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Abstract

The goal of click-based interactive image segmentation
is to extract target masks with the input of positive/negative
clicks. Every time a new click is placed, existing methods
run the whole segmentation network to obtain a corrected
mask, which is inefficient since several clicks may be needed
to reach satisfactory accuracy. To this end, we propose
an efficient method to correct the mask with a lightweight
mask correction network. The whole network remains a
low computational cost from the second click, even if we
have a large backbone. However, a simple correction net-
work with limited capacity is not likely to achieve com-
parable performance with a classic segmentation network.
Thus, we propose a click-guided self-attention module and
a click-guided correlation module to effectively exploits the
click information to boost performance. First, several tem-
plates are selected based on the semantic similarity with
click features. Then the self-attention module propagates
the template information to other pixels, while the correla-
tion module directly uses the templates to obtain target out-
lines. With the efficient architecture and two click-guided
modules, our method shows preferable performance and ef-
ficiency compared to existing methods. The code will be
released at https://github.com/feiaxyt/EMC-
Click.

1. Introduction
Interactive image segmentation aims to select the ob-

ject of interest with minimal iterative interactions, which
can benefit various computer vision tasks, such as semantic
segmentation [30], instance segmentation [17], and medi-
cal image analysis [28]. As the success of these tasks often
requires large-scale mask-level annotations and it is time-
consuming to annotate the image manually, interactive seg-
mentation is an attractive way to simplify the annotation
process and alleviate the annotation cost.

Different interaction strategies have been studied to sim-
plify the interactive process, including bounding boxes [23,
37, 48], clicks [33, 40, 47], scribbles [1, 2], boundary

Figure 1. Comparison between the architectures of our method and
classic methods. Classic methods run the segmentation network in
every iteration, which is inefficient if a large network is adopted.
We update the mask via a lightweight mask correction network,
enabling an efficient interaction.

points [32], and extreme points [34]. However, due to the
complexity of the object boundary and appearance, the per-
formance of methods based on bounding boxes may drop
if the bounding boxes are not tightly drawn [48]. Besides,
it requires more effort to identify the object boundary and
place bounding boxes, boundary points, or extreme points
on the image. In contrast, the click-based method only re-
quires the users to progressively place positive and nega-
tive clicks on the foreground and background areas, respec-
tively. It has recently attracted more attention due to its
simplicity and well-established training and evaluation pro-
tocols [40,47]. Hence, we focus on the click-based method.

In click-based interactive segmentation methods, the
model returns a corrected prediction mask after each click
from the users. Efficiency is of great importance to in-
teractive segmentation methods since a typical segmenta-
tion process requires several interactive iterations. In re-
cent years, deep learning-based interactive segmentation
methods have achieved considerably better performance
compared to traditional methods. However, some recent
works [20, 22, 39] achieve state-of-the-art performance by
employing inference-time optimization to refine the masks,
which significantly increases the computational cost. To

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

22773



eliminate online optimization, RITM [40] investigates dif-
ferent designs for interactive segmentation and achieves
state-of-the-art results with a classic segmentation network.
To improve efficiency, FocalClick [8] proposes target crop
and focus crop strategies to segment two selected local re-
gions efficiently. Most click-based methods [7,8,27,31,40,
47] iteratively run the whole segmentation network to up-
date the masks with the input of user clicks, which is time-
consuming especially when we have a strong segmentation
network. Majumder et al. [32] proposes to refine the mask
with a lightweight refinement network. However, the net-
work requires the user to place boundary points, which is
not user-friendly. Therefore, more efficient click-based in-
teractive segmentation methods are still required to reach a
better trade-off between performance and efficiency.

With the above consideration, in this work, we develop
an efficient click-based interactive segmentation model
based on an Efficient Mask Correction network (EMC-
Click). The model consists of a base segmentation net-
work and a lightweight mask correction network. The base
network takes the first click as input and outputs target-
aware features and a coarse prediction. The mask correction
network iteratively updates the prediction whenever a new
click is placed. The difference between our network and
the classic network is shown in Fig. 1. This decoupled de-
sign ensures that the computational cost of each iteration is
relatively low from the second click. However, using a sim-
ply designed mask correction network to update the predic-
tion can hardly achieve comparable performance with clas-
sic methods that use a strong segmentation network. Thus,
we propose two feature augmentation modules, including a
click-guided self-attention module and a click-guided cor-
relation module, to effectively exploit the click information
to augment the features in the mask correction network. We
first extract the click features and enrich them by select-
ing several template features based on the semantic similar-
ity between the clicks and other pixels. The self-attention
module propagates the information of the template features
to other pixels, and the correlation model directly learns
target contours. Both modules effectively and efficiently
augment the features and improve the segmentation perfor-
mance. Experiments on five benchmarks demonstrate that
our method achieves competitive performance and higher
efficiency compared with state-of-the-art click-based inter-
active segmentation methods.

Our contribution can be summarized as follows:

• We propose EMC-Click, an efficient click-based inter-
active method, to correct the masks via a lightweight
mask correction network interactively. Our method
significantly reduces computational cost from the sec-
ond click especially when we have a large backbone.

• We propose two feature augmentation modules to im-

prove the segmentation accuracy by effectively ex-
ploiting the click information.

• We build EMC-Click on different base segmentation
networks and evaluate our models on several bench-
marks. The results show that our method achieves
preferable performance and efficiency compared to
state-of-the-art methods.

2. Related works

2.1. Interactive image segmentation

Interactive image segmentation is a longstanding re-
search topic in computer vision. In the early years, meth-
ods based on optimization on a graph over image pixels
were the mainstream. GrabCut [37] is a classic method
that extend [5] to an iterative energy minimization prob-
lem. Methods based on random walk [13,21] build an undi-
rected graph on the image to estimate the probability of each
pixel. Since early methods use handcrafted features, they
can hardly generalize to complex scenes.

Deep learning has been applied in many fields due to
its high representation power and the ability to model com-
plex structures. Xu et al. [47] are the first to propose
a CNN-based interactive segmentation method. They en-
code the positive/negative clicks as positive/negative dis-
tance maps and concatenate them with the image to feed
them into the network. They also design strategies to sam-
ple clicks for training, which are adopted by many sub-
sequent works [8, 15, 40]. Later, Mahadevan et al. [31]
add an iterative sampling strategy on [47] during training.
BRS [20] proposes optimizing the network online based
on user-specified location information during the annota-
tion process. f-BRS [39] accelerates BRS [20] by opti-
mizing a small part of the network. Recently, RITM [40]
conducts comprehensive experiments to investigate the de-
sign principle of an end-to-end click-based interactive seg-
mentation method. Although the click-based method is
the mainstream due to its simplicity and well-established
training and evaluation protocols, other interactive methods
are also exploited, such as extreme points [34], boundary
points [32], and bounding boxes [46]. Despite the impres-
sive progress made by deep learning-based methods, most
of them suffer from a high computational cost especially
when they have a strong backbone like ResNet101 [18].

2.2. Mask refinement in interactive segmentation

Mask refinement is commonly used in interactive seg-
mentation to get fine-level results. They often follow the
coarse-to-fine schema and crop a local region to make local
corrections. For example, RIS-Net [24] samples multiple
regions based on the click positions for local refinement.
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Figure 2. The framework of the proposed EMC-Click. We adopt a base segmentation network to extract target-aware features and make
the first prediction by taking the first click as input. The mask correction network is responsible for updating the mask when a new click is
placed. In this mask correction network, we first map the click location to the feature map and extract the click features. Then we sample
several template features that are similar to the click features. The click-guided self-attention module propagates the template information
to other pixels, while the click-guided correlation module extracts target outlines via the correlation between the templates and the feature
map. Both modules augment the features, and the combined features are used to predict the mask.

FocalClick [8] crops a region based on the difference be-
tween the previous mask and the coarsely predicted mask to
refine the details. Zhang et al. [50] refines a local area cen-
tered on the target based on the coarse segmentation results.
There are also methods to refine the global mask, such as
EdgeFlow [15] and 99%AccuracyNet [12]. One common
property of these refinement methods is that they run the
whole segmentation and refinement networks to get the re-
sults in each interactive iteration. It is too costly compared
with a simple feedforward segmentation network. Focus-
Cut [26] trains a segmentation network to not only segment
the target object but also refine local details. However, it
is still not efficient enough to run the whole segmentation
network in each iteration. Our mask correction network
is somewhat like a refinement network. The difference is
that we directly use this network to correct masks when a
new click is placed, and the base segmentation network only
runs for the first click. This architecture reduces the infer-
ence time significantly compared with traditional methods.

2.3. Exploitation of click information

The clicks provide key information for locating the fore-
ground and background areas. Most methods encode the
clicks as click maps where the regions around the clicks
are highlighted. However, the click information is not ex-
plicitly exploited. To better exploit the click information,
CDNet [7] propagates the click information to other pix-
els via two non-local networks [43]. It constructs weight
maps based on the click locations to re-weight the affinity
matrix, which is not computational efficiency since it needs
to model the affinity between every two pixels. IFPN [50]

learns a sparse graph model to perform click feature propa-
gation. It only models the dependencies between the clicks
and other pixels. Inspired by the two methods, we con-
struct a multi-head self-attention module to propagate the
click information to other pixels. Different from CDNet
and IFPN, we select several templates to enrich the click
features. Thus, our method is more efficient compared to
CDNet [7] and can exploit more information compared to
IFPN [50]. Besides, we also propose a correlation module
to exploit the click information explicitly.

3. Proposed method
We propose to iteratively correct the segmentation mask

using a lightweight mask correction network, which ex-
ploits the information of the clicks to boost the performance
via a click-guided self-attention module and a click-guided
correlation module. We first briefly revisit the traditional
pipeline of the interactive segmentation model, then intro-
duce our pipeline and elaborate on the mask correction net-
work.

3.1. The standard pipeline

Interactive segmentation is often regarded as a special
type of segmentation task. Different from classic segmenta-
tion, the input of the interactive segmentation network con-
tains not only the image but also the click maps and previ-
ously predicted mask. When segmenting the object of inter-
est, the user decides where to place the next click based on
the current segmentation mask. All positive/negative clicks
are encoded as positive/negative click maps that are usu-
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ally defined as distance maps [47] or binary disks [3]. The
click maps are then concatenated with the image and previ-
ously predicted mask to be fed to the segmentation network.
After each click, the user obtains an updated segmentation
mask by running the whole segmentation network. Usu-
ally, a strong segmentation network like DeepLabv3+ [6]
is required to achieve satisfactory results since the segmen-
tation accuracy directly depends on it. However, running
a strong segmentation network several times is often time-
consuming, especially on low-power devices, which makes
this standard pipeline inefficient in practice.

3.2. Efficient pipeline

To avoid running the whole segmentation network for
each click, we build a lightweight network to correct the
segmentation mask in each iteration. The pipeline is shown
in Fig. 2. Our network consists of a base segmentation net-
work and a lightweight mask correction network. As ob-
served in FCA-Net [27], the first click is responsible for
locating the target object. Thus, we input the first click into
the segmentation network to generate target-aware features.
When the user places the first click, the base segmentation
network extracts the target-aware feature and generates a
coarse mask, and the mask correction network corrects the
coarse mask. Starting from the second click, we no longer
run the base segmentation network. Instead, we directly
feed all clicks into the mask correction network to correct
the previously predicted mask.

Specifically, we denote the input image as I and the click
set at the t-th iteration as Ct. The base segmentation net-
work takes the input image and the first click C1 as input
and generates target-aware features Ft and a coarse mask
Mc, which can be formulated as follows,

Ft,Mc = ΦS(I, Enc(C1); θs), (1)

where Enc denotes the click encoding function, and ΦS

and θs denote the base segmentation network and its pa-
rameters, respectively. In this work, we adopt disks with a
small radius [3, 40] to encode the clicks. The mask correc-
tion network takes the click set Ct, the target-aware feature
Ft, the original image I , and the previously predicted mask
M t−1 as input and outputs an updated mask, which can be
written as follows,

M t = ΦR(I, Enc(Ct),M t−1, Ft; θr), (2)

where ΦR and θr denote the mask correction network and
its parameters, respectively. For the first click (i.e. t = 1),
the previous mask M0 input to the mask correction network
is equal to the coarse mask Mc. The mask correction net-
work can also take as input a preexisting mask generated
from other forms of pre-processing.

Note that our pipeline differs from FCA-Net [27] which
also treats the first click differently from other clicks. Our

network only runs the mask correction network after the
first click, while FCA-Net still needs to run the whole net-
work for each click.

3.3. Efficient and effective mask correction network

A simple mask correction network with limited param-
eters and computational cost can hardly achieve compara-
ble performance with a traditional segmentation network.
Therefore, we propose to exploit the click information bet-
ter to boost performance with the click-guided self-attention
module and the click-guided correlation module. Before
performing correlation and self-attention, we first concate-
nate the image, positive/negative click maps, and previous
mask to extract the low-level features Fl from them. We
also adjust the channel number of target-aware features Ft

via a convolutional layer with a kernel size of 1 × 1. Then
we concatenate Fl with Ft from the backbone to learn the
fused features Fu.

To exploit the click information, we map the location of
clicks onto the feature maps and extract the features with a
shape of 1 × 1 × C for each click, where C is the number
of channels. These click features are regarded as templates.
The click-guided self-attention module propagates the
information of these templates to other locations via
multi-head attention, while the click-guided correlation
attention module uses them to learn target outlines via
correlation. Since the number of clicks used to obtain a
satisfactory segmentation accuracy is often less than 20,
it may not be sufficient only to extract templates from
the location of clicks. Thus, we first enrich the templates
by selecting some informative locations based on their
semantic similarity to the clicks.

Template selection. The strategy to select templates is
based on the observation that pixels on the same object
show higher similarity than pixels from different objects.
We separately select positive and negative templates by
identifying pixels that are more likely to be the object and
the background, respectively. To select positive templates,
we assign a score for each pixel to indicate the likelihood
of being the object and select the top Kp pixels. The score
is calculated by considering three factors: the similarity to
positive clicks, the similarity to negative clicks, and the dis-
tance from the positive clicks. A pixel with a short distance
and a high similarity to one of the positive clicks and a low
similarity to one of the negative clicks is more likely to be
located in the object region and vice versa. We use the Co-
sine similarity between features of two pixels to measure
their similarity and the Euclidean distance to measure the
distance. Let Hf ×Wf denote the size of the feature map,
where Hf and Wf are respectively the height and width,
and we can obtain a positive score map Op ∈ RHf×Wf as
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follows,

Op = (Vp + (1− Vn)) ∗ (1−Dp), (3)

where Vp ∈ RHf×Wf and Vn ∈ RHf×Wf respectively de-
note the positive and negative Cosine similarity maps, and
Dp ∈ RHf×Wf denotes the normalized distance map. Note
that the similarity scores V u,v

p /V u,v
n respectively represent

the maximum similarity between the pixel (u, v) and pos-
itive/negative clicks, while Du,v

p represents the normalized
minimum distance between (u, v) and positive clicks. Sim-
ilarly, we can obtain a negative score map On by

On = (Vn + (1− Vp)) ∗ (1−Dn), (4)

where Dn denotes the normalized negative distance map,
which measures the normalized minimum distance between
each pixel and negative clicks. After obtaining the score
maps, we select positive templates from the top Kp loca-
tions of the positive score map and Kn negative templates
from the top Kn locations of the negative score map. The
positive and negative template features are represented as
Fpt ∈ RKp×C and Fnt ∈ RKn×C , respectively.

Click-guided self-attention. Our first way to exploit the
click information is to propagate their information to other
pixels via a self-attention module. Multi-head attention is
widely used in computer vision to capture long-range de-
pendencies among different pixels [9, 19]. We adopt the
standard qkv multi-head attention [41] to augment the rep-
resentation of each pixel with the selected templates. Multi-
head attention helps each pixel attend to the templates,
which is beneficial to the identification of the target. To per-
form multi-head attention, we first reshape the feature Fu to
a size of HfWf ×C, then we learn the self-attention-based
augmented feature Fs by

Fs = Fu +Attention(Q,K, V ), (5)

Q = ϕQ(Fu),K = ϕK(Fpnt), V = ϕV (Fpnt), (6)

where ϕQ, ϕK , and ϕV are linear transformations, and Fpnt

is the concatenation of positive templates Fpt and negative
templates Fnt. Fs is further reshaped to Hf × Wf × C.
As the template features are selected from Fu, and the
attention is guided by the click information, we denote this
attention module as a click-guided self-attention module.

Click-guided correlation. To further exploit the click in-
formation, we propose a click-guided correlation attention
module to learn the contour of the object of interest explic-
itly. Correlation is widely used in the Siamese object track-
ing archietecture [4] to locate the position of the target in
a search area. Siamese tracking calculates similarity maps
between a target template and the search area. In video ob-
ject segmentation, RANet [44] treats target features from

the first frame as the template to learn pixel-wise similar-
ity maps. In RANet, pixel-wise correlation is shown to be
able to learn the contour of the target with the target fea-
tures as templates. In this work, we extract target semantic
features based on the location of the clicks and employ the
pixel-wise correlation to learn target outlines to improve the
segmentation performance. For the j-th positive template
feature F j

pt ∈ R1×C , we can get a similarity map via the
correlation between it and Fu ∈ RHfWf×C . Thus, we have

Sp = {Sj
p|Sj

p = ϕq(F
j
pt) ∗ ϕk(Fu)}j∈{1,...,Kp}, (7)

Sn = {Sj
n|Sj

n = ϕq(F
j
nt) ∗ ϕk(Fu)}j∈{1,...,Kn}, (8)

where ∗ denotes the correlation operation, Sp and Sn re-
spectively denote the set of positive and negative correlation
similarity maps, and ϕq and ϕk denote two linear transfor-
mations. We then transform the positive/negative similarity
maps into features for segmentation via a shared convolu-
tional layer. Then positive and negative features are con-
catenated and followed by the second convolutional layer
to fuse them. In this manner, we get the correlation-based
augmented feature Fc as follows,

Fc = ϕf (Concat(ϕs(Sp), ϕs(Sn))), (9)

where ϕs and ϕf denote two convolutional layers.
After learning the two augmented features Fs and Fc, we

concatenate them and use four convolutional layers to pre-
dict the segmentation mask. Our mask correction network
is efficient since the resolution of the features is just 1/4 of
the image, and the whole structure is lightweight. It is also
effective since the click information is exploited explicitly
via two modules to improve performance.

4. Experiments
4.1. Experimental Configuration

Implementation details. Our pipeline can be built on
different existing segmentation networks. Following Fo-
calClick [8], we choose HRNet+OCR [42, 49] and Seg-
Former [45] series as our base segmentation networks
to show the effectiveness of the proposed method. For
lightweight models like SegFormerB0 and HRNet18s, the
mask correction network first transforms the number of
backbone feature channels to 64. For larger models like
SegFormerB3, HRNet18, and HRNet32, the channel is
transformed to 96. The number of selected templates Kp

and Kn is set to be equal to the channel number.
We train our model on a combination of COCO [25]

and LVIS [14] datasets, following RITM [40]. For a fair
comparison of some previous methods, we also report the
performance of our model trained on SBD [16]. We use the
normalized focal loss [38] for both the base segmentation
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Method Params/MB FLOPs/G Speed/ms

CDNet-ResNet34384 [7] 23.5 56.7 3339
f-BRS-ResNet50400 [39] 31.4 84.6 2373
RITM-hrnet18s400 [40] 4.22 8.96 634
RITM-hrnet18400 [40] 10.0 15.4 1103
RITM-hrnet32400 [40] 31.0 40.4 1635
FocalClick-hrnet18s256 [8] 4.23 3.82 358
FocalClick-hrnet32256 [8] 31.0 17.1 728
FocalClick-SegB0256 [8] 3.74 1.94 207
FocalClick-SegB3256 [8] 45.6 12.9 805

Ours-hrnet18s-FirstClick384 4.33 9.35 752
Ours-hrnet18-FirstClick384 10.3 15.3 1237
Ours-hrnet32-FirstClick384 31.2 40.5 1745
Ours-SegB0-FirstClick384 3.84 5.38 528
Ours-SegB3-FirstClick384 45.9 32.3 2006

Ours-MaskCorrection-C64384 0.11 1.09 183
Ours-MaskCorrection-C96384 0.22 2.25 280

Table 1. Comparison of the computational cost for different meth-
ods. The speed represents the average inference time per click and
is measured on a CPU laptop with 2 GHz, 4×Intel Core i5. From
the second click, we only run the mask correction network, signif-
icantly reducing the inference time compared to other methods.

and mask correction networks. We adopt the iterative train-
ing strategy [31] by randomly sampling the first positive
click in the target area and progressively adding clicks
based on the errors in the network’s predictions during
training. Our lightweight mask correction network enables
efficient iterative training. We use the Adam optimizer
with β1 = 0.9 and β2 = 0.999 to train the network. As in
FocalClick [8], we sample 30000 images in one epoch and
train our model for 230 epochs. We use an initial learning
rate of 1e − 3 for the HRNet+OCR series and 2e − 3 for
the SegFormer series, and decay them by ten times on the
200th and 220th epochs. We train the network with an
image size of 320 × 480 and a batch size of 64. We add
data augmentation strategies, including random resizing in
a range of [0.75, 1.40], horizontal flip, random jittering of
brightness, contrast, and RGB values. All our models are
implemented in Python using Pytorch.

Evaluation datasets and metrics. We evaluate our
method on five commonly used datasets, including Grab-
Cut [37], Berkeley [35], DAVIS [36], SBD [16], and Pascal
VOC [10]. The GrabCut dataset contains 50 images with
one single target in each image. The test set of the Berke-
ley dataset contains 100 object masks for 96 images. The
DAVIS dataset is originally constructed for the evaluation of
video object segmentation methods. We sample 345 frames
to evaluate our method as in [8,40]. The SBD dataset is the
largest and has been widely used to evaluate the interactive
segmentation methods since [47]. It contains 6671 object

NoC@90 Time@90 NoC@95 Time@95

FocalClick-hrnet18s 6.79 34min 12.78 62min
FocalClick-hrnet32 6.51 49min 12.50 85min
FocalClick-SegB0 6.86 23min 12.73 39min
FocalClick-SegB3 5.59 34min 11.55 63min

Ours-hrnet18s 6.16 19min 12.47 30min
Ours-hrnet32 5.65 21min 11.90 32min
Ours-SegB0 6.21 16min 12.45 27min
Ours-SegB3 5.57 20min 11.65 29min

Table 2. Comparison of the total inference time to reach different
IoU thresholds on the largest SBD dataset. The time is measured
on an NVIDIA V100 GPU.

masks for 2820 images. The validation set of the Pascal
VOC dataset is also used, which consists of 1449 images
with 3427 object masks.

We use the commonly used evaluation protocol to make
a fair comparison. During the evaluation, the clicks are sim-
ulated based on the difference between the current predic-
tion and the ground truth. The first click is placed in the
center of the target, and other clicks are placed in the center
of the largest erroneous region. Following [26], the image
is resized to a fixed length of 384 as the short side during
evaluation. We use the standard Number of Clicks (NoC)
metric to compare different methods. The NoC measures
the number of clicks required to reach a predefined Inter-
section over Union (IoU) threshold between the predicted
mask and the ground truth. Following most methods, the
thresholds of 85% and 90% are used, and the metrics are
denoted as NoC@85 and NoC@90.

4.2. Comparison with state-of-the-art methods

Computational comparison. We compare the parameters,
FLOPs, and inference speed on CPUs of representative
methods in Tab. 1. MaskCorrection-C64 denotes that we
set the channel of the mask correction network to 64, which
is used for HRNet18s and SegFormerB0. MaskCorrection-
C96 is used for HRNet18, HRNet32, and SegFormerB3.
The computational cost of our method is different between
the first click and other clicks. For the first click, our
method needs to run the base segmentation network and
the mask correction network, resulting in slightly higher
inference time compared with RITM [40]. However, our
method shows higher efficiency from the second click even
compared with FocalClick [8] which uses a small resolution
since our mask correction network is lightweight. The
computational cost of the mask correction network will not
change with the base segmentation network if we fix the
configuration, which is a good property since we can use
a stronger segmentation network to reduce the number of
interactions without a significant increase in the inference
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GrabCut Berkeley SBD DAVIS Pascal
Methods Train Data NoC@85 NoC@90 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90 NoC@85

f-BRS-B-ResNet50 [39] SBD 2.50 2.98 4.34 5.06 8.08 5.39 7.81
CDNet-ResNet50 [7] SBD 2.22 2.64 3.69 4.37 7.87 5.17 6.66 -
FocusCut-ResNet50 [26] SBD 1.60 1.78 3.44 3.62 5.66 5.00 6.38 -
FocalClick-hrnet18s [8] SBD 1.86 2.06 3.14 4.30 6.52 4.92 6.48 -
RITM-hrnet18 [40] SBD 1.76 2.04 3.22 3.39 5.43 4.94 6.71 -
Ours-hrnet18s SBD 1.82 1.92 3.26 3.58 5.79 5.23 6.88 2.47
Ours-hrnet18 SBD 1.74 1.84 3.03 3.38 5.51 5.05 6.71 2.37

TransClick-segformerB4 [11] C+L 1.52 1.60 1.60 3.44 5.63 3.68 5.06 2.08

FocalClick-segformerB0 [8] C+L 1.40 1.66 2.27 4.56 6.86 4.04 5.49 2.97
Ours-segformerB0 C+L 1.56 1.64 2.40 3.95 6.21 4.48 5.53 2.65

FocalClick-segformerB3 [8] C+L 1.44 1.50 1.92 3.53 5.59 3.61 4.90 2.46
Ours-segformerB3 C+L 1.42 1.48 2.35 3.44 5.57 4.49 5.69 2.23

RITM-hrnet18s [40] C+L 1.54 1.68 2.60 4.04 6.48 4.70 5.98 2.57
FocalClick-hrnet18s [8] C+L 1.48 1.62 2.66 4.43 6.79 3.90 5.25 2.93
Ours-hrnet18s C+L 1.40 1.52 2.68 3.86 6.16 4.42 5.66 2.37

RITM-hrnet18 [40] C+L 1.42 1.54 2.26 3.80 6.06 4.36 5.74 2.28
EdgeFlow-hrnet18 [15] C+L 1.60 1.72 2.40 - - 4.54 5.77 2.50
Ours-hrnet18 C+L 1.38 1.50 2.30 3.69 5.93 4.34 5.59 2.37

RITM-hrnet32 [40] C+L 1.46 1.56 2.10 3.59 5.71 4.11 5.34 2.57
FocalClick-hrnet32 [8] C+L 1.64 1.80 2.36 4.24 6.51 4.01 5.39 2.80
PseudoClick-hrnet32 [29] C+L - 1.50 2.08 - 5.68 4.09 5.27 1.94
Ours-hrnet32 C+L 1.30 1.42 2.35 3.55 5.65 4.29 5.33 2.22

Table 3. Comparison results on five benchmarks. NoC@85 and NoC@90 respectively denote the number of clicks required to reach the
IoU of 85% and 90%, and lower is better for the value. C+L means the combination of COCO and LVIS.

time. We demonstrate the total inference time to reach 90%
and 95% IoU on the largest dataset SBD in Tab. 2. To save
evaluation time, all models are evaluated on an NVIDIA
V100 GPU. Our method spends less time reaching a pre-
defined IoU threshold for all versions. Notably, although
the number of clicks required to reach 90% (NoC@90)
and 95% (NoC@95) IoUs is similar for FocalClick-SegB3
and Ours-SegB3, the inference time of our method is
significantly lower because the computational cost of Ours-
SegB3 from the second click is considerably lower than
FocalClick-SegB3. And the gap between our method and
FocalClick is larger when the threshold changes from 90%
to 95%. Thus, our method is more suitable for challenging
images and scenarios where we want to get a high IoU.

Performance Comparison. We compare our method with
existing methods on five benchmarks in Tab. 3. Some meth-
ods use the SBD [16] dataset to train their network, while
RITM suggests training on COCO [25] and LVIS [14].
We report the results of our method equipped with differ-
ent base segmentation networks and trained on different

datasets. Compared with some early methods like CD-
Net [7] and f-BRS [39], different versions of our method
show superior performance and efficiency. Compared with
recent state-of-the-art methods RITM [40], FocalClick [8],
FocusCut [26], PseudoClick [29], and TransClick [11], our
method demonstrates competitive performance. Especially,
our method achieves outstanding performance on the largest
SBD dataset. Overall, the proposed method demonstrates
preferable performance considering that the inference time
is significantly low from the second click.

4.3. Method analysis

Ablation study. We conduct ablation studies to verify the
effectiveness of each component in our method. The results
on three challenging datasets in presented in Tab. 4. We
first construct a network with only a simple convolutional
mask correction network as our baseline. The first point is
not fed to the base segmentation network (HRNet18s) in
this baseline. As shown in Tab. 4, a simple mask correction
network can hardly achieve high performance. The input
of the first click to the base segmentation network helps
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DAVIS SBD Pascal
1st Click Corr Self-Att TS NoC@90 NoC@90 NoC@90

7.11 8.32 4.38
✓ 6.98 6.83 3.19
✓ ✓ 6.32 6.30 3.09
✓ ✓ 6.02 6.33 2.98
✓ ✓ ✓ 5.86 6.24 2.89
✓ ✓ ✓ ✓ 5.66 6.16 2.84

Table 4. Ablation study on three challenging benchmarks. HR-
Net18s is used as the base segmentation network. 1st Click denotes
that we input the first click to the base segmentation network, Corr
denotes the correlation module, Self-Att denotes the self-attention
module, and TS denotes the template selection module.

Negative DAVIS SBD Pascal
Templates NoC@90 NoC@90 NoC@90

Correlation 6.10 6.39 3.01
Module ✓ 6.09 6.26 2.96

Self-Attention 6.04 6.55 3.22
Module ✓ 5.92 6.29 2.99

Table 5. The performance of the correlation and self-attention
modules with and without the adoption of the negative templates.

Figure 3. Illustration of the positive/negative score maps for tem-
plate selection and positive/negative correlation similarity maps in
click-guided correlation module.

extract target-aware features to boost the performance.
However, the performance is still relatively low. Both
the introduction of the click-guided self-attention module
and the click-guided correlation module bring significant
improvements over the simple mask correction network,
indicating that they both effectively exploit the click
information. Their combination achieves the best perfor-
mance, showing that they learn complementary augmented
features and can be combined to boost performance. The
template selection module further improves performance
by sampling several templates to enrich the click features.

The necessity of negative templates. All positive and

negative templates are input to the self-attention and
correlation modules. The adoption of positive templates
is a natural choice since they contain rich information
regarding the target. However, the negative templates
are also vital since negative clicks are often selected in
distractor areas, and they contain information that can
discriminate the target from the background. Tab. 5
demonstrates the performance of the two modules with and
without the negative templates. The employment of the
negative templates effectively improves the performance of
both the correlation and self-attention modules.

Qualitative analysis. We show the change of the pos-
itive/negative score maps for template selection and
positive/negative correlation similarity maps in Fig. 3.
After placing the first positive click, the model predicts
an erroneous area that shows high semantic similarity
to the target. After placing two more negative clicks in
the erroneous area, the model successfully segments the
target. In the interactive process, the score maps change
with the clicks and can effectively discriminate the areas
of the target of interest and other objects, which helps
select meaningful and correct templates. The change in
the correlation similarity maps shows that we can learn the
target contours by correlating the templates with the feature
maps. Fig. 3 only shows the similarity maps of two tem-
plates. Since we select several templates, the correlation
results provide rich information to discriminate the target
from other areas. Directly employing the correlation results
as features helps better segment the target.

Limitation analysis. Our method still requires a relatively
high computational cost in the first click, which may not be
suitable for some simple annotation scenarios where only
one or two clicks are needed. Maybe this can be solved by
reducing the resolution of the base segmentation network
as in FocalClick [8] and locally updating the mask with the
mask correlation network. We leave this for future research.

5. Conclusion

In this paper, we propose an efficient EMC-Click method
for click-based interactive segmentation. A lightweight
mask correction network is constructed to iteratively update
the mask, which significantly reduces the computational
cost from the second click. A click-guided correlation mod-
ule and a click-guided self-attention module are proposed to
effectively exploit the click information to boost the perfor-
mance of the mask correction network. Experiments on five
benchmarks demonstrate that our method achieves competi-
tive performance and higher efficiency compared with state-
of-the-art methods.
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