as a point 4D Conv layer followed by a transformer
layer, while the teacher network contains only a point 4D
Conv layer. The transformer in the student network is nec-
essary to leverage motion information to find the geometric
correlation, which can help construct complete geometry.
While for the teacher branch, a teacher network with weaker
expression ability facilitates a better distillation of knowl-
edge for the student network. We observe experimentally
that such asymmetric architecture introduces a positive in-
fluence on the distillation process. The ablation study also
verifies our design usage.

3.3. Complete to Partial 4D Distillation

This section focuses on how to teach student networks to
use motion cues to aggregate continuous geometric infor-
mation for a more complete geometric understanding, and
how to teach student networks to predict motion based on a
better geometric understanding.

Based on this, we design a 4D-to-4D distillation frame-
work as shown in Figure 4. On the one hand, our feature ex-
traction backbone is a 4D backbone, and our goal is to teach
it to efficiently and stably utilize spatial and temporal infor-
mation in order to recover the underlying 3D real world. On
the other hand, 4D means that the distillation source is not
only a single-frame feature, but a window of features across
time. From the single frame, we can only distill static ge-
ometric information, even if the backbone network is 4D.
Whereas from a temporal window, the network can better
reconstruct the geometry of the current frame from temporal
cues, and can predict motion based on the geometric consis-
tency of adjacent frames.

Frame-level Feature Extraction. The overall above

process is executed at a frame-level feature. For nowadays
state-of-the-art transformer-based 4D backbones, a point
cloud will be divided into several tokens and feature com-
municates at the token-level.

We do the complete to partial distillation on the frame-
level features instead of at the token or point level. This
is due to the irregular representation and high down-sample
ratio of the point cloud sequence. For the token level, it is
very difficult to align tokens in different frames precisely
under nowadays popular token-generating methods(use fur-
thest point sampling to first generate anchor points and then
ball-query to search near-neighbor points to extract token
features). The error of alignment may seriously destroy the
learning process. For the point level, a high down-sample
ratio will make the point cloud even more sparse and ir-
regular. The same region may get a totally different point
cloud pattern after high ratio downsampling so it is very
hard for the network to predict raw points directly. The
frame-level information exchange allows for better learning
of global geometric integrity and motion, which is critical
for 4D downstream tasks.

Formally, given a complete point cloud sequence S =
{s1, s2, ..., sL} and a partial point cloud sequence Ŝ =
{ŝ1, ŝ2, ..., ŝL}, the teacher network and student network
will take these two sequences as input separately and get
two sequences of per-frame features F = {f1, f2, ..., fL},
F̂ = {f̂1, f̂2, ..., f̂L}. Then for the i-th frame of the par-
tial sequence where the student feature is f̂i, its distillation
source is D = {. . . , fi−1, fi, fi+1, . . . }.

For geometry, the i-th frame features extracted by the
student network need to directly learn from the i-th frame
information of the teacher network. Since the features
are extracted by a 4D backbone, this process actually en-
courages the network to reconstruct the complete geome-
try based on temporal cues. For time, the i-th frame ex-
tracted by the student network needs to have the ability to
predict information to non-corresponding frames within a
time window of the teacher network. Taking a time window
of 3 as an example, we use two prediction heads to predict
the i-1 frame and the i+1 frame of the teacher network from
the i-th frame, respectively. This process encourages the
network to learn the geometric correlation between adjacent
frames through knowledge distillation of motional informa-
tion.

4D Contrastive Learning Supervision. Since contrast
learning shows excellent performance on the organized fea-
ture space, we use contrastive learning to supervise the fea-
ture learning process. For geometry, the i-th frame feature
drawn by the student network is used as the anchor sample,
and its positive sample is the i-th frame feature drawn by the
teacher network. The other frames outside the time window
form the negative sample pool. We assume our time win-
dow is D = {. . . , fi−1, fi, fi+1, . . . }. We denote the set of
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Figure 4. Objective of our proposed contrastive distillation.

frame indexes within the time window by Wi.

Lgeo = −
∑
i

log
exp(f̂i · fi/τ)∑

j /∈Wi
exp(f̂i · fj/τ)

(1)

For time, the i-th frame of the student network is used as
the anchor, and the frame features within the time window
are first obtained after the prediction head. As an exam-
ple, the positive samples of frame i-1 and i+1 obtained from
the predictor are the frame i-1 and i+1 features from the
teacher’s network, respectively, and the same for the other
frames. The negative samples are the pool of features from
all frames outside the time window.

Ltime = −
∑
i

∑
k=−1,1

log
exp(Mk(f̂i) · fi+k/τ)∑
j /∈Wi

exp(Mk(f̂i) · fj/τ)
(2)

where Mk indicates the predictor for the k-th frame within
the time window and τ is the temperature coefficient.

So the final loss function is:

Ltotal = α1Lgeo + α2Ltime (3)

where α1, α2 are the coefficient that α1 + α2 = 1. Note
that we set both α1 and α2 to 0.5 in our experiments for
simplicity.

By constructing the above objective, We encourage the
student network to learn geometric completeness and tem-
poral motility from the teacher network simultaneously.

4. Experiments
In this section, following other representation learning

methods, we use the pre-trained network weights from each
task as initialization and fine-tune them on 4D downstream
tasks. The performance gain will be a good indicator of
measuring the quality of the learned feature. In this sec-
tion, we cover three 4D point cloud sequence understand-
ing tasks: action segmentation on HOI4D [21], semantic
segmentation on HOI4D [21], and 3D action recognition on
MSR-action3D [17] in Section 4.2, 4.3 and 4.4 respectively.
Result on Synthia 4D [27] semantic segmentation is intro-
duced in the supplementary materials. For these three tasks,

some basic settings will first be introduced in Section 4.1.
In addition, we provide extensive ablation studies to vali-
date our design choices in Section 4.5.

4.1. Basic setting

Partial-view Sequence Generating. To guarantee suf-
ficient partial-view observations, we always make the cam-
era go around the point cloud with a 150 degrees horizontal
angle(θ) change. The horizontal angle change between two
adjacent frames is the same. We set randomly the mov-
ing direction so it has the equal possibility for the camera to
move from θ = − 5

12π to 5
12π or θ = 5

12π to − 5
12π. Vertical

angle(ϕ) change and zoom-in/zoom-out disturbance setting
follow the strategy we introduce in Section 3.1.

Distillation Network. We set the time window size
as 3 consisting of frames i-1, i, i+1 through all the tasks.
P4Transformer [7] and PPTr [30] are used as the backbone
by default. Little differences in the backbone across differ-
ent tasks will be further clarified in each section. For the
dynamic predictor, we use two fully connected layers to-
gether with one norm layer and a rectification layer. There
are two dynamic predictors for predicting the i+1 frame and
i-1 frame separately.

4.2. Fine-tuning on HOI4D action segmentation

Setup. To demonstrate the effect of our approach, we
first conduct experiments on the HOI4D action segmenta-
tion task. For each point cloud sequence, we need to pre-
dict the action label for each frame. We follow the official
data split of HOI4D with 2971 training scenes and 892 test
scenes. Each sequence has 150 frames, and each frame has
2048 points. We use the version of PPTr without primi-
tive fitting as the backbone, which is released by its author.
However, due to the new emergence of the action segmen-
tation task in 4D, there is no specific model for action seg-
mentation of P4Transformer and PPTr before, we do a little
change to the model of action recognition to adapt to the
action segmentation task. The significant change is that per
frame feature is formed before the temporal transformer,
so attention is performed on frame features instead of to-
ken features as designed in the former backbone. And the
output of the model will be a sequence of labels instead
of one label. We have verified this design is more effec-
tive from the backbone design view. All experiments in
action segmentation will use this model design. We also
conduct experiments with other 4D pre-training strategies
including STRL(a 4D spatial-temporal contrastive learning
method) and VideoMAE(an MAE-based method for video
representation learning which can be easily extended to 4D
data). More introduction about STRL and VideoMAE can
be found in the supplementary materials. The following
metrics are reported: framewise accuracy (Acc), segmental
edit distance, as well as segmental F1 scores at the over-
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Table 1. Action segmentation on HOI4D dataset [21]

Method Frames Acc Edit F1@10 F1@25 F1@50

P4Transformer [7] 150 71.2 73.1 73.8 69.2 58.2
P4Transformer+C2P [7] 150 73.5 76.8 77.2 72.9 62.4

PPTr [30] 150 77.4 80.1 81.7 78.5 69.5
PPTr+STRL [16] 150 78.4 79.1 81.8 78.6 69.7

PPTr+VideoMAE [9] 150 78.6 80.2 81.9 78.7 69.9
PPTr+C2P [30] 150 81.1 84.0 85.4 82.5 74.1

lapping thresholds of 10%, 25%, and 50%. Overlapping
thresholds are determined by the IoU ratio.

Result. As reported in Table 1, our method has big im-
provement on both two backbones. For the state-of-the-art
backbone PPTr, it can be seen that our method consistently
outperforms STRL and VideoMAE by a big margin for all
metrics. Considering STRL, its short sequence augmenta-
tion can not well guide the model to notice motion cues so
it is very hard to leverage temporal information which is
actually very important in action segmentation tasks. Sim-
ple extension of VideoMAE to point cloud sequence also
shows very little improvement. Unlike video pixel tokens
which are regular and compact, high down-sampled point
cloud tokens have very irregular and sparse patterns. It is
hard for the model to learn to predict raw points. Also no-
tice that VideoMAE do self-supervised learning on a point
level, which is very hard to learn motion features. Our
method emphasizes motion information by cross-time dis-
tillation and the learning process is done on a stable frame
feature level which finally comes in a satisfying result. A
more straight forward visualization result is shown in the
supplementary materials.

4.3. Fine-tuning on HOI4D semantic segmentation

Setup. To verify that our approach can also be effective
on fine-grained tasks, we conduct further experiments on
HOI4D for 4D semantic segmentation. Since pre-training
methods generally benefit from large data, unlike previous
papers, we use the full set of HOI4D for our experiments.
The dataset consists of 3863 4D sequences, each including
300 frames of point clouds, for a total of 1.158M frames of
point clouds. For one frame, there are 8192 points. We
follow the official data split of HOI4D with 2971 train-
ing scenes and 892 test scenes. We use the version of
PPTr without primitive fitting as the backbone, which is
released by its author. During representation learning and
training/fine-tuning, we randomly select 1/5 of the whole
data to form one epoch for efficient training. We use mean
IoU(mIoU) % as the evaluation metric and 39 category la-
bels are used to calculate it.

Considering our representation learning method prefers
long sequence which has relatively abundant temporal in-
formation while the limitation of GPU memory, we set the
sequence length as 10 and num points per frame as 4096.
Fine-tuning and testing are performed on sequence length

Table 2. Semantic segmentation on HOI4D dataset [21]

Method Frames mIoU

P4Transformer [7] 3 40.1
P4Transformer+C2P [7] 3 41.4

PPTr [30] 3 41.0
PPTr+STRL [16] 3 41.2

PPTr+VideoMAE [9] 3 41.3
PPTr+C2P [30] 3 42.3

of 3 to be consistent with the baseline.
Result. As reported in Table 2, there is still a perfor-

mance improvement on the 4D semantic segmentation task,
which also shows the effectiveness of our approach for fine-
grained feature understanding. The very small improve-
ment that STRL can provide suggests that simple data aug-
mentation at the scene-level does not help much in learn-
ing fine-grained features. VideoMAE performs one convo-
lution layer on pixels to form token features so it is very
easy to match the token with the raw points. However, there
are several convolution layers in the semantic segmentation
model so it is very hard to figure out the corresponding to-
ken and the raw points which may cause serious information
leakage that hurt the pretraining. Compared with previous
methods, our method can effectively extract features with
high representational and generalization capabilities by in-
troducing 4D distillation.

4.4. Fine-tuning on 3D Action Recognition

Setup. Following P4Transformer and PPTr, we use the
MAR-Action3D dataset, which consists of 567 human point
cloud videos, including 20 action categories. Each frame
is sampled with 2,048 points. The point cloud videos are
segmented into multiple segments. During training, video-
level labels are used as segment-level labels. To estimate the
video-level probabilities, we take the mean of all segment-
level probability predictions. To be able to compare with the
best performance, We fit the human point cloud to 4 primi-
tives and then use PPTr as our 4D backbone. Our pretrain-
ing is done on the sequence of length 24, and the pre-trained
model weights are used for all the other sequence lengths.

Result. The results are shown in Table 3. We can ob-
serve that we improve the performance by a large margin for
different sequence lengths which demonstrates the effec-
tiveness of our method. We observe that STRL and Video-
MAE also don not have a significant improvement as the
same in action segmentation. This indicates that our method
significantly outperforms the existing methods in terms of
the ability to extract global features of sequences.

4.5. Analysis Experiments and Discussions.

In this section, we first conduct an ablation study to
verify the design of complete to partial. We then discuss
the necessity of asymmetric distillation frameworks. We
also compare the effects of random sampling and sampling
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Table 3. Action recognition on MSR-Action3D dataset [17]

Method Input Frames Video Acc@1

PointNet++ [25] point 1 61.61

point 8 81.14
MeteorNet [19] point 16 88.21

point 24 88.50

point 8 83.50
PSTNet [8] point 16 89.90

point 24 91.20

point 8 83.17
P4Transformer [7] point 16 89.56

point 24 90.94

point 8 84.02
PPTr [30] point 16 90.31

point 24 92.33

PPTr+STRL [16] point 24 92.66
PPTr+VideoMAE [9] point 24 92.66

point 8 87.16
PPTr+C2P point 16 91.89

point 24 94.76

based on natural camera trajectories. We use HOI4D Ac-
tion Segmentation as the downstream task and PPTr as the
default backbone.

Necessity of complete to partial distillation. We pro-
pose a complete-to-partial distillation framework, where the
teacher network uses complete point cloud sequences to
teach the student network that has only seen partial-view
sequences. This knowledge distillation not only encourages
networks to use temporal cues to achieve an understanding
of the complete geometry, but also to use geometric con-
sistency to capture motion information. This is a capabil-
ity that neither the complete-to-complete nor the partial-to-
partial distillation frameworks possess. On the one hand,
geometric complementarity between multiple frames from
the same data is difficult to help the understanding of the
current frame due to the lack of teacher material that can be
used as input for teacher network. On the other hand, the
teacher network and the student network have seen almost
the same data with little point cloud variation, which greatly
reduces the difficulty of the self-supervised task. All these
problems hinder the integration of spatio-temporal informa-
tion. To demonstrate this, we experiment with three dif-
ferent distillation strategies. Frame-wise accuracy achieved
by the three strategies are 79.48, 79.66, 81.10 respectively
as shown in Table 4, and our Complete-to-Partial strategy
achieves the best performance.

Table 4. Comparison of different distillation strategies.

Methods Frame-wise accuracy

Complete-to-Complete 79.48
Partial-to-Partial 79.66

Complete-to-Partial 81.10

Asymmetric versus symmetric framework. One of the

more popular frameworks for knowledge distillation is the
use of symmetric twin networks, where the teacher network
and the student network are the same and share weights. In
our setup, we remove the transformer layer in the teacher
network compared with the student network. This is be-
cause transformer is difficult to optimize especially with
limited 4D data, and the existence of two transformers will
introduce extreme optimization difficulty. We believe that
a teacher network with weaker representational abilities is
able to facilitate the student network to distill knowledge.
And we expect that the student should be better than the
teacher network, i.e., have stronger learning and representa-
tional capabilities than the teacher network. To verify this,
we re-trained the teacher network using a symmetric twin
network, i.e., adding a Transformer layer to the teacher net-
work. The results show that only an accuracy of 78.95 can
be obtained, which is 2.15 lower than the asymmetric struc-
ture. the performance degradation is probably due to the op-
timization difficulty of the teacher network during the train-
ing process.

Partial-view generation strategy. We design a partial-
view sequence generation method that simulates camera
motion in the natural world, i.e., first generating camera
trajectories and then sampling visible points according to
occlusion relations. We believe that this approach can help
the student network generate effective learning input. With
this natural sequence, the student network can make full use
of the temporal information to understand the complete ge-
ometric, and can use the learned geometry to understand
the motion of the object/scene. The learning inputs we gen-
erate are significantly more meaningful and effective than
those obtained by random sampling. The random sampling
approach sacrifices the geometric consistency of the point
cloud and the reality of the data, both of which have a nega-
tive impact on knowledge distillation. We conducted exper-
iments to verify this. Using random sampling to generate
4D point cloud sequences, the same framework can only
achieve an accuracy of 80.22. This verifies that our partial-
view generation approach is reasonable and effective.

5. Conclusions
In this paper, we propose Complete-to-Partial 4D Distil-

lation, a new pre-training method for point cloud sequence
representation learning. Our main idea is to distill the
spatial-temporal information of a complete point cloud se-
quence into a partial point cloud sequence. Experiments
show our proposed method significantly outperforms previ-
ous pre-training approaches on a wide range of point cloud
sequence understanding tasks. Although the pre-training of
point cloud sequences is still at an early stage, this problem
is undoubtedly very important and challenging. Our work
is encouraging and suggests future work to explore more
possible design for 4D representation learning.
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