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Abstract

Language-guided image inpainting aims to fill the defec-
tive regions of an image under the guidance of text while
keeping the non-defective regions unchanged. However, di-
rectly encoding the defective images is prone to have an
adverse effect on the non-defective regions, giving rise to dis-
torted structures on non-defective parts. To better adapt
the text guidance to the inpainting task, this paper pro-
poses NÜWA-LIP, which involves defect-free VQGAN (DF-
VQGAN) and a multi-perspective sequence-to-sequence mod-
ule (MP-S2S). To be specific, DF-VQGAN introduces relative
estimation to carefully control the receptive spreading, as
well as symmetrical connections to protect structure details
unchanged. For harmoniously embedding text guidance into
the locally defective regions, MP-S2S is employed by ag-
gregating the complementary perspectives from low-level
pixels, high-level tokens as well as the text description. Ex-
periments show that our DF-VQGAN effectively aids the
inpainting process while avoiding unexpected changes in
non-defective regions. Results on three open-domain bench-
marks demonstrate the superior performance of our method
against state-of-the-arts. Our code, datasets, and model will
be made publicly available1.

1. Introduction

The task of image inpainting, which aims to fill missing
pixels in the defective regions with photo-realistic struc-
tures, is as ancient as art itself [2]. Despite its practical
applications [18, 32, 34], such as image manipulation, image
completion, and object removal, the task poses significant
challenges, including the effective extraction of valid fea-
tures from defective input and the generation of semantically
consistent results.

With the remarkable success of vision-language learning,
language-guided image inpainting has become a promis-
ing topic [24, 28, 33], which enables the generation of con-
trollable results with the guidance of text description (see
the completed results in Fig. 1). Recently, multimodal pre-

1https://github.com/kodenii/NUWA-LIP
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Figure 1. Language-guided inpainting results via NÜWA-LIP.
Text descriptions provide effective guidance for inpainting the de-
fective image with desired objects. More examples are in the suppl.

training methods based on diffusion and autoregressive mod-
els have exhibited impressive capabilities in synthesizing
various and photo-realistic images, such as Stable Diffu-
sion [21], Parti [29] and NÜWA [25]. In particular, NÜWA
has demonstrated a promising capability for language-guided
image generation, suggesting the potential for combining
this pre-training schema with VQVAE and Transformer for
language-guided image inpainting.

It is worth noting that this work focuses on addressing the
challenge of processing defective images with some regions
filled with zeros (see the first image in Fig. 1). This setting
has been widely adopted in previous works [24, 28, 33] and
is consistent with real-world corrupted image inpainting. To
learn unified representations of the vision and language, it
is crucial to ensure that the representation of non-defective
regions is accurate and remains unaffected by defective parts.
This requirement exacerbates the challenges associated with
our method, as it involves the effective extraction of valid
features from defective input.

However, existing pre-trained image generative mod-
els [21, 25, 29] are usually trained on non-defective images.
When used in the image inpainting task, these models en-
code the whole image and fuse the features from defective
regions into the representations of non-defective parts, re-
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Figure 2. Illustration of Receptive Spreading and Information Losing. As for receptive spreading, we can observe an obvious change and
a blurry boundary on the reconstructed non-defective region. In terms of information losing, some unexpected changes are also apparent in
the output of the non-defective regions.

sulting in what we call receptive spreading of the defective
region. These types of approaches can severely limit the ac-
curacy of modeling non-defective regions, especially when
the defective region is large, and make it difficult to match
language descriptions. Furthermore, in the VQVAE-based
model, the known non-defective regions are challenging to
reconstruct exactly the same as the original image due to the
compression of the image into discrete tokens. We refer to
this as information losing in the non-defective region (see
Fig. 2 for an illustration).

To enable effective adaptation of text descriptions to these
types of defective images, we propose NÜWA-LIP which
leverages a novel defect-free VQGAN (DF-VQGAN) and a
multi-perspective sequence-to-sequence module (MP-S2S).
In contrast to VQGAN [8], DF-VQGAN incorporates the
relative estimation to decouple defective and non-defective
regions. This helps to control receptive spreading and ob-
tain accurate visual representations for vision-and-language
(VL) learning in MP-S2S. To retain the information of non-
defective regions, symmetrical connections replenish the
lost information from the features in the encoding procedure.
Additionally, MP-S2S further enhances visual information
from complementary perspectives, including low-level pix-
els, high-level tokens, and the text description.

Moreover, we construct three datasets to evaluate the per-
formance of language-guided image inpainting and conduct
a comprehensive comparison with existing methods. Experi-
ments demonstrate that NÜWA-LIP outperforms competing
methods by a significant margin on all three benchmarks.
An ablation study is further conducted to evaluate the effec-
tiveness of each component in our NÜWA-LIP.

The main contributions are summarized as follows:

• To effectively encode the defective input, we propose a
DF-VQGAN, which introduces relative estimation to
control receptive spreading and symmetrical connec-
tions to retain the information of non-defective regions.

• We propose a multi-perspective sequence-to-sequence
module for enhancing visual information from comple-
mentary perspectives of pixel, token, and text domains.

• We build three open-domain datasets for evaluating
language-guided image inpainting. Experiments show

that NÜWA-LIP achieves state-of-the-art performance
in comparison with the competing methods.

2. Related Work
Vector Quantized Variational AutoEncoder. The Vec-

tor Quantized Variational AutoEncoder is a VAE model that
compresses the continuous information into discrete latent
variables [17]. Several works, such as VQVAE-2 [20], aim
to decode the image at a more fine-grained level. To gen-
erate images with more vivid structures, VQGAN [8] uses
a GAN model [9] to constrain the decoded images indis-
tinguishable from the real ones. However, existing models
typically focus on normal images that are not corrupted. In
images containing defective regions, especially in inpainting
scenarios, these defective regions can affect all discrete la-
tent variables due to receptive spreading. This can result in
the color cast or faults in the decoded result. We note that
Liu et al. [14] proposes partial convolution (PConv) with a
modified convolution layer to enhance features from non-
defective regions. However, directly applying this design to
VQGAN is unsuitable because it cannot effectively encode
only the non-defective regions and decode the full image
during training according to VAE2. Additionally, VQGAN
consists of a series of operations, e.g., normalization, which
can easily lead to receptive spreading. The loss of infor-
mation can modify the non-defective region, decreasing the
inpainting quality. Therefore, we design a new encoding
paradigm specifically for VQGAN on the inpainting task.

Language-guided Image Inpainting. Language-guided
image inpainting, as a subfield of text-image synthesis, has
attracted tremendous attention. This task aims to fill in the de-
fective regions of an image with text guidance that describes
the content of the entire image. Analogous to unconditional
image inpainting [24,28,33], some works, such as [1,26,30],
employ generative adversarial networks to handle generic
real images. Recently, many works [3,15,26] pre-training on
large-scale data are presented to improve inpainting ability
in the general domain rather than a specific domain. Several
methods, such as ImageBART [7] and GLIDE [16], perform
this task with a pre-training diffusion model. Following

2Further discussion can be found in suppl.
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DALL-E [19], other works like NÜWA [25] utilize the au-
toregressive model. However, existing models can not be
directly applied to defective input and suffer from the prob-
lems of receptive spreading of defective regions and loss of
information in non-defective parts. Moreover, modeling the
image from a single perspective condition limits the quality
of the inpainting results. Therefore, in this work, we propose
the NÜWA-LIP, which utilizes the DF-VQGAN to encode
consistent and valid features, and MS-S2S to provide more
comprehensive guidance for defective regions.

3. Method
3.1. Problem Formulation

Given an input image x ∈ RW×H×C , a mask matrix
m ∈ {0, 1}W×H with value 1 denoting the defective regions,
and a piece of natural text t, the task of language-guided
image inpainting is to repair the defective regions under
the guidance of the text and generate a new image ŷ ∈
RW×H×C . In the following, we refer to the input x as the
defective image, ŷ as the completed result, and y as the
corresponding ground-truth image.

In the Bayesian framework, the language-guided image
inpainting task can be defined as maximizing the log poste-
rior probability3, as denoted in Eqn. (1):

log p(y|x,m, t;ω, ϕ, ψ)=log
p(y|z,x,m;ψ)p(z|x,m,t;ϕ)

p(z|y,x,m;ω)
, (1)

where ω, ϕ, ψ denote model parameters. z represents the
latent tokens. By taking the expectation w.r.t a auxiliary
density z ∼ q(z|y, x,m;ϕ) on both sides, the right side of
Eqn. (1) can be formulated as:

Ez∼q(z|y,x,m;ϕ)[log p(y|z, x,m;ψ)]−
KLz∼q(z|y,x,m;ϕ) [q(z|y, x,m;ϕ)||p(z|x,m, t;ϕ)] +
KLz∼q(z|y,x,m;ϕ) [q(z|y, x,m;ϕ)||p(z|y, x,m;ω)] .

(2)

According to VAE, since the third Kullback-Leibler di-
vergence term is always greater than 0, we only need to
maximize the first two terms denoted as the Evidence Lower
BOund (ELBO). The first expectation term is the recon-
struction loss of the completed image. The second term is
a Kullback-Leibler divergence loss that ensures the condi-
tional distribution of the latent tokens generated by the VAE
encoder should be close to that generated by the auxiliary
probability density. The whole framework is shown in Fig. 3.
In the following, we will introduce how we model the first
term with a defect-free VQGAN (DF-VQGAN) in Sec. 3.2
and the second term with a multi-perspective sequence-to-
sequence (MP-S2S) in Sec. 3.3. From the terms of mask m
and defective image x in ELBO, we can observe that it is
necessary to introduce mask matrix and defective image in
the process of Vector Quantized Variational AntoEncoder
for image inpainting.

3We assume t is conditionally independent of y given z, x,m.

3.2. DF-VQGAN

The modeling of Ez∼q(z|y,x,m;ϕ)[log p(y|z, x,m;ψ)] in
Eqn. (13) can be split into a VAE encoder of q(z|y, x,m;ϕ)
and a VAE decoder of p(y|z, x,m;ψ). The probabilistic
density function q(z|y, x,m;ϕ) shows that the probability
distribution of z should be conditioned on three variables:
ground-truth image y, defective image x, and mask matrix
m. In other words, the latent tokens z should not only repre-
sent the completed image but also be sensitive to defective
images with masked regions. To achieve this, we propose
DF-VQGAN, a defect-free VAE model.

Defect-free Encoder. Let w × h be the length of the
quantized latent token sequence and nz be the dimension-
ality of each latent token. To obtain an equivalent latent
token sequence zy ∈ Rw×h×nz of the ground-truth image
y, we feed y to encoder E, which consists of several normal
operations, such as attention or convolutions:

zy = E(y), (3)

The defective regions in x will have adverse effects on
the non-defective regions during the encoding phase (see the
inconsistent color of the VQGAN column in Fig. 5), making
it different from encoding y. Mathematically, if we feed an
image x into a convolutional network (taking only one con-
volution layer as an example), the number of affected latent
tokens is equal to the number of 1 in MaxPool(m), which
uses the same stride and kernel size as the convolution. For
the networks with the attention or normalization operation,
more latent tokens will be affected.

As for the image inpainting task, it is intractable for the
original VAE model to avoid the adverse effects from de-
fective regions, because VQGAN cannot encode only the
non-defective regions and then decode the full image during
the training phase. Besides, VQGAN consists of a series of
operations that can result in receptive spreading. Therefore,
we propose DF-VQGAN, which splits features of defective
regions from non-defective regions and merges them into
the features of a full image during training alternately. This
can keep the feasibility of training and prevent encoding the
non-defective regions with effect from defective regions. By
using the mask matrix, we can easily mask the defective
parts for attention and convolution operations by padding the
defective features and their attention score to zero. However,
normalizing the non-defective regions directly would break
parallelism. Therefore, we propose a mathematical method
to remove the influence from the defective regions. Using
the re-estimated mean and variance, the normalization4 can
be formulated as:

NormDF(x,m) =
x− N

Nm
E[x]√

N−1
Nm−1

Var[x′] + ϵ
, (4)

4We use Layer Norm as an example to illustrate our method. This
equation can be easily extended to other normalizations like Group Norm.
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Figure 3. Overview of NÜWA-LIP during inference. The encoder of DF-VQGAN generates the tokens from the defective image. Then,
tokens located in defective regions will be replaced with those predicted by our MP-S2S. The decoder of DF-VQGAN will generate the
completed result based on these tokens.

where N is the number of pixels in x. Nm denotes the
number of defective pixels. x′ denotes the x with the defec-
tive region fulfilled with N

Nm
E[x]. E[·] and Var[·] represent

expectation and variance, respectively.
By introducing mask m, the defect-free convolution can

be formalized with:

ConvDF(x) =W⊤
c (x⊙m) + b, (5)

where Wc and b are the shared parameters of the original
convolution. With the shared parameter Wa of the origi-
nal attention, we can mask the attention score of defective
regions by:

AttnDF(x) = Softmax(x⊤Wax)⊙m⊙ x. (6)

We refer to these defect-free operations as relative estima-
tion. By replacing operations in encoder E with relative
estimation5, we get the defect-free encoder EDF and then
use it encode the defective image x by:

zx = EDF(x,m) , (7)

where zx ∈ Rw×h×nz is the latent tokens of x without
polluting the non-defective part.

In order to enforce the consistency between zx to zy , we
merge them into a joint latent tokens sequence z ∈ Rw×h×nz

and optimize them jointly (see illustration in Fig. 4). By
applying a MaxPool operation, the mask matrix m can be
resized to m′ to match the size of zx and zy. Next, we can
use m′ ∈ Rw×h to filter out the non-defective parts of zx

and replace them with the corresponding parts from zy by:

m′ = MaxPool(m),

z = zy ⊙m′ + zx ⊙ (1−m′) .
(8)

Note that the encoding is an iterative process and the input
will be gradually transformed into the final latent tokens.
During the process, the defective region m also evolves.
Thus, we extend Eqns. (3, 7, 8) to the whole iterative process.

5For more descriptions of the replacement, see our suppl.

Empirically, encoder E and defect-free encoder EDF can be
divided into a series of downsamplers {ei}Ti=1 and {eDF

i }Ti=1.
eDF
i and e share the same parameters, with their difference

being whether to use relative estimation or not.
Now, we are able to mitigate the adverse effect of defec-

tive regions, regardless of their shape or scale. Formally, we
obtain the merged final latent tokens z = hT with:

hyi = ei(hi−1) ,

hxi = eDF
i (hi−1,mi−1) ,

mi = MaxPooli(mi−1),

hi = hyi ⊙mi + hxi ⊙ (1−mi) ,

(9)

where the stride and kernel size of MaxPooli are the same
as those of the convolution in ei. We set the initial values of
the process for training as m0 = m and h0 = y.

With a learnable codebook B, we can obtain the indexes
z̃ ∈ Rw×h for matching latent tokens z in B through:

z̃i = argmin
j

||zi −Bj ||2 . (10)

By applying Eqn. (10) to zx or zy, we can obtain discrete
indexes z̃x or z̃y which will be used for MP-S2S training.

Defect-free Decoder. Following the VQGAN architec-
ture, we first embed the discrete indexes z̃ by looking up
the codebook via z = B[z̃], which are then fed into the
decoder G. Different from the encoding process in Eqn. (7),
we do not need to perform the defect-free operations, since
there are no defective regions in z because this region has
been implemented either by encoding from the encoder E in
training or by predicting from the MP-S2S in inference.

As shown in Fig. 4, to avoid the information losing of the
non-defective region, we propose symmetrical connection.
Let ŷ ∈ RW×H×C be the output of the decoder and τ be the
mixture coefficient. The hidden state of the non-defective
region in the encoder is mixed with the output of the decoder:

ŷ′ = G(z) ,

ŷ = (1−m)⊙ 1

τ + 1
(ŷ′ + τx) +m⊙ ŷ′ .

(11)
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Figure 4. Overview of NÜWA-LIP during two-stage training. We adopt a two-stage training process to optimize the whole NÜWA-LIP.
Since we only have ground-truth image y in training data, we generate corresponding defective image x by applying a random mask m. For
Stage 1, we optimize DF-VQGAN via Eqn. (14) with shared parameters for e and eDF . We use ground-truth image y and defective image x
as the inputs of e and eDF, respectively. For Stage 2, we optimize MP-S2S via Eqn. (15) with fixed DF-VQGAN. Here, DF-VQGAN is
adapted to generate the training target zy ⊙m′ and input latent tokens zx.

Correspondingly, decoding is a reversed iterative process
of encoding. We can divide the decoder G into a series of
upsamplers d1, d2, ..., dT that are symmetrical to the down-
samplers in E or EDF. Similar to Eqn. (9), we extend
Eqn. (11) to the whole iterative process and obtain the final
output image ŷ = ĥ0, which is reconstructed based on the
latent tokens z by,

ĥ′i = gi+1(ĥi+1) ,

ĥi = (1−mi)⊙
1

τi + 1
(ĥ′i + τihi) +mi ⊙ ĥ′i ,

(12)

where we set τ0 = ∞ to remain non-defective region un-
changed and τi = 1 for i ̸= 0 to obtain a smoother mixture.
Symmetrically, the initial state of the process is ĥT = z.

Let sg[·] be the stop gradient function. Following VQ-
GAN, the training objective is:

LV = ||y − ŷ||22 + ||sg[z]−B[z̃]||22 + ||sg[B[z̃]]− z||22 ,
LP = ||Q(y)−Q(ŷ)||22 ,
LG = logD(y) + log(1−D(ŷ)) ,

(13)

where Q and D are CNN-based modules to obtain the con-
ceptual representation of the image and discriminator.

The overall learning objective of DF-VQGAN is:

L1 = LV + LP + LG . (14)

3.3. MP-S2S

In Sec. 3.2, we model the probabilistic density function
q(z|y, x,m;ϕ) using the Kullback-Leibler divergence term
KLz∼q(z|y,x,m;ϕ) [q(z|y, x,m;ϕ)||p(z|x,m, t;ϕ)] by a DF-
VQGAN encoder, while the key to solving this term relies
on the modeling of the density function p(z|x,m, t;ϕ). In
this section, we propose a multi-perspective sequence-to-
sequence module (MP-S2S). It encodes the information from
three perspectives, including the input text t, pixel-level
defective image x, and its token-level representation zx, and
decodes the latent tokens of the defective regions ẑ.

Multimodal Encoding. As for guidance text from lan-
guage modalities, we follow BERT [5] and tokenize the text
with BPE and embed them to the representation sequence t,
where ti ∈ Rnt denotes the representation of each token and
nt denotes the dimension of the representation. We encode
token representation sequence t by ct = Et(t).

For the defective image, the model treats it from two
perspectives, i.e., high-level token, and low-level pixel repre-
sentation. For low-level pixel, following ViT [6], we trans-
form the image into a sequence of non-overlapping patches
xp = (xp1 , x

p
2 , ...). Then, we directly encode the image patch

sequence to get representation from a low-level pixel per-
spective by cl = El(xp). For high-level representation, we
encode latent tokens zx by ch = Eh(zx). Note that tokens
corresponding to defective regions, which can be located
by m′, will be replaced with a special trainable vector. We
use Transformer encoder as the architecture of Eh, El and
Et. Thus, the integrated representation at the hidden size
dimension can be formulated as c = [ct; cl; ch].

Autoregressive Decoding. The integrated representation
c from two modalities can be considered as the condition
of the Transformer decoder. The decoder aims to predict
the missing latent tokens based on the condition and latent
tokens: P (zk|z<k, c), where zk is the k-th tokens and z<k is
token sequence before the k-th token. Following MASS [23],
we only decode the masked tokens which can be located by
m′ in DF-VQGAN. The training objective of MP-S2S is:

L2 = −
∑
k

logP (zk|z<k, c) . (15)

3.4. Inference Pipeline

As shown in Fig. 3, we use defective image x as the
input image of DF-VQGAN. Since the ground-truth image y
cannot be accessed during inference, we use the defect-free
encoder by setting m0 = m and h0 = x to obtain latent
tokens zx of defective image x. Then, we use MP-S2S to
predict latent tokens indicated by m′ in zx, based on the
guidance of text t, defective image x, and its latent tokens
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zx. Predicted tokens ẑ will replace the tokens in zx by
ẑ′ = zx ⊙ (1−m′) + ẑ ⊙m′. The completed result can be
reconstructed by the decoder in DF-VQGAN with ĥT = ẑ′.

4. Experiments
4.1. Implementation Details

The final pre-trained model has a total of 1.7 billion pa-
rameters. We pre-train the whole NÜWA-LIP using 64 A100
GPUs over a period of two weeks. Each image is resized
to 256× 256. During training, we randomly generate mask
metrics m with the mask ratios ranging from 40% to 60%6.
AdamW optimizer [11] is used with the warm-up ratio of
5% and dropout of 10% for both pre-training and fine-tuning
stages. We pre-train DF-VQGAN on ImageNet [4] and MP-
S2S on Conceptual Captions [22], respectively. More details
can be found in our suppl.

4.2. Experiments Setup

Datasets Description. In order to evaluate the pro-
posed model, we construct three evaluation datasets, namely
MaskCOCO, MaskFlickr, and MaskVG. These dataseets are
based on MSCOCO [13], Flickr [27] and VG [12], respec-
tively. Unlike domain-specific datasets, these three datasets
are open-domain and comprise diverse language descriptions.
The mask region of each image is not fixed (see our suppl.).

Evaluation Metric. To assess the quality of the inpainted
image using language guidance, we select the FID score [10]
as the metric. This score is used to compare the difference
in distributions between the generated images and the real-
world ones. In addition, we adopt CLIP Score (CS) to mea-
sure consistency between vision and language. Furthermore,
we utilize PSNR and LPIPS [31] to evaluate the similarity
of the pixel and perception domains.

Baselines. We compare NÜWA-LIP with two robust
baselines. GLIDE [16] is an effective diffusion-based model
for image generation and editing, and we use the public
version of GLIDE from the official repository. To be specific,
we modify their inference code by applying de-noising and
super-resolution processes on regions of the mask instead of
rectangle regions. NÜWA [25] is another effective model for
vision generation and editing. For this task, we follow the
image completion framework of NÜWA and re-implement
it to perform this inpainting task. Moreover, we modify
NÜWA to NÜWA-P by pasting the non-defective region
onto the inpainted result for a comprehensive comparison.

4.3. Overall Results

We first compare NÜWA-LIP with the two baseline mod-
els As shown in Tab. 1, NÜWA-LIP achieves the best per-
formance on all datasets. Our proposed method outperforms

6We tried different ratios in training and selected the best, see suppl.

the highest baseline GLIDE with 1.5 FID on MaskCOCO,
9.4 FID in MaskFlickr, and 0.5 on MaskVG, indicating the
effectiveness of NÜWA-LIP in generating photo-realistic
and vision-language consistent results. We suggest that the
improvement can be ascribed to NÜWA-LIP’s ability to
maintain the non-defective region unchanged while avoiding
inaccurate or incomprehensive encoding. The improve-
ment on fine-tuning NÜWA-LIP on MSCOCO dataset (see
NÜWA-LIP (FINETUNE) v.s. NÜWA-LIP in Tab. 1), further
demonstrates that the domain-specific dataset can benefit
NÜWA-LIP like most pre-trained large models. Further-
more, we conduct extra comparisons with classical image
inpainting and visual synthesis models in our suppl.

4.4. Effectiveness of DF-VQGAN

To demonstrate the advantages of DF-VQGAN, we train
DF-VQGAN and VQGAN using the same training steps and
data for two different tasks. We use the official implementa-
tion of VQGAN for a fair comparison.

Image Reconstruction. The goal of this task is to trans-
form each complete image into discrete latent tokens and
then reconstruct the image based on these tokens. This task
can help evaluate the image encoding and decoding per-
formance of VQGAN, which is critical to NÜWA-LIP. As
shown in Tab. 2, we can see that DF-VQGAN performs bet-
ter than VQGAN in the same setting (i.e., resolution and
vocab size). This improvement can be ascribed to the fact
that the training of DF-VQGAN covers both complete im-
age reconstruction and incomplete image reconstruction (see
Fig. 4), which makes the resulting model more robust.

Oracle Inpainting. This task aims to reconstruct the
image given the ground-truth discrete tokens of the defective
region (encoded from the ground-truth image) and the dis-
crete tokens of the rest region (encoded from the defective
image). From Tab. 2, we can see that DF-VQGAN again
performs better than VQGAN in the same setting (i.e., res-
olution and vocab size), which verifies the effectiveness of
DF-VQGAN for the image inpainting task. Fig. 5 presents
some visualization examples of VQGAN and DF-VQGAN.
Compared with our DF-VQGAN, the original VQGAN eas-
ily generates structures with color cast or blurry boundaries.

Average Distance. To verify whether DF-VQGAN
avoids fusing uncertain information from defective regions,
we measure the consistency of zx and zy . For each pair con-
taining defective image x and non-defective one y, we obtain
their representations zx and zy . We only measure the known
part of the image, which is indicated by the mask m. Then
we calculate the average vector distance between zx and
zy as a measure of their consistency. We find DF-VQGAN
largely improves the consistency of zx and zy, providing
mathematical evidence for the effectiveness of DF-VQGAN.
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Table 1. Overall results of language-guided image inpainting compared with open-domain pre-trained models. Human evaluation can
be found in suppl., which shows that our NÜWA-LIP again outperforms others on both visual quality and semantic consistency.

MODEL
MASKCOCO MASKFLICKR MASKVG

FID↓ PSNR↑ LPIPS↓ CS↑ FID↓ PSNR↑ LPIPS↓ CS↑ FID↓ PSNR↑ LPIPS↓ CS↑

GLIDE [16] 13.5 17.25 0.233 28.99 51.9 17.06 0.225 29.16 9.0 18.53 0.210 24.94
NÜWA [25] 21.4 12.91 0.435 28.10 59.5 13.44 0.361 29.29 18.5 14.04 0.362 25.14
NÜWA-P 20.6 14.39 0.323 28.64 54.2 14.89 0.295 29.55 17.7 16.25 0.301 24.78
NÜWA-LIP 12.0 17.35 0.233 29.39 42.5 17.47 0.220 30.76 8.5 18.70 0.209 25.05

NÜWA-LIP (FINETUNE) 10.5 17.23 0.231 29.65 - - - - - - - -

Downsampler
Relative
Estimation Downsampler

GROUND
TRUTH VQGAN VQGAN-P DF-VQGANDEFECTIVE

IMAGE
GROUND
TRUTH VQGAN VQGAN-P DF-VQGANDEFECTIVE

IMAGE

Figure 5. Illustration on oracle inpainting. Compared with VQGAN-P, we make a better transition between defective and non-defective
regions and keep non-defective regions unchanged.

Table 2. Comparsion of DF-VQGAN and VQGAN. Our proposed
DF-VQGAN beats the original VQGAN on image reconstruction
(IMG.REC), oracle inpainting (ORC.INP), and average distance
(AVG.DIS) under the same settings.

MODEL RESOLUTION LENGTH VOCAB IMG.REC ORC.INP AVG.DIS

VQGAN 2562 → 162 256 1024 12.47 16.30 5.75
DF-VQGAN 2562 → 162 256 1024 11.16 5.56 4.54

VQGAN 2562 → 162 256 12288 5.48 7.15 9.77
DF-VQGAN 2562 → 162 256 12288 5.16 2.95 4.31

VQGAN 2562 → 322 1024 8192 1.47 2.04 16.93
DF-VQGAN 2562 → 322 1024 8192 1.38 0.80 3.52

In Fig. 5, we compare DF-VQGAN and VQGAN with
VQGAN-P, which utilizes the non-defective region from
the input image to substitute the reconstruction part of the
same region by VQGAN. In comparison to VQGAN-P, our
DF-VQGAN has a significantly better transition of the non-
defective and inpainted regions, contributing to better bound-
ary consistency. More results can be found in our suppl.

4.5. Ablation Studies

DF-VQGAN. We mainly investigate whether our pro-
posed symmetrical connection and relative estimation are
beneficial to the inpainting task. To this end, we conduct
experiments with two variants of DF-VQGAN/SR and DF-
VQGAN/S, which respectively denote the model without
both symmetrical connection and relative estimation or only
symmetrical connection. We re-train DF-VQGAN under
different settings and evaluate oracle inpainting mentioned
in Sec. 4.4 on ImageNet. As shown in Tab. 3, we find that
relative estimation reduces the FID by 2.31, while the sym-
metrical connection provides a further decrease of 2.49.

Table 3. Ablation study of DF-VQGAN on ImageNet. It indi-
cates that both relative estimation (REL.EST) and symmetrical
connection (SYM.CON) benefit the performance of DF-VQGAN.

MODEL
COMPONENT

FID↓

SYM.CON REL.EST

DF-VQGAN/SR × × 7.15
DF-VQGAN/S ×

√
5.44

DF-VQGAN
√ √

2.95

Table 4. Ablation study of MP-S2S on MaskCOCO. Text encoder
(TEXT), the high-level token encoder (HIGH), and the low-level
pixel encoder (LOW) can well understand the language and defec-
tive image from multi-perspectives to improve the performance.

MODEL
COMPONENT

FID↓

TEXT HIGH LOW

MP-S2S/HL
√

× × 29.4
MP-S2S/L

√ √
× 27.4

MP-S2S/H
√

×
√

26.8
MP-S2S/T ×

√ √
34.7

MP-S2S
√ √ √

26.2
+DF-VQGAN

√ √ √
11.0

This indicates that both of these operations are crucial for
effectively encoding the defective image.

MP-S2S. To verify whether the multi-perspective benefits
language-guided image inpainting, we conduct an ablation
study on MP-S2S by removing one or two of its perspectives.
MP-S2S/L, MP-S2S/H, and MP-S2S/T denote the MP-S2S
module without the low-level pixel encoder, high-level token
encoder, and text encoder, respectively. MP-S2S/HL denotes
the MP-S2S module with only a text encoder. To exclude
the effect of other components, we use the same original
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W/ PRE-TRAIN

A bathroom with a bath tub near 
windows.

People stand around an antique 
motorcycle in a grassy area.

The banana is laying next to an 
almost empty bowl.

GROUND
TRUTH
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TRUTH

DEFECTIVE
IMAGE

DF-VQGAN/SR
W/O SYM.CON
W/O REL.EST

DF-VQGAN/S
W/O SYM.CON

DF-VQGAN

Figure 6. Qualitative ablations of proposed components for DF-VQGAN and MP-S2S. We can observe that the model achieves the best
performance by combining all proposed components.

NÜWAGLIDE NÜWA-LIP NÜWA-LIP
(FINETUNE)NÜWA-PDEFECTIVE

IMAGE

A motorcycle is parked near forest.

A cat pausing as it's picture is taken.

NÜWAGLIDE NÜWA-LIP NÜWA-LIP
(FINETUNE)NÜWA-PDEFECTIVE

IMAGE

Racers riding four wheelers while a crowd watches.

The banana is laying next to an almost empty bowl.

People stand around an antique motorcycle in a grassy area. A car is parked on a dirt road in a forest.

Figure 7. Language-guided image inpainting results of different models. NÜWA-LIP achieves the best quality compared with baselines.

VQGAN as a backbone. We re-train the MP-S2S under
different settings on MSCOCO and evaluate the performance
of language-guided image inpainting results on MaskCOCO.
From Tab. 4, we can see that the text perspective provides
the highest gain of 8.5, while the high-level tokens and low-
level pixels perspective benefit the model with FID gains of
1.2 and 0.6, respectively. When we combine DF-VQGAN
with MP-S2S, we obtain a significant improvement of 15.2
on FID, which demonstrates the capability of the whole
framework in the language-guided inpainting task. From
Fig. 6 we can also find that both our DF-VQGAN and MP-
S2S contribute to the best performance of the framework.

4.6. Case Studies

We selected several cases to demonstrate the effectiveness
of our proposed method for image inpainting. From Fig. 7,
we can observe that 1) compared with NÜWA, NÜWA-LIP
accurately preserves the hue of the whole image. 2) Com-
pared with baselines, NÜWA-LIP achieves a better transition
between non-defective and completed regions. 3) NÜWA-
LIP generates visually and linguistically consistent results
with more photo-realistic details. 4) Fine-tuning NÜWA-
LIP further improves the quality of the inpainting. We also

provide out-of-domain image inpainting results in our suppl.

5. Conclusion

In this paper, we made the first attempt to encode defec-
tive images for the language-guided image inpainting. Our
NÜWA-LIP consists of a DF-VQGAN that can control re-
ceptive spreading and keep information unchanged, and an
MP-S2S module that enhances the visual quality from com-
plementary perspectives. With this design, our NÜWA-LIP
can effectively adapt the text description into the defective
input, making it applicable to real-world corrupted images.
Besides, we also constructed three open-domain benchmarks
to evaluate the performance of NÜWA-LIP against other
competing methods. Experiments show our NÜWA-LIP out-
performs these methods by a large margin. This suggests that
NÜWA-LIP has great potential to provide users with greater
flexibility in image editing and manipulation. However, it
is worth noting that fake images can be abused in certain
contexts, such as news reporting. As such, we leave it as
future work to explore a more trustworthy model.
Acknowledgement. This work was supported by Na-
tional Key RD Program of China under Grant No.
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