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Abstract

The ability to learn richer network representations gen-
erally boosts the performance of deep learning models.
To improve representation-learning in convolutional neu-
ral networks, we present a multi-branch architecture, which
applies channel-wise attention across different network
branches to leverage the complementary strengths of both
feature-map attention and multi-path representation. Our
proposed Split-Attention module provides a simple and
modular computation block that can serve as a drop-in re-
placement for the popular residual block, while producing
more diverse representations via cross-feature interactions.
Adding a Split-Attention module into the architecture de-
sign space of RegNet-Y and FBNetV2 directly improves the
performance of the resulting network. Replacing residual
blocks with our Split-Attention module, we further design
a new variant of the ResNet model, named ResNeSt, which
outperforms EfficientNet in terms of the accuracy/latency
trade-off.

1. Introduction

Deep convolutional neural networks (CNNs) have be-
come the fundamental approach for image classification and
other transfer learning tasks in computer vision. As the
key component of the CNNs, a convolutional layer learns
a set of filters which aggregates the neighborhood informa-
tion with spatial and channel connections. This operation
is suitable to capture correlated features with the output
channels densely connected to each input channel. Incep-
tion models [52, 53] explore the multi-path representation
to learn independent features, where the input is split into a
few lower dimensional embeddings, transformed by differ-
ent sets of convolutional filters and then merged by concate-
nation. This strategy encourages the feature exploration by
decoupling the input channel connections [60].

The neuron connections in visual cortex have inspired
the development of CNNs in the past decades [29]. The
main theme of visual representation learning is discovering
salient features for a given task [72]. Prior work has mod-
eled spatial and channel dependencies [2,26,42], and incor-
porated attention mechanism [26, 35, 56]. SE-like channel-
wise attention [26] employs global pooling to squeeze the
channel statistics, and predicts a set of attention factors
to apply channel-wise multiplication with the original fea-
turemaps. This mechanism models the interdependencies
of featuremap channels, which uses the global context in-
formation to selectively highlight or de-emphasize the fea-
tures [26, 35]. This attention mechanism is similar to atten-
tional selection stage of human primary visual cortex [71],
which finds the informative parts for recognizing objects.
Human/animals perceive various visual patterns using the
cortex in separate regions that respond to different and par-
ticular visual features [45]. This strategy makes it easy to
identify subtle but dominant differences of similar objects
in the neural perception system. Similarly, if we can build
a CNN architecture to capture individual salient attributes
for different visual features, we would improve the network
representation for image classification.

In this paper, we present a simple architecture which
combines the channel-wise attention strategy with multi-
path network layout. Our method captures cross-channel
feature correlations, while preserving independent repre-
sentation in the meta structure. A module of our network
performs a set of transformations on low dimensional em-
beddings and concatenates their outputs as in a multi-path
network. Each transformation incorporates channel-wise
attention strategy to capture interdependencies of the fea-
turemap. We further simplify the architecture to make each
transformation share the same topology (e.g. Fig 2 (Right)).
We can parameterize the network architecture with only a
few variables. In addition, such setting also allows us to
accelerate the training using identical implementation with
unified CNN operators. We refer to such computation block
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Figure 1. ResNeSt outperforms EfficientNet in accuracy-latency
trade-offs on GPU. Notably, ResNeSt-269 has achieved better ac-
curacy than EfficientNet-B7 with 32% less latency. (details in Sec-
tion 4).

as Split-Attention Block. Stacking several Split-Attention
blocks in ResNet style, we create a new ResNet variant
which we refer to as Split-Attention Network (ResNeSt).

We first benchmark the performance of the proposed
Split-Attention Module in ResNet and mobile network set-
tings. Split-Attention Module is added to RegNet-Y and
FBNetV2 design spaces and the network performance got
improved directly without bells and whistles. We then study
the proposed ResNeSt. It achieves better speed-accuracy
trade-offs on GPU than EfficientNet [54] produced via neu-
ral architecture search as shown in Table 4.

2. Related Work

CNN Architectures. Since AlexNet [32], deep convolu-
tional neural networks [33] have dominated image classifi-
cation. With this trend, research has shifted from engineer-
ing handcrafted features to engineering network architec-
tures. NIN [37] first uses a global average pooling layer to
replace the heavy fully connected layers, and adopts 1 × 1
convolutional layers to learn non-linear combination of the
featuremap channels, which is the first kind of featuremap
attention mechanism. VGG-Net [48] proposes a modular
network design strategy, stacking the same type of network
blocks repeatedly, which simplifies both the workflow of
network design and transfer learning for downstream appli-
cations. Highway network [50] introduces highway connec-
tions which makes the information flow across several lay-
ers without attenuation and helps the network convergence.
Built on the success of the pioneering work, ResNet [22]
introduces an identity skip connection which alleviates the
difficulty of vanishing gradient in deep neural network and
allows network to learn improved feature representations.
ResNet has become one of the most successful CNN archi-
tectures which has been adopted in various computer vision
applications.
Multi-path and featuremap Attention. Multi-path rep-

resentation has shown success in GoogleNet [52], in which
each network block consists of different convolutional ker-
nels. ResNeXt [61] adopts group convolution [32] in the
ResNet bottle block, which converts the multi-path structure
into a unified operation. SE-Net [26] introduces a channel-
attention mechanism by adaptively recalibrating the chan-
nel feature responses. Recently, SK-Net [35] brings the fea-
turemap attention across two network branches. Inspired by
the previous methods, our network integrates the channel-
wise attention with multi-path network representation.
Neural Architecture Search. With increasing compu-
tational power, research interest has begun shifting from
manually designed architectures to systematically searched
architectures. Recent work explored efficient neural ar-
chitecture search via parameter sharing [40, 43] and have
achieved great success in low-latency and low-complexity
CNN models [3,57]. However, searching a large-scale neu-
ral network is still challenging due to the high GPU memory
usage via parameter sharing. EfficientNet [54] first searches
in a small setting and then scale up the network complex-
ity systematically. Depthwise convolution is widely used
in neural architecture search (NAS) work, due to better
accuracy and FLOPs trade-off. However, Radosavovic et
al. [44] uses a statistical method to analyze the network de-
sign space, and empirically find that fewer FLOPs does not
necessarily indicate lower network latency. Furthermore,
NAS approach doesn’t deepen our understanding of the ar-
chitecture [44], the quality of the resulting network still re-
lies on the manually designed search spaces. Our work aug-
ments the search spaces for neural architecture search and
potentially improve the performance, which can be studied
in the future work.

3. Split-Attention Block

Split-Attention block is a computational unit, consisting
of featuremap group and split attention operations. Figure 2
(Right) depicts an overview of a Split-Attention Block.
Featuremap Group. As in ResNeXt blocks [61], the fea-
ture can be divided into several groups, and the number of
featuremap groups is given by a cardinality hyperparameter
K. We refer to the resulting featuremap groups as cardi-
nal groups. In this paper, we introduce a new radix hy-
perparameter R that indicates the number of splits within
a cardinal group, so the total number of feature groups
is G = KR. We may apply a series of transformations
{F1,F2, ...FG} to each individual group, then the interme-
diate representation of each group is Ui = Fi(X), for i ∈
{1, 2, ...G}.
Split Attention in Cardinal Groups. Following [27, 35],
a combined representation for each cardinal group can be
obtained by fusing via an element-wise summation across
multiple splits. The representation for k-th cardinal group
is Ûk =

∑Rk
j=R(k−1)+1 Uj , where Ûk ∈ RH×W×C/K for

2737



Input

+

Conv, 3x3, c’,
group = 32

Input

Conv, 5x5, c’,
group = 32

Input

Conv, 1x1,
 c’/k/r

Conv, 1x1, c

Split Attention

Split Attention

…
Conv, 

3x3, c’/k

Split 1

Cardinal 1

…

+

Conv, 1x1, c

Conv, 1x1, cConv, 1x1, c’

Conv, 3x3, c’

Split Attention

Conv, 1x1, c

+

(h, w, c)

Conv, 1x1,
 c’/k/r

Conv, 
3x3, c’/k

Split r

Conv, 1x1,
 c’/k/r

Split Attention

…
Conv, 

3x3, c’/k

Split 1

Cardinal k

Conv, 1x1,
 c’/k/r

Conv, 
3x3, c’/k

Split r

(h, w, c’/k)

Concatenate
(h, w, c’/k)

(h, w, c’)

(h, w, c)

(h, w, c)(h, w, c)

SE-Net Block SK-Net Block ResNeSt Block

Figure 2. Comparing our ResNeSt block with SE-Net [27] and SK-Net [35]. A detailed view of Split-Attention unit is shown in Figure 3.
For simplicity, we show ResNeSt block in cardinality-major view (the featuremap groups with same cardinal group index reside next to
each other). We use radix-major in the real implementation, which can be modularized and accelerated by group convolution and standard
CNN layers (see supplementary material).
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Figure 3. Split-Attention within a cardinal group. For easy visual-
ization in the figure, we use c = C/K in this figure.

k ∈ 1, 2, ...K, and H , W and C are the block output fea-
turemap sizes. Global contextual information with embed-
ded channel-wise statistics can be gathered with global av-
erage pooling across spatial dimensions sk ∈ RC/K [26,
35]. Here the c-th component is calculated as:

skc =
1

H ×W

H∑
i=1

W∑
j=1

Ûk
c (i, j). (1)

A weighted fusion of the cardinal group representation
V k ∈ RH×W×C/K is aggregated using channel-wise soft
attention, where each featuremap channel is produced using

a weighted combination over splits. Then the c-th channel
is calculated as:

V k
c =

R∑
i=1

aki (c)UR(k−1)+i, (2)

where aki (c) denotes a (soft) assignment weight given by:

aki (c) =


exp(Gc

i (s
k))∑R

j=1 exp(Gc
j (s

k))
if R > 1,

1
1+exp(−Gc

i (s
k))

if R = 1,
(3)

and mapping Gc
i determines the weight of each split for the

c-th channel based on the global context representation sk.
ResNeSt Block. The cardinal group representations
are then concatenated along the channel dimension: V =
Concat{V 1, V 2, ...V K}. As in standard residual blocks,
the final output Y of our Split-Attention block is produced
using a shortcut connection: Y = V + X , if the input
and output featuremap share the same shape. For blocks
with a stride, an appropriate transformation T is applied to
the shortcut connection to align the output shapes: Y =
V + T (X). For example, T can be strided convolution or
combined convolution-with-pooling.
Instantiation and Computational Costs. Figure 2 (right)
shows an instantiation of our Split-Attention block, in
which the group transformation Fi is a 1 × 1 convolution
followed by a 3 × 3 convolution, and the attention weight
function G is parameterized using two fully connected lay-
ers with ReLU activation. The number of parameters and
FLOPS of a Split-Attention block are roughly the same as
a standard residual block [22, 60] with the same cardinality
and number of channels.
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Relation to Existing Attention Methods. First introduced
in SE-Net [26], the idea of squeeze-and-attention (called ex-
citation in the original paper) is to employ a global con-
text to predict channel-wise attention factors. With radix =
1, our Split-Attention block is applying a squeeze-and-
attention operation to each cardinal group, while the SE-
Net operates on top of the entire block regardless of mul-
tiple groups. SK-Net [35] introduces feature attention be-
tween two network streams. Setting radix = 2, the Split-
Attention block applies SK-like attention to each cardinal
group. Our method generalizes prior work of featuremap
attention [26, 35] within a cardinal group setting [60], and
its implementation remains computationally efficient. Fig-
ure 2 shows an overall comparison with SE-Net and SK-Net
blocks.

4. Experiments on Split-Attention Module

In order to fully understand the proposed Split-Attention
module, we add Split-Attention module directly into exist-
ing network design spaces and compare the performance.
We consider both ResNet and Mobile setting in this bench-
mark.

4.1. ResNet Setting

Implementation Details. We adopt standard training
recipe on ImageNet in this benchmark [22,48]. Specifically,
we randomly resize the image along the shorter edge with a
resulting size of [256, 480] while keeping the aspect ratio.
The resulting images are randomly flipped horizontally and
normalized by subtracting per-pixel mean and divided by
standard deviation. Standard color augmentation is used as
in [48]. We initialize the weights using MSRA init [23]. We
use SGD with a mini-batch size of 256. The starting learn-
ing rate is set to 0.1 and cosine learning rate decay is used
as in [28]. The models are trained for 120 epochs. We use
a weight-decay of 0.0001 and momentum of 0.9. No other
strategies or tricks are used in this section, and all models
are using exactly the same setting.

ResNet [22] setting has become a gold-stand benchmark
for studying CNN modules. RegNet [44] conducts a sys-
tematic search for the featuremap groups in ResNet variants
and achieves superior performance over EfficientNet [54].
We add the proposed split-attention module into RegNet de-
sign space and we refer to the resulting variant as RegNet-
SA (Split-Attention). For simplicity, we only add split = 1
to the design space in this section, which results in a small
design space1. This helps us understand how much ”multi-
head SE” module can outperform standard SE module [26].
We add extra requirement of the network to preserve 50-
layer ResNet meta architecture, i.e. each stage has [3, 4,

1We have also studied split = 2 and observed similar performance.
Results will be included in the Appendix.

6, 3] bottleneck blocks. We randomly sample 50 different
network configurations and report the best configuration in
Table 1. Our model RegNet-SA-50 outperform the RegNet-
Y [44] with similar network complexity. We also retrain the
manually designed SENet-50 [26] and SKNet-50 [35] for
reference.

4.2. Mobile Setting

In addition to ResNet setting, we also study the pro-
posed Split-Attention module in mobile network setting.
Recently, Differential Neural Architecture Search (DNAS)
work has achieved great progress in pushing the SoTA re-
sults of mobile networks. We follow the prior work of FB-
NetV2 [55], but use Split-Attention module instead of SE
module in the MBConv block with the number of splits in
[1,2,4]. We refer to the FBNetV2 with Split-Attention mod-
ule as SA-FBNetV2. We find that adding Split-Attention
module directly boosts the accuracy and FLOPs trade-off
of FBNetV2. Results are shown in Table 2. Similar results
are also reported in an independent work of FP-NAS [62].

Our first experiments study the image classification per-
formance of ResNeSt on the ImageNet 2012 dataset [14]
with 1.28M training images and 50K validation images
(from 1000 different classes). As is standard, networks are
trained on the training set and we report their top-1 accuracy
on the validation set.

5. ResNeSt Implementation
With the proposed Split-Attention module, we stack the

network block in ResNet style, resulting in a ResNet vari-
ant which we refer to as Split Attention Networks (ResNeSt).
First, we detail a couple of tweaks that further improve
the results, some of which have been empirically validated
in [24]. Then, we describe the advanced training strategies
we use to further boosting the network performance.

5.1. Network Tweaks

Average Downsampling. For transfer learning on dense
prediction tasks such as detection or segmentation, it be-
comes essential to preserve spatial information. Recent
ResNet implementations usually apply the strided convo-
lution at the 3× 3 layer instead of the previous 1× 1 layer
to better preserve such information [25, 27]. Convolutional
layers require handling featuremap boundaries with zero-
padding strategies, which is often suboptimal when trans-
ferring to other dense prediction tasks. Instead of using
strided convolution at the transitioning block (in which the
spatial resolution is downsampled), we use an average pool-
ing layer with a kernel size of 3× 3 .
Tweaks from ResNet-D. We also adopt two simple yet ef-
fective ResNet modifications introduced by [25]: (1) The
first 7 × 7 convolutional layer is replaced with three con-
secutive 3 × 3 convolutional layers, which have the same
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Stage RegNet-Y-4GF RegNet-SA-50 (ours) SENet-50 SKNet-50

C1 3 × 3, 32, stride 2
7 × 7, 64, stride 2

3 × 3 max pool, stride 2

C2


128
128, G = 2
SE
128

× 2


216
216, G = 27
SA[r1, c6]

216

× 3


128
128, G = 32
256
SE

× 3


128
128, G = 32
SK
256

× 3

C3


192
192, G = 3
SE
192

× 6


288
288, G = 18
SA[r1, c24]

288

× 4


256
256, G = 32
512
SE

× 4


256
256, G = 32
SK
512

× 6

C4


512
512, G = 8
SE
512

× 12


720
720, G = 45
SA[r1, c18]

720

× 6


512
512, G = 32
1024
SE

× 6


512
512, G = 32
SK
1024

× 6

C5


1088
1088, G = 17
SE
1088

× 2


1344
1344, G = 42
SA[r1, c28]

1344

× 3


1024
1024, G = 32
2048
SE

× 3


1024
1024, G = 32
SK
2048

 × 3

FC 7 × 7 global average pool, 1000-d fc, softmax
#P 21.05M 21.67M 27.7M 27.5M

FLOPs 4.00G 4.04G 4.25G 4.47G
Acc 79.3 79.6 79.1 78.9

Table 1. Adding Split-Attention module into the RegNet design space, the resulting model RegNet-SA-50 outperforms RegNet-Y with
similar FLOPs and number of parameters, even with extra constrain of preserving 50-layer ResNet style. We also retrain the manually
designed SENet-50 & SKNet models for reference. All models are trained using the same recipe.

Model FLOPs Acc
FBNetV2-F1 56M 68.3
SA-FBNetV2-F1(ours) 65M 69.9
FBNetV2-F3 126M 73.2
SA-FBNetV2-F3(ours) 136M 74.1
FBNetV2-F4 238M 76.0
SA-FBNetV2-F4(ours) 262M 76.6

Table 2. Replacing the SE module with Split-Attention module in
FBNetV2 directly boots the network accuracy and FLOPs trade-
off.

receptive field size with a similar computation cost as the
original design. (2) A 2× 2 average pooling layer is added
to the shortcut connection prior to the 1 × 1 convolutional
layer for the transitioning blocks with stride of two.
5.2. Training Strategy

Large Mini-batch Distributed Training.2 For effectively
training deep CNN models, we follow the prior work
[18, 34, 36] to train our models using 8 servers (64 GPUs
in total) in parallel. Our learning rates are adjusted accord-
ing to a cosine schedule [25, 28]. We follow the common
practice using linearly scaling-up the initial learning rate
based on the mini-batch size. The initial learning rate is
given by η = B

256ηbase, where B is the mini-batch size and
we use ηbase = 0.1 as the base learning rate. This warm-up
strategy is applied over the first 5 epochs, gradually increas-

2Note that large mini-batch training only improve the training speed
but not the accuracy. Instead, it often degrades the results.

ing the learning rate linearly from 0 to the initial value for
the cosine schedule [18, 36]. The batch normalization (BN)
parameter γ is initialized to zero in the final BN operation
of each block, as has been suggested for large batch train-
ing [18].
Label Smoothing. We adapt label smoothing as in prior
work [25, 53] to avoid overfitting. Soft-label is used:

pi =

{
1− ε if i = c,

ε/(K − 1) otherwise
(4)

where c is the ground-truth class, K is number of classes,
ε > 0 is a small constant. This mitigates network overcon-
fidence and overfitting.
Auto Augmentation. Auto-Augment [12] is a strategy
that augments the training data with transformed images,
where the transformations are learned adaptively. 16 differ-
ent types of image jittering transformations are introduced,
and from these, one augments the data based on 24 differ-
ent combinations of two consecutive transformations such
as shift, rotation, and color jittering. The magnitude of each
transformation can be controlled with a relative parameter
(e.g. rotation angle), and transformations may be probabilis-
tically skipped.
Mixup Training. Mixup is another data augmentation
strategy that generates a weighted combinations of random
image pairs from the training data [65]. Given two images
and their ground truth labels: (x(i), y(i)), (x(j), y(j)), a syn-
thetic training example (x̂, ŷ) is generated as:

x̂ = λxi + (1− λ)xj , (5)
ŷ = λyi + (1− λ)yj , (6)
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where λ ∼ Beta(α = 0.2) is independently sampled for
each augmented example.
Large Crop Size. Image classification research typi-
cally compares the performance of different networks op-
erating on images that share the same crop size. ResNet
variants [22,25,26,60] usually use a fixed training crop size
of 224, while the Inception-Net family [51–53] uses a train-
ing crop size of 299. Recently, the EfficientNet method [54]
has demonstrated that increasing the input image size for
a deeper and wider network may better trade off accuracy
vs. FLOPS. For fair comparison, we use a crop size of 224
when comparing our ResNeSt with ResNet variants, and a
crop size of 256 when comparing with other approaches.
Regularization. Very deep neural networks tend to overfit
even for large datasets [68]. To prevent this, dropout regu-
larization randomly masks out some neurons during train-
ing (but not during inference) to form an implicit network
ensemble [26, 49, 68]. A dropout layer with the dropout
probability of 0.2 is applied before the final fully-connected
layer to the networks with more than 200 layers. We also
apply DropBlock layers to the convolutional layers at the
last two stages of the network. As a structured variant of
dropout, DropBlock [17] randomly masks out local block
regions, and is more effective than dropout for specifically
regularizing convolutional layers.

6. Experiments on ResNeSt

6.1. Implementation Details

We use data sharding for distributed training on Ima-
geNet, evenly partitioning the data across GPUs. At each
training iteration, a mini-batch of training data is sampled
from the corresponding shard (without replacement). We
apply the transformations from the learned Auto Augmen-
tation policy to each individual image. Then we further ap-
ply standard transformations including: random size crop,
random horizontal flip, color jittering, and changing the
lighting. Finally, the image data are RGB-normalized via
mean/standard-deviation rescaling. For mixup training, we
simply mix each sample from the current mini-batch with
its reversed order sample [25]. Batch Normalization [30]
is used after each convolutional layer before ReLU activa-
tion [41]. Network weights are initialized using Kaiming
Initialization [23]. A drop layer is inserted before the fi-
nal classification layer with dropout ratio = 0.2. Training is
done for 270 epochs with a weight decay of 0.0001 and mo-
mentum of 0.9, using a cosine learning rate schedule with
the first 5 epochs reserved for warm-up. We use a mini-
batch of size 8192 for ResNeSt-50, 4096 for ResNeSt 101,
and 2048 for ResNeSt-{200, 269}. For evaluation, we first
resize each image to 1/0.875 of the crop size along the short
edge and apply a center crop. Our code implementation for
ImageNet training uses GluonCV [19] with MXNet [10].

6.2. Ablation Study

ResNeSt is based on the ResNet-D model [25]. Mixup
training improves the accuracy of ResNetD-50 from
78.31% to 79.15%. Auto augmentation further improves the
accuracy by 0.26%. When employing our Split-Attention
block to form a ResNeSt-50-fast model, accuracy is further
boosted to 80.64%. In this ResNeSt-fast setting, the effec-
tive average downsampling is applied prior to the 3×3 con-
volution to avoid introducing extra computational costs in
the model. With the downsampling operation moved after
the convolutional layer, ResNeSt-50 achieves 81.13% accu-
racy.
Radix vs. Cardinality. We conduct an ablation study on
ResNeSt-variants with different radix/cardinality. In each
variant, we adjust the network’s width appropriately so that
its overall computational cost remains similar to the ResNet
variants. The results are shown in Table 3, where s de-
notes the radix, x the cardinality, and d the network width
(0s represents the use of a standard residual block as in
ResNet-D [25]). We empirically find that increasing the
radix from 0 to 4 continuously improves the top-1 accu-
racy, while also increasing latency and memory usage. Al-
though we expect further accuracy improvements with even
greater radix/cardinality, we employ Split-Attention with
the 2s1x64d setting in subsequent experiments, to ensure
these blocks scale to deeper networks with a good trade-off
between speed, accuracy and memory usage.

6.3. Comparing against the State-of-the-Art

To compare with CNN models trained using different
crop size settings, we increase the training crop size for
deeper models. We use a crop size of 256 × 256 for
ResNeSt-200 and 320× 320 for ResNeSt-269. Bicubic up-
sampling strategy is employed for input-size greater than
256. The results are shown in Table 4, where we compare
the inference speed in addition to the number of parame-
ters. We find that despite its advantage in parameters with
accuracy trade-off, the widely used depth-wise convolution
is not optimized for inference speed. In this benchmark,
all inference speeds are measured using a mini-batch of 16
using the implementation [1] from the original author on
a single NVIDIA V100 GPU. The proposed ResNeSt has
better accuracy and latency trade-off than models found via
neural architecture search.

7. Transfer Learning Results
7.1. Object Detection

We report our detection result on MS-COCO [39] in Ta-
ble 5. All models are trained on COCO-2017 training set
with 118k images, and evaluated on COCO-2017 valida-
tion set with 5k images (aka. minival) using the standard
COCO AP metric of single scale. We train all models with
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#P GFLOPs acc(%)
ResNetD-50 [25] 25.6M 4.34 78.31
+ mixup 25.6M 4.34 79.15
+ autoaug 25.6M 4.34 79.41
ResNeSt-50-fast 27.5M 4.34 80.64
ResNeSt-50 27.5M 5.39 81.13

Variant #P GFLOPs img/sec acc(%)
0s1x64d 25.6M 4.34 688.2 79.41
1s1x64d 26.3M 4.34 617.6 80.35
2s1x64d 27.5M 4.34 533.0 80.64
4s1x64d 31.9M 4.35 458.3 80.90
2s2x40d 26.9M 4.38 481.8 81.00

Table 3. Ablation study for ImageNet image classification. (Left) breakdown of improvements. (Right) radix vs. cardinality under
ResNeSt-fast setting. For example 2s2x40d denotes radix=2, cardinality=2 and width=40. Note that even radix=1 does not degrade any
existing approach (see Equation 3).

#P crop img/sec acc(%)
ResNeSt-101(ours) 48M 256 291.3 83.0
EfficientNet-B4 [54] 19M 380 149.3 83.0
SENet-154 [26] 146M 320 133.8 82.7
NASNet-A [76] 89M 331 103.3 82.7
AmoebaNet-A [46] 87M 299 - 82.8
ResNeSt-200 (ours) 70M 320 105.3 83.9
EfficientNet-B5 [54] 30M 456 84.3 83.7
AmoebaNet-C [46] 155M 299 - 83.5
ResNeSt-269 (ours) 111M 416 51.2 84.5
GPipe 557M - - 84.3
EfficientNet-B7 [54] 66M 600 34.9 84.4

Table 4. Accuracy vs. Throughput for SoTA CNN models on Im-
ageNet. Our ResNeSt model displays the best trade-off. Average
Inference latency is measured on a NVIDIA V100 GPU using the
original code implementation of each model with a mini-batch of
size 16.

FPN [38], synchronized batch normalization [66] and im-
age scale augmentation (short size of a image is picked ran-
domly from 640 to 800). 1x learning rate schedule is used.
We conduct Faster-RCNNs and Cascade-RCNNs experi-
ments using Detectron2 [58]. For comparison, we simply
replaced the vanilla ResNet backbones with our ResNeSt,
while using the default settings for the hyper-parameters
and detection heads [20, 58].

Compared to the baselines using standard ResNet, Our
backbone is able to boost mean average precision by around
3% on both Faster-RCNNs and Cascade-RCNNs. The re-
sult demonstrates our backbone has good generalization
ability and can be easily transferred to the downstream task.
Notably, our ResNeSt50 outperforms ResNet101 on both
Faster-RCNN and Cascade-RCNN detection models, us-
ing significantly fewer parameters. Detailed results in Ta-
ble 5. We evaluate our Cascade-RCNN with ResNeSt101
deformable, that is trained using 1x learning rate schedule
on COCO test-dev set as well. It yields a box mAP of 49.2
using single scale inference.

Method Backbone mAP%

Pr
io

rW
or

k

Faster-RCNN [47]
ResNet101 [21] 37.3

ResNeXt101 [7, 60] 40.1
SE-ResNet101 [26] 41.9

Faster-RCNN+DCN [13] ResNet101 [7] 42.1
Cascade-RCNN [4] ResNet101 42.8

O
ur

R
es

ul
ts

Faster-RCNN [47]

ResNet50 [58] 39.25
ResNet101 [58] 41.37

ResNeSt50 (ours) 42.33
ResNeSt101 (ours) 44.72

Cascade-RCNN [4]

ResNet50 [58] 42.52
ResNet101 [58] 44.03

ResNeSt50 (ours) 45.41
ResNeSt101 (ours) 47.50

Cascade-RCNN [4] ResNeSt200 (ours) 49.03

Table 5. Object detection results on the MS-COCO validation
set. Both Faster-RCNN and Cascade-RCNN are significantly im-
proved by our ResNeSt backbone.

7.2. Instance Segmentation

To explore the generalization ability of our novel back-
bone, we also apply it to instance segmentation tasks. Be-
sides the bounding box and category probability, instance
segmentation also predicts object masks, for which a more
accurate dense image representation is desirable.

We evaluate the Mask-RCNN [21] and Cascade-Mask-
RCNN [4] models with ResNeSt-50 and ResNeSt-101
as their backbones. All models are trained along with
FPN [38] and synchronized batch normalization. For data
augmentation, input images’ shorter side are randomly
scaled to one of (640, 672, 704, 736, 768, 800). To fairly
compare it with other methods, 1x learning rate schedule
policy is applied, and other hyper-parameters remain the
same. We re-train the baseline with the same setting de-
scribed above, but with the standard ResNet. All our ex-
periments are trained on COCO-2017 dataset and using De-
tectron2 [58]. For the baseline experiments, the backbone
we used by default is the MSRA version of ResNet, hav-
ing stride-2 on the 1x1 conv layer. Both bounding box and
mask mAP are reported on COCO-2017 validation dataset.

As shown in Table 6, our new backbone achieves better
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Pr
io

rW
or

k Method Backbone box mAP% mask mAP%
DCV-V2 [74] ResNet50 42.7 37.0
HTC [6] ResNet50 43.2 38.0
Mask-RCNN [21] ResNet101 [7] 39.9 36.1
Cascade-RCNN [5] ResNet101 44.8 38.0

O
ur

R
es

ul
ts Mask-RCNN [21]

ResNet50 [58] 39.97 36.05
ResNet101 [58] 41.78 37.51

ResNeSt50 (ours) 42.81 38.14
ResNeSt101 (ours) 45.75 40.65

Cascade-RCNN [4]

ResNet50 [58] 43.06 37.19
ResNet101 [58] 44.79 38.52

ResNeSt50 (ours) 46.19 39.55
ResNeSt101 (ours) 48.30 41.56

Table 6. Instance Segmentation results on the MS-COCO valida-
tion set. Both Mask-RCNN and Cascade-RCNN models are im-
proved by our ResNeSt backbone. Models with our ResNeSt-101
outperform all prior work using ResNet-101.

performance. For Mask-RCNN, ResNeSt50 outperforms
the baseline with a gain of 2.85%/2.09% for box/mask per-
formance, and ResNeSt101 exhibits even better improve-
ment of 4.03%/3.14%. For Cascade-Mask-RCNN, the
gains produced by switching to ResNeSt50 or ResNeSt101
are 3.13%/2.36% or 3.51%/3.04%, respectively. This sug-
gests a model will be better if it consists of more Split-
Attention modules. As observed in the detection results, the
mAP of our ResNeSt50 exceeds the result of the standard
ResNet101 backbone, which indicates a higher capacity of
the small model with our proposed module. Finally, we also
train a Cascade-Mask-RCNN with ResNeSt101-deformable
using a 1x learning rate schedule. We evaluate it on the
COCO test-dev set, yielding 50.0 box mAP, and 43.1 mask
mAP respectively. Additional experiments under different
settings are included in the supplementary material.

7.3. Semantic Segmentation

In transfer learning for semantic segmentation, we use
the GluonCV [19] implementation of DeepLabV3 [9] as a
baseline approach. Here a dilated network strategy [8, 63]
is applied to the backbone network, resulting in a stride-
8 model. Synchronized Batch Normalization [66] is used
during training, along with a polynomial-like learning rate
schedule (with initial learning rate = 0.1). For evalua-
tion, the network prediction logits are upsampled 8 times
to calculate the per-pixel cross entropy loss against the
ground truth labels. We use multi-scale evaluation with flip-
ping [66, 69, 75].

We first consider the Cityscapes [11] dataset, which con-
sists of 5K high-quality labeled images. We train each
model on 2,975 images from the training set and report its
mIoU on 500 validation images. Following prior work, we
only consider 19 object/stuff categories in this benchmark.
We have not used any coarse labeled images or any extra
data in this benchmark. Our ResNeSt backbone boosts the
mIoU achieved by DeepLabV3 models by around 1% while

Method Backbone pixAcc% mIoU%

Pr
io

rW
or

k

UperNet [59] ResNet101 81.01 42.66
PSPNet [69] ResNet101 81.39 43.29
EncNet [66] ResNet101 81.69 44.65
CFNet [67] ResNet101 81.57 44.89
OCNet [64] ResNet101 - 45.45
ACNet [16] ResNet101 81.96 45.90

O
ur

s

DeeplabV3 [9]

ResNet50 [19] 80.39 42.1
ResNet101 [19] 81.11 44.14

ResNeSt-50 (ours) 81.17 45.12
ResNeSt-101 (ours) 82.07 46.91
ResNeSt-200 (ours) 82.45 48.36

Table 7. Semantic segmentation results on validation set of:
ADE20K.

Method Backbone mIoU%

Pr
io

rW
or

k

DANet [15] ResNet101 77.6
PSANet [70] ResNet101 77.9
PSPNet [69] ResNet101 78.4
AAF [31] ResNet101 79.2
DeeplabV3 [9] ResNet101 79.3
OCNet [64] ResNet101 80.1

O
ur

s

DeeplabV3 [9]

ResNet50 [19] 78.72
ResNet101 [19] 79.42

ResNeSt-50 (ours) 79.87
ResNeSt-101 (ours) 80.42
ResNeSt-200 (ours) 82.7

Table 8. Semantic segmentation results on validation set of
Citscapes. Models are trained without coarse labels or extra data.

maintaining a similar overall model complexity. Notably,
the DeepLabV3 model using our ResNeSt-50 backbone al-
ready achieves better performance than DeepLabV3 with a
much larger ResNet-101 backbone.

ADE20K [73] is a large scene parsing dataset with 150
object and stuff classes containing 20K training, 2K valida-
tion, and 3K test images. All networks are trained on the
training set for 120 epochs and evaluated on the validation
set. Table 8 shows the resulting pixel accuracy (pixAcc) and
mean intersection-of-union (mIoU). The performance of the
DeepLabV3 models are dramatically improved by employ-
ing our ResNeSt backbone. Analogous to previous results,
the DeepLabv3 model using our ResNeSt-50 backbone
already outperforms DeepLabv3 using a deeper ResNet-
101 backbone. DeepLabV3 with a ResNeSt-101 backbone
achieves 82.07% pixAcc and 46.91% mIoU, which to our
knowledge, is the best single model that has been presented
for ADE20K.

8. Conclusion
This work proposes the ResNeSt architecture that lever-

ages the channel-wise attention with multi-path represen-
tation into a single unified Split-Attention block, which
universally improves the learned feature representations to
boost performance across multiple computer vision tasks.

2743



References
[1] Tensorflow Efficientnet. https://github.com/

tensorflow / tpu / tree / master / models /
official/efficientnet. Accessed: 2020-03-04. 6

[2] Sean Bell, C Lawrence Zitnick, Kavita Bala, and Ross Gir-
shick. Inside-outside net: Detecting objects in context with
skip pooling and recurrent neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2874–2883, 2016. 1

[3] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. arXiv preprint arXiv:1908.09791,
2019. 2

[4] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-
ing into high quality object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 6154–6162, 2018. 7, 8

[5] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High
quality object detection and instance segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2019. 8

[6] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-
iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping
Shi, Wanli Ouyang, et al. Hybrid task cascade for instance
segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4974–4983,
2019. 8

[7] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 7, 8

[8] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. arXiv:1606.00915, 2016. 8

[9] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 8

[10] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and
Zheng Zhang. Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274, 2015. 6

[11] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 8

[12] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 113–123,
2019. 5

[13] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In Proceedings of the IEEE international confer-
ence on computer vision, pages 764–773, 2017. 7

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009. 4

[15] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei
Fang, and Hanqing Lu. Dual Attention Network for Scene
Segmentation. 2019. 8

[16] Jun Fu, Jing Liu, Yuhang Wang, Yong Li, Yongjun Bao, Jin-
hui Tang, and Hanqing Lu. Adaptive context network for
scene parsing. In Proceedings of the IEEE international con-
ference on computer vision, pages 6748–6757, 2019. 8

[17] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock:
A regularization method for convolutional networks. In
Advances in Neural Information Processing Systems, pages
10727–10737, 2018. 6

[18] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 5

[19] Jian Guo, He He, Tong He, Leonard Lausen, Mu Li, Haibin
Lin, Xingjian Shi, Chenguang Wang, Junyuan Xie, Sheng
Zha, et al. Gluoncv and gluonnlp: Deep learning in computer
vision and natural language processing. Journal of Machine
Learning Research, 21(23):1–7, 2020. 6, 8

[20] Jian Guo, He He, Tong He, Leonard Lausen, Mu Li, Haibin
Lin, Xingjian Shi, Chenguang Wang, Junyuan Xie, Sheng
Zha, Aston Zhang, Hang Zhang, Zhi Zhang, Zhongyue
Zhang, Shuai Zheng, and Yi Zhu. Gluoncv and gluonnlp:
Deep learning in computer vision and natural language pro-
cessing. Journal of Machine Learning Research, 21(23):1–7,
2020. 7

[21] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. arXiv preprint arXiv:1703.06870, 2017.
7, 8

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015. 2, 3, 4, 6

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015. 4, 6

[24] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks to train convolutional
neural networks for image classification. arXiv preprint
arXiv:1812.01187, 2018. 4

[25] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks for image classification
with convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 558–567, 2019. 4, 5, 6, 7

2744



[26] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. arXiv preprint arXiv:1709.01507, 2017. 1, 2, 3, 4, 6,
7

[27] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 2,
3, 4

[28] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens
van der Maaten. Densely connected convolutional networks.
arXiv preprint arXiv:1608.06993, 2016. 4, 5

[29] David H Hubel and Torsten N Wiesel. Receptive fields,
binocular interaction and functional architecture in the cat’s
visual cortex. The Journal of physiology, 160(1):106, 1962.
1

[30] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International Conference on Machine Learn-
ing, pages 448–456, 2015. 6

[31] Tsung-Wei Ke, Jyh-Jing Hwang, Ziwei Liu, and Stella X.
Yu. Adaptive Affinity Fields for Semantic Segmentation. In
European Conference on Computer Vision (ECCV), 2018. 8

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 2
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