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Abstract

Reduced precision hardware-based matrix multiplica-
tion accelerators are commonly employed to reduce power
consumption of neural network inference. Multiplier de-
signs used in such accelerators possess an interesting prop-
erty: When the same bit is 0 for two consecutive compute
cycles, the multiplier consumes less power. In this paper we
show that this effect can be used to reduce power consump-
tion of neural networks by simulating low bit-width quan-
tization on higher bit-width hardware. We show that simu-
lating 4 bit quantization on 8 bit hardware can yield up to
17% relative reduction in power consumption on commonly
used networks. Furthermore, we show that in this context,
bit operations (BOPs) are a good proxy for power efficiency,
and that learning mixed-precision configurations that target
lower BOPs can achieve better trade-offs between accuracy
and power efficiency.

1. Introduction

Neural networks have achieved impressive break-
throughs in various fields, but are notoriously power hun-
gry. In recent years, neural network quantization, i.e. run-
ning neural networks on specialized low bit-width integer
hardware, has proven successful in reducing neural net-
work power requirements [3], with lower bit-widths gen-
erally yielding proportionally reduced power consumption.
However, designing and producing dedicated low bit-width
hardware requires significant R&D investment.

To further increase efficiency, most matrix multiplica-
tion hardware accelerators split up large matrix multiplica-
tions into chunks of weights and activations. These chunks
are calculated in dedicated multiply-accumulate (MAC) ar-
rays, reducing power consumption as a result of data trans-
fer through increased locality. If a bit in an individual MAC
array multiplier unit is 0 for two or more consecutive cycles,

*Qualcomm AI Research is an initiative of Qualcomm Technologies,
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a phenomenon we will from here on refer to as ‘consecutive
0 bits’, this multiplier consumes less power.

In this paper we show that this effect can be exploited
to achieve power benefits from low bit-width quantization
even on higher bit-width hardware, e.g. by running 4 bit
quantized networks on 8 bit hardware. Furthermore, we
show that power efficiency gains from simulated low bit-
width quantization can be vastly increased by bit-shifting
weights appropriately. Lastly, we show that model Bit Op-
eration (BOP) count [15] correlates well with power con-
sumption, and show that mixed precision configurations tar-
geting low BOP count yield better trade-offs between accu-
racy and power consumption than fixed bit-width configu-
rations.

2. Background
2.1. Quantization

To use efficient low bit integer hardware, a network must
be quantized to an appropriate bit-width [4,7,10]. As an ex-
ample, consider 8 bit quantization of a floating point tensor
X:

X ≈ Xq (1)
= sx ·Xint (2)

Xint = clip

(⌊
X

sx

⌉
,int min,int max

)
, (3)

where (int min,int max) is (0, 255) for unsigned and
(−128, 127) for signed tensors, and sw is a quantization
scale, set heuristically or through gradient descent on some
target loss function. The matrix-matrix product WX can
then be approximated as follows [4, 10]:

WX ≈ WqXq (4)
= swsxWintXint. (5)

Since only integer multiplications are required to com-
pute the product WintXint, this can be run on efficient low-
precision hardware. Note that we use matrix-matrix multi-
plications for illustrative purposes; the same principles hold
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for convolutions and certain extensions such as per-channel
quantization.

To improve quantized performance, quantization-aware
training (QAT) is often employed [2, 4, 11]. In these ap-
proaches, the (non-differentiable) quantization operation is
used in the forward pass, but ignored in the backward pass.

2.1.1 Mixed Precision quantization

The quantization procedure described in the previous sec-
tion introduces noise to weight and activation tensors. Some
neural network layers are more sensitive to this noise than
other layers. It can therefore be beneficial to use mixed pre-
cision quantization (MPQ), i.e. using tensor specific bit-
widths instead of a fixed bit-width for each tensor in the
network. Since the resulting space of MPQ configurations
grows exponentially with the number of layers in a network,
precluding exhaustive search, several methods have been
developed to efficiently find MPQ configurations with good
efficiency vs accuracy trade-offs [1, 14–16].

2.2. Hardware accelerators

Computations for a neural network layer can be seen as
a matrix-matrix multiplication Y = WX between input
activations X and weights W. The product WX entails the
multiplication of individual elements in W with elements
in X and the addition (accumulation) of the resulting scalar
products. Neural network accelerators are implemented in
hardware as multiply-accumulate (MAC) arrays, in which a
subset of weights is multiplied with a subset of activations
in parallel each cycle, and subsequently accumulated [3].

For example, a MAC array taking 16 weights W1:4,1:4

and 4 activations X1:4,k as input, would have 16 multi-
pliers and 4 accumulators. In each cycle the scalar prod-
ucts WnmXmk are computed in parallel, in multipliers
Mnm;n,m ∈ [1, 4]. The (partial) results for Y1:4,k are
stored in the accumulators. In this paper we focus on 8 bit
integer MAC arrays, in which all inputs are 8 bit integers.

2.2.1 Power savings with zeros

If one of the inputs to a multiplier Mmn is 0 for two or
more consecutive cycles, this multiplier does not consume
power. This phenomenon occurs at the bit level: if the same
input bit in a multiplier is 0 for two consecutive cycles, this
multiplier bit consumes no power.

This is effect caused by a multitude of factors, of which
the most important are: reduced dynamic power which is
associated with bit switching in the input; reduced output
bit switching due to more multiplication by 0; and fewer
active bits (i.e. those bits that were 1 in the current or previ-
ous cycle), yielding proportionally lower multiplier power
consumption. We refer readers to, e.g., [6] for details.

3. Method
To reduce power consumption, we aim to increase con-

secutive 0 bits. In this section we show how this can be
achieved by simulating low bit-width quantization in higher
bit-width hardware. Since activation tensors in ReLU net-
works are more sparse than the corresponding weights, we
assume that the biggest gains can be achieved by increas-
ing the number of consecutive 0 bits in the weights. For
this reason, we restrict our focus to the weights of networks
with ReLU activations.

3.1. Simulating low bit-widths

Low bit-width weights can be simulated on higher bit-
width hardware by restricting the range of (integer) values
weights can take. For example, simulating 4 bit integer
quantization on 8 bit hardware is commonly done by re-
stricting the range of integer weight values to [−8, 7]. How-
ever, due to the sign extension as a result of two’s comple-
ment encoding of negative numbers, negative values will
have 1s in their most significant bits (MSBs). Since our aim
is to maximize the number of consecutive 0 bits this is an
undesirable property.

To avoid the sign extension in 2s complement encod-
ing, we bit-shift the low bit integer weights by an appro-
priate amount. Note that bit-shifting an integer by b bits is
equivalent to multiplying by 2b. Generally, when simulating
signed b bit quantization on B bit hardware, we can multi-
ply each value by 2B−b, effectively bit-shifting each value
by B − b bits. To offset the effect of bit-shifting, we adjust
the quantization scale s accordingly: ŝ = s

2B−b .
As an example, consider simulating signed 4 bit weights

on 8 bit hardware. Assume we have a signed weight ten-
sor Wint with values in the range [−8, 7] and an associated
scale sw. The binary representation of the range [−8, 7] is
[11111000, 00000111]. In this case we only have consecu-
tive 0 bits if consecutive values are either both positive or
both negative numbers. To circumvent this we can define
Ŵq = 24 · Wint, which effectively shifts each value in
Wint by 4 bits. This yields a range from [−128, 112] in
decimal; [10000000, 01110000] in binary. Note that sinc
resulting values are multiples of 16, the least significant 4
bits will now always be zero, independent of the represented
values. Lastly, we can cancel out the effect of multiplication
by 16 by using quantization scale ŝw = sw

16 . The resulting
integer matrix product remains mathematically equivalent:

ŝwsxŴintXint =
sw
16

sx16WintXint

= swsxWintXint.

3.2. Power-aware Mixed Precision Quantization

As explained in section 2.1.1, different tensors may ex-
hibit different levels of quantization noise sensitivity. For

2758



this reason, using a fixed bit-width for all weight tensors
may not give an optimal trade-off between accuracy and
power efficiency. To find better trade-offs, we adapt Dif-
ferentiable Quantization [14] (DQ), to use low Bit Opera-
tions [15] (BOPs) as regularization target instead of model
size.

DQ training jointly learns model parameters θ and quan-
tization parameters ϕ. The quantization parameters ϕ con-
sist of the maximum quantization range mi and quantiza-
tion scale si, for each quantizer qi in the network. From the
combination of mi and si the bit-width of quantizer qi can
be inferred as bits(ϕi) =

⌈
log2

(
mi

si
+ 1

)⌉
+ signed(qi).

We then define BOPs(ϕ) as:

BOPs(ϕ) =
∑

opi∈network

bits(ϕi)MAC(opi) (6)

where opi denotes operations in a network (e.g. convo-
lutions and linear layers), MAC(opi) denotes the number
of Multiply-Accumulate (MAC) operations for opi, and
bits(ϕi) the bit-width of the weight quantizer qi associated
with opi. We ignore activation quantizers in BOP regular-
ization since their bit-width is fixed to 8. Using this regu-
larization target will put more emphasis on lower bit-widths
for high-MAC count layers. Since weights of higher MAC-
count layers are used more in computations, and lower (sim-
ulated) bit-widths imply more 0 bits, we expect the BOP
target to correlate well with power consumption.

Our adapted DQ training objective is then:

L(θ, ϕ) = LCE(θ, ϕ) + λ · BOPs(ϕ) (7)

where LCE(θ, ϕ) denotes the cross-entropy loss on (a batch
of) training data as a function of model and quantization pa-
rameters, and λ controls regularization strength, with higher
regularization yielding objectives that favor low BOP count
over accuracy.

4. Experiments and results

To validate whether our approach reduces power con-
sumption we perform on-device power measurements with
native 8 bit and simulated low bit models. To this end
we have access to a device with a Snapdragon® 888 Mo-
bile Platform. This device is equipped with Embedded
Power Measurement capabilities, which sample instanta-
neous power consumption on various power rails, at sub-
millisecond intervals. We run all models in 8 bits with a
Qualcomm® Hexagon™ Fused AI Accelerator and mea-
sure power on the rail which powers this accelerator1.

1Snapdragon and Qualcomm Hexagon are products of Qualcomm
Technologies, Inc. and/or its subsidiaries.

Model Weight bit-width
8 7 6 5 4

ResNet18 70.34 70.31 70.28 70.12 69.73
MobNetV2 71.76 71.64 71.46 71.11 70.17
ResNet50 76.62 - - - 75.89
EffNetLite0 75.26 - - - 70.64
RN18 (PTQ) 69.70 - - - 68.55

Table 1. Post-QAT ImageNet validation top-1 accuracies for the
models under consideration, and PTQ accuracies for ResNet18.
Activations are kept in 8 bit.

4.1. Power consumption experiments

For our low bit-width experiments we use ResNet18,
ResNet50, MobileNetV2 [12] and EfficientNet-Lite-0 [13]
for ImageNet classification. For all models we measure
power on a model with 8 bit weights and 8 bit activations
(W8A8) as baseline power measurement. We then mea-
sure power on the same model, with a W4A8 configuration.
For this configuration we consider both default simulated
4 bit quantization (i.e. with weights in range [-8, 7]) as a
baseline and our proposed bit-shifted simulated 4 bit quan-
tization (weights in range [-128, 112] with step size 16).
For ResNet18 and MobileNetV2 we consider all intermedi-
ate weight bit-widths (7, 6, 5 bits) as well. For all models
and weight bit-width configurations we keep activations in
8 bits. We report power reductions relative to a model with
8 bit weights.

4.1.1 Model Preparation

Using naively quantized models could result in overestimat-
ing the potential power reductions of simulated low bit-
width quantization. For example, in a W8A8 ResNet18
model quantized after FP32 training using min-max range
estimation, 7% of weights are 0 and accuracy is 69.7%. If
we quantize the same FP32 model to W4A8 using the same
techniques, 84% of weights are 0, yielding lower power
consumption as a result, while accuracy drops to 0.10%.

To ensure weight distributions are realistic, we perform
20 epochs of quantization-aware training (QAT) for each
model and bit-width configuration [2, 5]. We start from
models pre-trained in FP32 on ImageNet, and use learned
step size quantization (LSQ) to learn quantization parame-
ters [2]. We do not fold batch-normalization layers into the
corresponding weight layers [4, 7], and thus implicitly use
per-channel quantization. Following [11] we re-estimate
the batch normalization running statistics using 100 batches
prior to final evaluation. We run experiments on a range
of learning rates and report results on the model that gave
best validation accuracy. For Post-training quantization
(PTQ) experiments on ResNet18 we use Data Free Quan-
tization [9] for the 8 bit weight model and AdaRound [8]
for the 4 bit weight model. Table 1 shows validation scores
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Figure 1. Top: Power consumption reduction relative to a W8A8
model for simulated low bit-widths on 8 bit hardware. The blue
bar shows the W8A8 model, the green bar shows a W4A8 model
simulated using the default method, the red bar shows the same
W4A8 model simulated using our bit-shifted approach.
Bottom: Relative power consumption reduction for intermediate
bit-widths on ResNet18 and MobileNetV2.

for each model. Note that these results are not novel; similar
results have been reported in literature before (e.g. [8–10]).

4.1.2 Power consumption experiment results

Figure 1 (top) shows the power efficiency results obtained
from simulated W4A8 models run 8 bit hardware, rela-
tive to a W8A8 model. In this plot we see that our bit-
shifting approach provides significantly more reduction in
relative power consumption compared to the default ap-
proach. There is no appreciable difference between the re-
sults for the QAT and PTQ ResNet18 models.

Figure 1 (bottom) shows that each (simulated) bit that is
removed yields proportional reduction in power consump-
tion. This implies that we can use non power-of-two bit-
widths to find a wider range of trade-offs between power
consumption reduction and accuracy.

4.2. Mixed precision experiments

We investigate whether mixed precision configurations
can achieve better trade-offs between accuracy and power
efficiency than the fixed weight bit-width models from the
previous section. We use MobileNetV2 in our experiments

3Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade SecretsSource sample text

Same power, 
+0.5% accuracy

Same accuracy, 
-4% power

Figure 2. Top: Correlation between BOPs relative to W8A8 and
power consumption relative to W8A8.
Bottom: Relative power consumption reduction vs accuracy for
MobileNetV2 with fixed bit-width configurations (W4-8A8) and
mixed precision configurations learned using BOP targeted DQ.

as it shows relatively strong accuracy degradation for low
bit-widths. We run optimization with several values of λ
for each network, and report results for the best learning
rate for each λ.

4.2.1 Results for mixed precision experiments

Figure 2 (top) shows the correlation between relative BOPs
and power compared to a W8A8 model, while Figure 2 (bot-
tom) shows a comparison between mixed precision config-
urations and fixed bit-width configuration models. We see
that relative BOPs correlate strongly with relative power
consumption, and as a result differentiable quantization
with a BOP regularizer can indeed find better trade-offs be-
tween accuracy and power consumption than fixed configu-
ration counterparts, yielding 4% power consumption reduc-
tion at no accuracy loss, or a 0.5% increase in accuracy at
no extra expense in power.

5. Conclusion
In this paper we provided reduced power consumption

as a motivation for simulating low bit-width quantization
on higher bit-width hardware. We introduced a novel
bit-shifting approach to simulating low bit-widths that in-
creases the number of consecutive 0 bits, and showed that
this approach indeed shows greater reduction in power con-
sumption than the default approach. Lastly, we showed
that we can improve power efficiency further by selecting
bit-width configurations that minimize bit operations while
maintaining good accuracy.
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