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Abstract

We study the semi-supervised learning problem, using a
few labeled data and a large amount of unlabeled data to
train the network, by developing a cross-patch dense con-
trastive learning framework, to segment cellular nuclei in
histopathologic images. This task is motivated by the ex-
pensive burden on collecting labeled data for histopatho-
logic image segmentation tasks. The key idea of our method
is to align features of teacher and student networks, sam-
pled from cross-image in both patch- and pixel-levels, for
enforcing the intra-class compactness and inter-class sepa-
rability of features that as we shown is helpful for extract-
ing valuable knowledge from unlabeled data. We also de-
sign a novel optimization framework that combines consis-
tency regularization and entropy minimization techniques,
showing good property in eviction of gradient vanishing.
We assess the proposed method on two publicly available
datasets, and obtain positive results on extensive experi-
ments, outperforming the state-of-the-art methods. Codes
are available at https://github.com/zzw-szu/CDCL.

1. Introduction

Deep learning models have achieved remarkable success
in cellular nuclei segmentation from histopathologic im-
ages [9,42,43]. However, for a good learning performance,
we often have to collect a large amount of annotated data
that tell how the deep model should output. The crux is
such annotated data are rather time-consuming to collect or
can be even prohibitively expensive, because they need te-
dious efforts from domain experts and the annotating pro-
cess have to be conducted multiple rounds for reaching a
consensus among experts. Therefore, it has been receiv-
ing an increasing interest for researchers to study on how to
train deep models given only a few annotated data.

Seminal works in this direction include mainly semi-
supervised learning [17, 21, 36] and weakly-supervised
learning [1, 18,37]. In this work, we study semi-supervised
learning problem that just needs a few pixel-wise annotated
data while being able to learn from quite massive unlabeled

data. This setting is more suitable for segmenting cellu-
lar nuclei in histopathologic images where a lot of objects
presented in one image, thus weak supervision signals, say
object’s center, often being far more expensive to acquire.

Advanced semi-supervised learning techniques in medi-
cal image segmentation often are based on adversarial train-
ing, pseudo-labeling, and consistency regularization [10,23,

]. These existing methods, though have shown being
able to leverage knowledge from unlabeled data for learn-
ing, suffer from lack of exploiting feature structures across
the whole dataset, such as the similarity or disparity exists
between different features. Our idea for solving this prob-
lem is to tie semi-supervised learning and contrastive learn-
ing together. Contrastive learning selects positive and neg-
ative pairs of features from unlabeled data, and then exploit
knowledge from them by contrasting the similar features
against dissimilar features, being able to learn high-level se-
mantic structures across different images.

The key to implement our idea is the sampling quality
of positive and negative pairs. Existing methods are based
on pixel-wise sampling, positive pairs consisting of multi-
ple views of perturbations from the same pixel-wise fea-
ture while negative pairs are randomly sampled by features
with different pixel-wise predictions, under the guidance of
pseudo labels [20, 44]. Since nuclei have blur boundaries
while obvious distributions, pseudo labels are not accurate
as expected in pixel-wise, though they still reflect the class
distribution in a fixed region (e.g., patch), suggesting that
it is easier to correctly judge inter-patch feature disparity
rather than inter-pixel. Therefore, by leveraging the inter-
patch feature disparity, deep models are more likely to learn
better representations of target distributions.

With the above insight, we develop a cross-patch dense
contrastive learning framework to extract structural infor-
mation from unlabeled data. Specifically, we sample patch-
wise negative pairs between patches with large disparity
and densely sample pixel-wise negative pairs between them.
Following with the standard positive sampling strategy, our
contrastive learning module enforces the intra-class com-
pactness and inter-class separability [38] in both patch-
level and pixel-level. With the contrastive learning mod-
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ule as the core, we further take the advantage of the mean
teacher architecture, consistency regularization, and en-
tropy minimization to acquire predictions and pseudo la-
bels with higher quality, for the semi-supervised segmen-
tation of cellular nuclei in histopathologic images. We
conduct extensive experiments on two publicly available
datasets, with the positive results showing the effectiveness
of our method, consistently outperforming the state-of-the-
art methods. We summarize the contributions as follows.

* We propose an effective and generic cross-patch dense
contrastive learning framework to extract valuable
knowledge from unlabeled data, by enforcing the intra-
class compactness and inter-class separability in both
patch-level and pixel-level.

* We take the advantage of consistency regularization
and entropy minimization, develop an efficient semi-
supervised nuclei image segmentation algorithm that
outperforms the state-of-art methods in two publicly
available datasets.

2. Related Work

2.1. Cellular Nuclei Segmentation in Histopatho-
logic Images

Cellular nuclei segmentation is a preliminary but com-
plicated task in computer-assisted diagnosis and tumor mi-
croenvironment analysis [42]. Traditional techniques often
use background subtraction and color thresholding [27,29]
that need complex post-processing to provide segmentation
results, and so they are unable to handle challenging cases
such as overlap and occlusion in nuclei images. With the ad-
vance of CNN, deep learning models have been extensively
applied to the task of nuclei segmentation, while most of
them have achieved high accuracy only in the fully super-
vised settings [24,32,45]. However, limited annotation data
hinders the generalizability of the existing nuclei segmenta-
tion approaches. Therefore, it is urgent to develop methods
that can be trained with limited supervision and extract in-
formation from unlabeled data.

2.2. Semi-supervised Semantic Segmentation

Segmentation methods based on semi-supervised learn-
ing have been shown to be able to address the aforemen-
tioned problem by exploiting information from unlabeled
data. For example, adversarial training methods [26, 35]
utilize generative adversarial network [12] to extract use-
ful structural information from unlabeled data. Pseudo-
labeling methods [8, 10] create artificial labels for unla-
beled data by retaining model predictions with high con-
fidence. Other mainstream works take advantage of unla-
beled data by enforcing a consistency over different per-
turbations. TCSMv2 [23] adopts the self-ensembling ar-

chitecture and enforces a transformation-consistency to im-
prove the performance of the output-level regularization.
CutMix [ 1] encourages a mixture-consistency between the
mixed predictions and predictions generated by mixed in-
puts. GCT [16] proposes a detector to approximate pixel-
wise prediction confidence with a dynamic consistency con-
straint. CCT [30] takes the outputs of the encoder as the ob-
ject of perturbation, which can enhance the network’s abil-
ity of representation learning by preserving the invariance
of the predictions over different perturbations. Different
from them, we propose a novel semi-supervised segmen-
tation method which demonstrates the superiority of inte-
grating self-supervised contrastive learning.

2.3. Contrastive Learning

Contrastive learning is a highly regarded technique
for learning representations from unlabeled features these
days [6,7, 14]. It aims to obtain better representation learn-
ing by contrasting similar features (positive pairs) against
dissimilar features (negative pairs). An important innova-
tion direction for contrastive learning is how to select pos-
itive/negative pairs. Besides, memory bank is adopted to
store more negative samples since they can lead to better
performance [0]. In the semantic segmentation field, there
are lots of works that leverage contrastive learning for the
pre-training of models [4, 39,41]. But recently, Wang et
al. [38] has shown the advantages of applying contrastive
learning in a cross-image pixel-wise manner for supervised
segmentation. CAC [20] demonstrates its improvement
in semi-supervised segmentation by performing directional
contrastive learning pixel-to-pixel to align lower quality
feature towards its counterpart. Following these works, we
propose a cross-patch dense contrastive learning module as
the core of our semi-supervised segmentation method.

3. Method

The proposed semi-supervised segmentation method, as
illustrated in Figure 1, is based on the mean teacher frame-
work [36]. The student and teacher models share the same
architecture, consisting of an extractor, a classifier, and a
projector. The supervised branch (black arrows in Fig-
ure 1) exploits labeled data by calculating L, the stan-
dard cross-entropy loss, between predictions and ground
truths. In the unsupervised branch, contrastive learning on
projector output features with a contrastive 10ss L.on¢r, as
well as consistency regularization and entropy minimization
on classifier output predictions with losses Lcons and Ly,
drive the network extract information from unlabeled data.

The student model is optimized by a weighted summa-
tion of the above losses, formulated as:

L= wsupLsup + wcontrLcontr + wconchons + wentLenta

ey
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Figure 1. The overall architecture. The student and teacher models share the same architecture. We update student model by reducing a
weighted summation of Lsyp, Leontrs Leons and Lepnt. Teacher model is updated by setting as an EMA of weights of the student model.
The black arrows represent the supervised branch, while the others represent the unsupervised branch.

where w are weighted factors used to balance the impact
of individual loss terms. We update teacher model by set-
ting as an exponential moving average (EMA) of weights of
the student model, rather than the commonly used gradient
descent technique. The procedure can be formulated as:

0; = ab;_, + (1 — )63, )

where 60! stands for teacher model’s weights at i-th iteration,
while 67 for those of the student model. The v € [0, 1] is
a balance weight for the updating. Note that above tempo-
ral ensembling of weights can help the teacher yield more
accurate predictions [36], which facilitate the unsupervised
training of the student model and eventually optimize the
segmentation results.

3.1. Cross-patch Dense Contrastive Learning

The distribution of cellular nuclei in histopathologic im-
ages is generally scattered. Hence, we can divide the im-
age into multiple fixed-size patches, each of which contains
different proportions of foreground and background pixels.
Considering it is relatively easy to judge the inter-patch
feature disparity with the assistance of pseudo labels, our
cross-patch dense contrastive learning module, as shown in
Figure 2, is developed based on the idea of original pixel-
wise contrastive learning and patch-wise contrastive learn-
ing. Following with previous works [20, 38], this module
consists of two stages: positive/negative pairs sampling and
contrastive loss calculation.

Cross-patch Dense Sampling. An overview of the pro-
posed sampling strategy is shown in Figure 2. Strongly

and weakly augmented inputs of the same image are passed
into the student and teacher model respectively. The extrac-
tor outputs are projected into low dimension feature maps,
where we sample positive/negative pairs in both patch-level
and pixel-level. The projector can preserve the crucial con-
textual information in the extracted features, which has been
proved to be beneficial for contrastive learning [6].

Following with the standard positive sampling strategy,
we select a patch-wise feature from student model and
its positive counterpart is sampled from the corresponding
place in the teacher model. Between these two patches,
pixel-wise features with the same position form pixel-wise
positive pairs. Our strategy differs in negative sampling.
We consider two patch-wise features with large disparity as
a negative pair and then sample pixel-wise pairs in a cross-
patch dense manner. To measure inter-patch feature dispar-
ity, we introduce a patch-wise metric, which is calculated
based on pseudo labels.

Specifically, student and teacher models’ pseudo labels
ys, yt are obtained as follows:

Uy = argmax(P2), 3)

vl = argmaz(PL), 4)

where P¢ and P! represent student and teacher models’ pre-
dictions of unlabeled data, and the metric, call foreground
score F'S, is calculated as follows:

_ Ny
FS= N )
Ny = 1{g =1}, ©6)
h,w
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Figure 2. An illustrative pipeline of the proposed cross-patch dense contrastive learning for semi-supervised nuclei segmentation. Patch-
wise features with large disparity are sampled as patch-wise negative pairs, while pixel-wise negative pairs are densely sampled between
them. Positive pairs are sampled between patches and pixels with the same position, and the module pulls positive pairs closer and pushes

negative pairs away in both patch-level and pixel-level.

where N is the total number of pixels and N; is the num-
ber of foreground pixels in a selected patch. The g, is
equivalent to g5 or ¢, depending on the patch acquired
from the student model or the teacher model. F'S indi-
cates the proportion of pixels belong to the target class.
According to F'S, we divide these patches into three cat-
egories: FDPs (Foreground-dominate Patches, F'S > 0.7),
BDPs (Background-dominate Patches, F'S < 0.3) and MPs
(Mixed Patches, 0.3 < F'S < 0.7). Patches structurally
dissimilar in label space should also have dissimilar distri-
butions in feature space, and hence two patch-wise features
corresponding to FDP and BDP respectively have large dis-
parity and can be sampled as a patch-wise negative pair.

Since F'S only focus on the class proportion while ignor-
ing the spatial distribution, one-to-one pixel-wise sampling
between two patches can only obtain limited effective pixel-
wise negative pairs. Therefore, we adopt a many-to-many
approach to densely take the pixels between two patches
with large feature disparity as pixel-wise negative pairs,
which can provide stronger constraint to increase inter-class
separability. Note that we leverage pseudo labels again
to filter false negative pairs. Furthermore, since increas-
ing negative pairs can enhance contrastive learning [0], we
maintain two feature banks (BDB and FDB, which repre-
sent Background-dominate Bank and Foreground-dominate
Bank) to store patch-wise features processed in the last few
iterations to guarantee adequate negative counterparts.

Pixel-wise and Implicit Patch-wise Contrastive Loss. Af-
ter sampling positive/negative pairs in both patch-level and
pixel-level, we design the contrastive loss to pull positive
pairs closer and push negative pairs away. We first formu-
late the contrastive loss function for a certain query pixel-

wise feature ¢, modified on the basis of InfoNCE [28]:

leontr(q) = —1 et
contr\q) = Ogsim((b k+) + Z Jq,k, Sim(Qv k*)
k_cFB
; @)
. q k
sim(q, k) = exp <) (8)
(4.k) Tall TRl =

Tak- = WHyqg # yr_} €))

where sim represents the exponential equation of cosine
similarity and 7 the temperature. The k; and k_ denote
the positive and negative counterparts for g, respectively.
F'B represents the feature bank and its type is determined
by the source of q. If ¢ is from a FDP, ' B is the BDB, and
vice versa. The [J, ;_ is a binary mask defined for judging
whether the pseudo labels for the two features in a negative
pair are different, and based on it, the false negative pairs
are discarded.

Given the student and teacher models’ feature maps, F
and F;, we define @ as a patch-wise feature in F, and ®;
as the location-corresponding one in J;. Based on l.ontr,
the pixel-wise contrastive loss for @ is defined as:

1
l(cI’ontr((I)S) = N Z lCOntr(¢g’w)v (10)
h,w

where ¢ denotes the pixel-wise feature with spatial lo-
cations h and w in ®, N denotes the number of pixels in the
patch, and d)? "™ is the only positive counterpart for ¢

By minimizing [£ . . the network learns to contrast
pixel-wise features from the same class against those from
different classes, so we can obtain better predictions in
detail. We then implicitly formulate our patch-wise con-
trastive learning in the unified pixel-wise total loss for Fg,

which can be formulated as follows:
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NB F
LCO"tT = lﬁmh( = B,F lcontr q)l (1 1)
N i=1
N
NBF =3"1{® € BDPor ®, € FDP},  (12)
i=1

where N2 denotes the number of patches in F; and N2:¥
is the total number of BDPs and FDPs, whose internal class
distribution is quite imbalance. In this case, we calculate
17 .. as the average of losses on every BDP and FDP.
By minimizing I, ,,,., the network learns to contrast struc-
turally similar patch-wise features against those with large
disparity, driving the model towards better predictions in the
target distribution. In addition, I, ,.. is the final contrastive
loss for current training image (or batch, just let F repre-
sent a group of feature maps). In this regard, we extend the
level of loss calculation from former “pixel-image/batch” to
“pixel-patch-image/batch”, aiming at better exploiting fea-
ture structures across these histopathologic nuclei images.

3.2. Consistency Regularization

Though contrastive learning on the intermediate feature
maps effectively learns strong feature representations from
unlabeled data, it often fails to directly optimize the param-
eters of the classifier. Inspired by FixMatch [34] and its
applications in segmentation [2, 40], we introduce a sim-
plified consistency regularization on the segmentation pre-
dictions to overcome this shortcoming. Considering the
teacher model provides more accurate and robust predic-
tions [36], we set teacher’s prediction as target and let the
student model converge to it. For every teacher’s prediction
P!, we compute the pseudo label 7, as follows:

gt = argmaz(PL). (13)

The consistency loss L.,,s for unlabeled data is calculated
by the cross-entropy:

Leons = H(Py,9,,), (14)

where P? is the student’s prediction and H is the cross-
entropy loss function.

3.3. Entropy Minimization

The predictions are confidence maps indicating the prob-
ability of a pixel belong to each class. They can be exploited
to produce pseudo labels, which are harnessed to guide the
positive/negative pairs sampling and play an important role
in our contrastive learning module.

Following with entropy minimization [13] and its appli-
cations in segmentation [5, 25], we introduce a regulariza-

tion loss calculated on student’s prediction P;;, which is for-
mulated as:

N C
ent - ZZ snclogpsnc (15)

where N and C represent the numbers of pixels and classes.
While consistency regularization and entropy minimization
improve the correctness of predictions, contrastive learning
obtains more reliable pseudo-labeling guidance and better
performance, which conversely optimizes the confidence of
predictions. The combination of L .ontr, Leons and Lepy
aims at promoting this virtuous circle.

4. Experiments
4.1. Datasets

We assess our method on two publicly available datasets,
denoted by DSB and MoNuSeg, obtained from the 2018
Data Science Bowl challenge [3] and multi-organ nuclei
segmentation challenge [19], respectively.

DSB Dataset. This dataset includes 670 nuclei images from
different modalities of brightfield and fluorescence, where
the target boundary is also difficult to identify.

MoNuSeg Dataset. This dataset consists of a training set
with 30 histopathologic images and a test set with 14 im-
ages, all of which are H&E stained tissue images from multi
organs, where the low contrast exists between targets and
background tissues.

4.2. Implementation Details

Network Architecture. We use DenseUNet [22] as the
base segmentation network and DenseNet-161 [15] as the
backbone, pretrained on ImageNet [33]. The extractor in
Figure | refers to all other components except the final clas-
sifier in DenseUNet, with 256 output channels. The projec-
tor is implemented by a F'C' — ReLU — F'C' architecture
and reduces the number of channels to 128.

Hyperparameter Settings. For an input image with size
h x w, the patch size for contrastive learning is set to g X g
pixels in image space and its corresponding patch-wise fea-
ture is ﬁ X gz pixels. To obtain a better trade-off be-
tween memory usage and performance of contrastive learn-
ing, we adjust the two feature banks to store patch-wise fea-
tures from the current and previous batches. Specifically,
we use the gradient checkpoint function imported from Py-
Torch [31] to prevent the oversized feature bank from sig-
nificantly increasing the training burden. The different loss
weights for Lgyp, Leontr and Ley are set as fixed values,
which is as follows: wsyup = 1, Weontr = 0.1, Wens = 0.01.

Weons grows from O to 1 along a Gaussian curve with the
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Figure 3. Visual comparison with different state-of-the-art methods in nuclei image segmentation. FullSup is trained with 100% labeled
data while SupOnly with only 1/32. Their results represent upper and lower bounds of other methods. Other methods are trained in a
semi-supervised manner with 1/32 labeled data and 31/32 unlabeled data. Green and red pixels indicate the predictions and ground truth
respectively. Yellow pixels represent the overlap regions between the prediction and ground truth.

increase of training epoch. The unsupervised branch does
not start training until the 6th epoch, to obtain a better ini-
tialization of the network and reduce the impact of deviating
pseudo labels. Following the most effective configuration,
we set a, the weight for EMA, to 0.999. Based on the poly
learning rate scheduling strategy, our initial learning rate is
set to 0.0001. For a fast convergence, we also employ an
Adam strategy as our optimizer in the training process. By
setting batch size of both labeled and unlabeled images as
8, our network usually can be converged within 80 epochs.

Data Augmentation. Due to the limited image data, we
conduct 6 kinds of data augmentation techniques to alle-
viate overfitting; they are (1) random flipping, (2) random
cropping, (3) random rotation with a degree in [-15, 15], (4)
random Gaussian blur, (5) color jitters, and (6) gray scaling.

4.3. Comparison with State-of-the-art Methods

We compare our method against several state-of-the-art
methods, including TCSMv2 [23], CutMix [1 1], GCT [16],
CCT [30] and CAC [20]. We implement all competitors
with the same base segmentation network, as well as the
same experimental environments and data augmentations,
to ensure the fairness of comparison.

To sufficiently demonstrate the effectiveness of our
method, we randomly divide the DSB dataset into 3 parts
with ratio 7:1:2, which are used for training, validation, and
test respectively. For MoNuSeg dataset, we also randomly
select 20% of its public training set for validation. Since the
size of MoNuSeg’s images is 1000x 1000 pixels, we uni-
formly crop sub-images of size 250x250 with no overlap
from these images. All images from DSB and sub-images
from MoNuSeg are augmented and resized to a uniform res-
olution of 320x320 pixels as the inputs of model training.

We perform a statistical comparison with state-of-the-
art methods by collecting the Dice coefficient (DC), Jac-
card coefficient (JC), accuracy (ACC), specificity (SP) and
sensitivity (SE) over the DSB and MoNuSeg datasets, in
which DC and JC are the main indicators to measure pre-
cision of biomedical segmentation. From the results shown
in Table 1, we can clearly see that our method generally
outperforms other competitors in all settings with different
amounts of labeled images, including 1/32, 1/16 and 1/8 of
the total training images. Especially with 1/32 labeled train-
ing data, our method surpasses CAC by 1.09% on DSB,
1.18% on MoNuSeg, in DC metric.

Figure 3 presents the visual comparison with the Full-
Sup, SupOnly and state-of-the-art methods. We observe
that, against the competitors, our method obtains better pre-
dictions of both cellular nucleus’ distributions (number, lo-
cation) and details (shape, size), while also comparable to
the FullSup method, reflected by less over-predicting (green
pixels) and under-predicting (red pixels) in our results.

4.4. Ablation Studies

To assess each component of the proposed method,
we perform the following ablation studies on DSB and
MoNuSeg dataset, with only 1/32 of the training data be-
ing labeled.

Without any semi-supervised technique, Dense-
UNet [22], the base segmentation network, can only
leverage labeled images for training (SupOnly). By
sampling pixel-wise positive/negative pairs and calculating
Lcontr, pixel-wise contrastive learning is accomplished,
for helping the network learn in a semi-supervised manner
(Scheme.1, Scheme.2). Our cross-patch dense contrastive
learning module takes advantage of inter-patch feature
disparity by sampling both pixel- and patch-wise pairs
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DSB | MoNuSeg
Label | Method |DC(%) JC(%) ACC(%) SP(%) SE(%) |Label | Method | DC(%) JC(%) ACC(%) SP(%) SE(%)
SupOnly | 8393 7396 96.12 97.52 8531 SupOnly | 71.83 5649 87.47 8876 8244
TCSMv2| 85.04 7540 96.07 96.61 90.97 TCSMv2| 73.08 5842 88.18 8897 85.78
CutMix | 86.03 77.10 9697 97.82 89.39 CutMix | 7337 58.69 88.16 88.62 86.86
132 | GCT | 8550 77.68 97.00 9855 83.39 | 1/32 | GCT | 73.80 5921 88.39 88.82 86.91
CCT | 86.13 7691 9675 97.38 8851 CCT | 7429 5959 90.18 9417 74.83
CAC | 8640 7758 96.57 9827 86.27 CAC | 7479 6028 8896 89.93 84.75
Ours | 87.49 79.35 9699 98.38 8843 Ours | 7597 6177 89.83 91.03 8536
SupOnly | 86.10 77.17 96.81 9836 85.03 SupOnly | 7472 6029 9023 93.82 76.40
TCSMv2| 87.48 7848 97.03 99.29 8337 TCSMv2| 75.78 61.55 9049 9322 79.66
CutMix | 87.70 79.92 9744 98.54 8627 CutMix | 7620 62.12 9001 91.52 84.49
1/16 | GCT | 88.13 80.60 9751 9850 88.75| 1/16 | GCT | 76.63 62.66 9045 9237 83.19
CCT | 88.15 79.69 97.32 98.25 88.89 CCT | 7659 6245 90.10 91.71 8341
CAC | 8849 80.19 9728 98.44 8836 CAC | 77.12 63.16 9024 9150 85.17
Ours | 89.88 8234 97.57 98.64 90.11 Ours | 77.77 64.07 91.01 93.12 83.04
SupOnly | 87.38 7924 97.09 9871 86.05 SupOnly | 75.81 61.50 9026 9272 80.65
TCSMv2 | 88.42 8040 97.48 9837 8848 TCSMv2 | 77.44 6352 9050 9232 82.60
CutMix | 88.32 80.92 97.69 99.03 86.41 CutMix | 7729 63.70 90.64 92.36 84.52
1/8 | GCT | 88.80 81.10 9749 9853 8831 | 1/8 | GCT | 77.69 6408 9074 9220 85.42
CCT | 89.08 8125 9752 98.73 88.6l CCT | 7721 6325 90.18 91.32 85.40
CAC | 8937 81.94 97.63 9834 90.79 CAC | 7824 6454 9105 93.04 82.82
Ours | 90.09 82.68 97.69 98.68 90.57 Ours | 7893 65.56 91.44 93.34 8428
100% | FullSup | 90.46 8327 97.86 98.77 90.71 [100% | FullSup | 79.97 66.92 9237 9569 79.13

Table 1. Statistical comparison with state-of-the-art methods on the test set.

(Scheme.3). Finally, we employ Lc.ons and L.,: as
auxiliary losses to perform consistency regularization
and entropy minimization on the predictions (Scheme.4,
Scheme.5, Scheme.6, Ours). Table 2 shows the DC
comparison of the above schemes, while Figure 5 presents
partial visual results.

Ablation Studies for S;,,,, and Lcopn:. In Scheme.l,
we adopt the mean teacher framework and perform sim-
ple pixel-wise contrastive learning with a random sampling
strategy. Specifically, pixel-wise features from student and
teacher model with the same position form positive pairs,
while others form negative pairs. The result does not grow
as we expect but drop from 83.93% to 81.68%, 71.83%
to 69.08%. In Scheme.2, pseudo labels are utilized to
guide negative sampling, by selecting features with differ-
ent pixel-wise predictions as negative pairs. Scheme.2 out-
performs Scheme.1, as well as SupOnly by a large mar-
gin, proves that (1) contrastive learning effectively extract
knowledge from unlabeled data, (2) the sampling quality of
positive/negative pairs heavily affects the performance of
contrastive learning. Scheme.3 corresponds to our cross-
patch dense contrastive learning module, where we im-
prove the sampling strategy and accomplish feature align-

ment both in pixel- and patch-levels. Since the purpose of
the contrastive learning module is to obtain an extractor that
can better distinguish classes of features, we also visualize
the feature maps extracted with different schemes, as shown
in Figure 4. The sharper contrast between target and non-
target features, along with the larger increase in DC metric,
reflects that such pixel- and patch-wise alignment is feasi-
ble and beneficial, also demonstrates the effectiveness of
our module. Note that in Scheme.1, 2, anchor pixel-wise
features are selected from BDPs and FDPs we obtained,
to ensure a fair ablation. FDB and BDB are merged into
one feature bank, which means pixel-wise features from the
same patch could be sampled as negative pairs, hindering
patch-wise feature alignment.

Ablation Studies for L., s and L.,;. Consistency regular-
ization is performed on predictions, by calculating Ly, to
provide direct parameter optimization for classifier and en-
sure a better convergence of both student and teacher mod-
els. Entropy minimization is applied to the predictions of
student model, by calculating L., to optimize classifica-
tion confidence of each pixel, accelerating the virtuous cir-
cle of “better pseudo labels— better contrastive and consis-
tency learning performance — better pseudo labels”. After
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Figure 4. Visual comparison of feature maps extracted with differ-
ent schemes in ablation studies: (a) Input image, (b) Ground truth,
(c) SupOnly, (d) Scheme.1, (e) Scheme.2, (f) Scheme.3.
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Figure 5. Partial visual comparison of our ablation studies:
(a) Input image, (b) SupOnly, (c) Scheme.l1, (d) Scheme.2, (e)
Scheme.3, (f) Ours. Green and red pixels indicate the predictions
and ground truth respectively, while yellow pixels represent their
overlap regions.

adding L.ons and Ly, the DC metric rises from 86.26% to
87.49%, 74.49% to 75.97%, compared to Scheme.3, which
only applies contrastive learning on intermediate features.
This also points out it is efficient to take the advantage of
consistency regularization and entropy minimization, for
complementing contrastive learning and achieving better
performance in semi-supervised segmentation. Besides, the
combination of only L.,,s and L.,; can also obtain a con-
siderable improvement in the semi-supervised settings, as
shown in the result of Scheme.6.

5. Conclusion

We present a novel semi-supervised method for cellu-
lar nuclei segmentation in histopathologic images, aiming
at efficiently and comprehensively addressing the inherent
shortcomings of limited annotated training data. The pro-
posed cross-patch dense contrastive learning module is to
accomplish cross-image feature alignment in both patch-
level and pixel-level, which enforces the intra-class com-
pactness and inter-class separability over the whole dataset,

Method | Ssamp Leontr Leons Lent| DSB MoNuSeg

SupOnly ‘ ‘83.93 71.83
Scheme.1| random v 81.68 69.08
Scheme.2| pixel v 85.54 73.69
Scheme.3|pixel-patch v 86.26 74.49
Scheme.4|pixel-patch v/ v 86.83 75.19
Scheme.5|pixel-patch v v’ 186.65 75.00
Scheme.6 v v 8640 75.16

Ours pixel-patch v v v ‘87.49 75.97

Table 2. Statistical comparison of our ablation studies in DC met-
ric, with 1/32 labeled training data.

Figure 6. Failure cases for our method. Green and red pixels in-
dicate the predictions and ground truth respectively, while yellow
pixels represent their overlap regions.

enabling networks to effectively extract knowledge from
unlabeled data. Consistency regularization and entropy
minimization are further performed on the network outputs
to obtain predictions and pseudo labels with higher quality,
which provide guidance for contrastive learning and lead to
better segmentation performance.

The above comparative experiments and ablation stud-
ies demonstrate the effectiveness of our proposed semi-
supervised segmentation method. While our method still
fails to segment the cases with extremely small scales, as
well as extremely low contrast between the targets and
background tissues, as shown in Figure 6, overall, with a
very small amount of labeled data, our method handles well
a majority of the challenging examples, consistently outper-
forms the competitors. Future investigations include testing
our method on more histopathologic datasets and integrat-
ing it in tumor microenvironment analysis systems.
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