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Abstract

A mass of experiments shows that the pose of the in-
put 3D models exerts a tremendous influence on automatic
3D shape analysis. In this paper, we propose Upright-Net,
a deep-learning-based approach for estimating the upright
orientation of 3D point clouds. Based on a well-known pos-
tulate of design states that ”form ever follows function”, we
treat the natural base of an object as a common functional
structure, which supports the object in a most commonly
seen pose following a set of specific rules, e.g. physical
laws, functionality-related geometric properties, semantic
cues, and so on. Thus we apply a data-driven deep learn-
ing method to automatically encode those rules and formu-
late the upright orientation estimation problem as a classi-
fication model, i.e. extract the points on a 3D model that
forms the natural base. And then the upright orientation is
computed as the normal of the natural base. Our proposed
new approach has three advantages. First, it formulates the
continuous orientation estimation task as a discrete classi-
fication task while preserving the continuity of the solution
space. Second, it automatically learns the comprehensive
criteria defining a natural base of general 3D models even
with asymmetric geometry. Third, the learned orientation-
aware features can serve well in downstream tasks. Results
show that our network outperforms previous approaches on
orientation estimation and also achieves remarkable gener-
alization capability and transfer capability.

1. Introduction
The upright orientation of an object is associated with

its most commonly seen pose in daily life. Such pose usu-
ally serves multiple objectives such as functionality, stabil-
ity, semantic meaning, facility, and so on. Posing object
in their upright orientation is the human preference since it
makes the objects easily recognizable [12].

⋆ Co-first authors, B Co-corresponding authors

In computer graphics and computer vision, registering
objects in upright orientation is usually the first step for
3D model analysis [26,27], which benefits applications like
shape matching [1], shape retrieval [19], robotic manip-
ulation on object placement problems [13], generation of
thumbnails for 3D shape repositories [11], and so on. With
the thriving of deep learning, neural networks operating
on point clouds have shown superior performance on these
tasks. However, their performance is usually evaluated on
a dataset aligned in a canonical frame. A key challenge in
learning unaligned point cloud data is to learn features that
are invariant or equivariant with respect to geometric trans-
formations [26]. However, either T-Net in PointNet [15]
or ITN [26] is not significantly contributive to performance
due to their weak supervision on pose transformation. Thus,
orientation estimation is used as an auxiliary task for com-
puter graphics tasks, such as shape classification and key-
point prediction [14], to achieve strongly supervised pose
transformation.

However, it is an open challenge to recover the upright
orientation for general 3D models because of two reasons.
Firstly, determining the upright orientation of a 3D object
requires a comprehensive consideration of physical laws,
geometric properties, semantic preference, functionality,
design knowledge, and so on. Thus it is hard to define a
universal rule to upright general 3D shapes effectively [12].
For example, paper [5] tried to infer the upright orientation
of a 3D model based on a series of hand-crafted geometrical
features, however, it failed on some models due to the bias
or conflict among features. Secondly, estimating the upright
orientation is intuitively a continuous rotation problem, for
which, however, the convergence of solutions is fragile due
to the diverse variation between different shape categories.
Although the divide-and-conquer scheme [12], which first
classifies the object and then estimates the orientation via a
regression model, achieves an acceptable result, it is not an
ideal solution to train separate regression models for differ-
ent categories.

In this paper, we convert the continuous orientation prob-
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lem into a discrete classification problem based on our ob-
servation that objects with mostly commonly seen upright
poses are usually supported by their natural bases, where the
surface or points contact the supporting plane. Our key idea
is to extract points on a 3D model that forms the natural base
and then compute its upright orientation as the normal of the
fitted plane over the base points, that point to the object.
We propose a data-driven deep learning method to auto-
matically extracts a comprehensive feature description that
provides sufficient discrimination power for general upright
orientation detection. Our method has three advantages.
First, formulating the continuous orientation problem as a
discrete classification problem improves the generalization
ability of the solution. Second, different from hand-crafted
features, our deep-learning-based approach automatically
encodes comprehensive criteria that define the natural base.
Third, by learning orientation-aware features, we can com-
press the feature space and boost the performance in down-
stream tasks. Our experiment results indicate that Upright-
Net outperforms previous approaches on orientation estima-
tion, and demonstrate remarkable generalization ability and
transfer capability.

2. Related Works

2.1. Image Orientation

It is an undeniable fact that the orientation of objects
on images seriously affects some computer vision tasks,
such as image classification [8], object detection [4], face
recognition [16], and so on. This is because the orientation
changes of objects on images cause large appearance vari-
ation, which further boosts the difficulties in constructing
feature descriptors.

For years, researchers have devoted themselves to de-
signing rotation-invariant features for building efficient and
robust algorithms for classifying or recognizing objects that
may appear in images under different orientations [7, 21].
The traditional solution to this problem is to specifically
train multiple classifiers at different orientations [7], which
is not applicable for wide applications. With the devel-
opment of deep learning methods, paper [6] proposes a
method to generate oriented proposals (OOPs) to reduce the
detection error caused by various orientations of the object,
which experimentally proves that the orientation registra-
tion of objects improves the performance of downstream
tasks. Another way to improve model robustness to object
orientation variation is overfitting the training dataset, i.e.
rotating training images with different angles [17]. How-
ever, the orientation of objects is a continuous variable,
overfitting the training dataset would increase the training
burden, especially for the 3D model, which with 3 degrees
of freedom.

2.2. Orientation of 3D Models

Many approaches have been proposed for uprighting
3D models, which are generally categorized as three-
dimensional geometry processing-based methods and data-
driven learning-based methods.

Upright orientation estimation based on geometry pro-
cessing usually suffers from low robustness due to the con-
flict or incompletion of hand-crafted features. Principal
Component Analysis (PCA) is commonly used for orien-
tation normalization of 3D models, which set the center
of mass as the origin and principal axes as the canonical
axes. However, it is not robust for general models espe-
cially with asymmetric geometry [10] and thus let alone
produce compatible alignment with the upright orientation
of objects [10]. Based on the observation that the coordinate
matrix of a 3D object with upright orientation tends to have
reduced rank. Paper [9] proposes a method aligning the
3D shape with axes by iterative rectification of axis-aligned
projections as low-rank matrices independently. Paper [22]
estimates the upright orientation via minimizing the tensor
rank of the 3D shape’s voxel representation. However, such
rank minimization methods also fail on asymmetric 3D ob-
jects as PCA. Trimesh [3], which computes stable orienta-
tions of a mesh and their quasi-static probabilities based on
the analysis of the center of balance, is also not applicable
for our problem, given the lack of consideration of semantic
and functional information.

Data-driven learning-based methods are appreciated to
deal with general objects. Based on the observation that
man-made objects should have a supporting base on which
they can be steadily positioned. Both papers [5, 11] extract
the candidate bases on 3D models by clustering facets of
the simplified convex hull of the 3D model. And then de-
termine the natural base using an assessment function re-
ferring to a set of determining factors for base definition,
such as geometrical properties, physical laws, and so on.
Although their hand-crafted features cover more abundant
factors, such kinds of methods cannot deal with general ob-
jects, especially for natural objects, this is because it is hard
to define a universal rule to upright 3D models via hand-
crafted features. With the advent of deep learning, many at-
tempts have been done to explore its effects on orientation
estimation. Liu et al. [12] apply a regression model to pre-
dict the continuous orientation of an object using 3D Con-
volutional Networks (ConvNets). To conquer the adverse
impact of the diverse variation between different shape cat-
egories, they first classify the object and then train an indi-
vidual regression model for each category, which is a heavy
burden for real application. Paper [14] approaches the prob-
lem from another angle by converting the continuous ori-
entation estimation task into a set of discrete orientation
estimation tasks. However, by discretizing the orientation
angles, such methods will suffer low discrimination while
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using dense sampling, and rough estimation while using
sparse sampling. Additionally, upright orientation estima-
tion also gains attention in the robotics manipulation field
to guide a machine(agent) to orientate 3D shapes step by
step to upright given its current observation [2, 13]. These
methods require an iterative process that cooperates with
the agent interactions.

In our work, instead of discretizing the orientation angle,
we take full advantage of a common functional structure,
the natural base of the model, and convert the continuous
orientation task into a classification (segmentation) problem
to extract the nature base. Based on such a scheme, we
simplify the orientation estimation problem but reserve the
continuity of the solution space, i.e. the upright orientation.

3. Problem Statement
To achieve a continuous solution for upright orientation

estimation of general 3D models, we formulate the contin-
uous orientation problem as a delicate classification task,
accomplished via two steps. Firstly, it extracts points on 3D
models that form the natural base. Secondly, we fit these
points with a plane and define the upright orientation of the
model with the plane normal directing to the mass center of
the model.

Given a point cloud P = {pi|i = 1, 2, · · · , n} ∈ Rn×3,
we first estimate a binary label for each point, and the sup-
porting points on natural base is identified as a subset of the
point cloud with positive labels:

S = {pi|ŷi = 1, i = 1, 2, · · · ,m} ∈ Rm×3, (1)

where ŷi is the output label for point pi and m denotes the
number of predicted supporting points. Then, we fit the sup-
porting points set S into a natural base via the RANSAC al-
gorithm and then infer the upright orientation of the object.
To encode the intricate rules defining the natural base, we
design a new network architecture based on EdgeConv [23]
and Attention mechanism [20], named as Upright-Net. This
architecture directly consumes an unorganized point set as
input and predicts the natural base for any general 3D point
cloud models.

4. Upright-Net
In this section, we introduce the framework of Upright-

Net, including the feature encoding, network architecture,
and the loss function.

4.1. Feature Encoding of Point Cloud

Our feature encoding of point cloud should satisfy
the following requirements: 1) capturing both geomet-
ric feature and semantic information; 2) characterizing re-
gions of interest that benefit the learning tasks. To meet
these needs, the Upright-Net first apply classical EdgeConv

Layer, which learns the local geometric features and groups
points in semantic space layer by layer, and then followed
by stacked masked Attention Layers for extracting core in-
formation and MLP Layer to remap the feature space for
better exploration. We introduce these three used modules
as follows.

MLP (Multi-layer Perceptron) Layer. We apply MLP for
feature embedding, which performs as a 1 × 1 convolution
on each point feature, followed by a batch normalization
layer and an activation function:

MLP (·) = σ (BN (conv1×1 (·))) , (2)

where σ denotes the activation function, BN is the batch
normalization and conv is the convolution with the sub-
script indicating the filter size.

EdgeConv Layer. EdgeConv explicitly constructs a local
graph and learns the embeddings of local context. For each
point feature f i with df dimension, a KNN (K Nearest
Neighbors) query of f i is calculated as Nk(fi) = {fi,j |j =
1, ..., k} ∈ Rk×df , and then a radial locally directed graph
is constructed over this subset of points with Edge vectors
directed from fij to fi. The edge features eij that combines
both global information and local context is computed as:

eij =
[
f i,f ij − f i

]
|∀f ij ∈ Nk (f i) , (3)

where [·, ·] denotes the concatenation of point feature and
the edge vector. Given edge features eij , we first map it
into high-dimensional features via a shared MLP Layer, and
then apply a max-pooling to aggregate edges features over
the local graph. In particular, our EdgeConv layer is imple-
mented as

EdgeConv (fi) = max
j∈1,...,k

(MLP (eij)) . (4)

It is noted that fi represents point features in Euclidean
space or in new embedding space.

Attention Layer. Attention mechanism is commonly used
for extracting core information in feature map. In Upright-
Net, we apply the Scaled Dot-Product Attention [20] to
identify the importance of different regions on point cloud.
Suppose the layer input is a df -dimension feature matrix,
denoted as F = {f i| i = 1, 2, · · · , n} ∈ Rn×df . We first
obtain the query matrix Q, the key matrix K, and the value
matrix V respectively via three independent MLP Layers as
follows:

Q = [MLPq (fi) | ∀f i ∈ F ] ∈ Rn×dq

K = [MLPk (fi) | ∀f i ∈ F ] ∈ Rn×dk

V = [MLPv (fi) | ∀f i ∈ F ] ∈ Rn×dv

, (5)
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Figure 1. Upright-Net pipeline. The network comprises the MLP Layers, the EdgeConv Layers, and the Attention Layers, and the numbers
in the bracket indicate the output channels of the layers. Taking n points as input, the model calculates a segmentation score for each point,
indicating whether it is a supporting point or not. After finding all estimated supporting points, we utilize the RANSAC algorithm to fit a
natural base and then infer the upright orientation as the normal of the base pointing towards the mass center of a object.

where [ · ] denotes a operation for packing vectors together
into a matrix. Then, we compute the dot products of Q and
the transposed K, dividing it by

√
df , and apply a soft-

max function over the result to obtain a weight matrix W
indicating the interdependence of pairwise point features.

W (Q,K) = softmax

(
QK⊤
√
dk

)
∈ Rn×n (6)

With this weight matrix, we compute the weighted feature
matrix as F̃ = W ·V , where F̃ =

{
f̃ i|i = 1, 2, · · · , n

}
∈

Rn×dv . By additionally remapping the weighted features
via an MLP Layer and using a residual connection to ease
the training process, the matrix of output is computed as:

Attention (F ) = [MLP
(
f̃i

)
| ∀f̃i ∈ F̃ ]+ F , (7)

where [ · ] denotes the operation of packing feature vectors
into feature matrix.

4.2. Network Architecture

The Upright-Net takes a point cloud as input and predicts
a binary label for each point, indicating whether it is a sup-
porting point. The architecture is shown in Fig. 1, which
first applies three EdgeConv Layers to expand the feature
dimension and group points in both euclidean and semantic
space layer by layer. Then four stacked Attention Layers are
used to emphasize core information. By concatenating hi-
erarchical features from different Attention layers, followed
by an MLP Layer and a Max-pooling operation, we obtain
the global features of the point cloud. After that, the ar-
chitecture jointly considers the low-level features, weighted
features, and global features via liking hierarchical features
from different layers to gain a better embedding and pre-
vent the gradient vanishing problem in network training.
Then with the predicted supporting points, considering the
outlier-robustness property of an estimator, we apply the

random sample consensus (RANSAC) algorithm fitting a
planar model over the points,

β̂ = RANSAC (S) . (8)

Therefore, the supporting plane, where the natural base is
located, is determined by a coefficients vector β̂ = (â, d̂)

with â denoting the unit normal of the plane and d̂ denoting
the distance form the origin to the plane. The upright ori-
entation ô = ±â is then defined by the direction pointing
toward the mass centre of the model. In rare cases, the num-
ber of predicted supporting points is less than 3, then the
upright orientation is computed as the direction of a vector
starting from the mass center of the predicted points point-
ing to the mass center of the point cloud.

4.3. Loss Function

Our loss function comprise three terms: binary cross-
entropy, fitting residual, and stability, i.e.,

L = LBCE + α1LFR + α2LStab, (9)

where α1 and α2 are hyper-parameters, seting as α1 = 0.1
and α2 = 1 empirically. In this section, we introduce the
formulation of each term in details.

Binary Cross-Entropy Loss. The binary cross-entropy
term LBCE is used to encourage predicted point label ŷi
to match with the ground truth label yi:

LBCE =
1

n

n∑
i=1

− [yi log (ŷi) + (1− yi) log (1− ŷi)] ,

(10)
where n is the number of points in point cloud. Comparing
to the other two terms, binary cross-entropy loss provide
direct and strong feedback in training process and allow the
architecture to achieve a fast convergence rate.
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(a) Fitting Residual Loss. (b) Stability Loss.

Figure 2. Definition of loss function. The green points indicate the
true positives, and the red points denote the false negatives.

Fitting Residual Loss. The point-wise binary cross-
entropy loss penalizes wrong predictions equally, no matter
it is far or near from the natural base. This is clearly not
reasonable in our case since the predictions with a minor
displacement may not overturn the result of upright direc-
tion estimation but the prediction with large displacement
probably can. Therefore, a fitting residual term is used to
introduce flexible penalties that encourage positive predic-
tions near the natural base while suppressing the ones that
are far away. This term is computed as the average distance
between the positive predictions and the ground truth natu-
ral base:

LFR =

{
1
m

∑
pi∈S

∣∣ap⊤
i + d

∣∣ if m ≥ 3

max distance else
, (11)

where pi is a predicted supporting points and β = (a, d)
is the fitted coefficients vector representation of the ground
truth supporting plane. In cases that the number of predicted
supporting point is less than 3, the fitting residual loss is
then set as a max distance of 2 in our training, which is
large than the maximum size of a normalized point cloud.

Stability Loss. It is commonly accepted that the static sta-
bility of an object is related to the proportion of its mass
located above the natural base, for example, for a roughly
symmetric shape, the projection of its mass center on the
natural base should be close to the center of the natural base,
and for an asymmetry shape, it shows the opposite. How-
ever, most standing objects are designed to be reasonably
stable against small perturbing forces as long as their cen-
ter of mass projecting along the vector of upright direction
falls on the natural base of the object. Thus to cover rules
for general shapes, instead of considering the mass distribu-
tion of a shape that is theoretically affected by the materials
involved, we simply force the mass distribution of the pre-
dicted natural base to be consistent with the mass distribu-
tion of the ground truth natural base. Therefore, we define
the stability term via a simple geometric estimate:

LStab =

{
∥ĉ− c∥ if m ≥ 3

max distance else
. (12)

where, by projecting the predicted or ground truth support-
ing points on their fitted plane, ĉ or c is computed as the
center of the convex hull determined by the projections.

5. Experiment
In this section, we first introduce the dataset applied

in our experiments and network implementation details
(Sec.5.1). Then we provide detailed experiments to eval-
uate the performance of our network on upright direction
estimation (Sec.5.2). After that, we separately validate the
generalization capability (Sec.5.3) and transfer capability
(Sec.5.4) of our network. At last, ablation studies are per-
formed to validate our network design (Sec.5.5).

5.1. Dataset and Implementation Details

To train the UprightNet, a large dataset with labeled sup-
porting points is required. Fortunately, we found that most
objects in the dataset of ModelNet40 [24] and ShapeNet
[25] are placed in an upright standing position in canonical
coordinates, i.e. with +y axis pointing to the upright direc-
tion. Thus, we first collect a data set by selecting 15 com-
mon object categories with an upright standing pose from
ModelNet40 [24], where each category keeps 100 shapes,
except for Bowl with only 80, see example shapes in Fig. 3.
Then with normalized models, we annotate points with co-
ordinate y smaller than a threshold (0.05) as supporting
points. To gain a data set covering various possible poses,
we rotate each model 100 times by uniform random sam-
pled angles. As a result, we generate a data set with up to
148,000 models (1,480 shapes × 100 rotations), named as
UprightNet15 in the paper with 15 denoting the number of
classes. We apportion the data into training and test sets,
with a 3-1 split. Additionally, by appliying similar label-
ing and data augmentation methods, we select 20 shapes in
5 unseen categories from ShapeNet [25] dataset forming a
small dataset named UprightNet5 to validate the general-
ization capability of the network and also use the Original
and Rotation sets of RobustPointSet [18] to test the transfer
capability of the network.

Upright-Net is implemented in the PyTorch and trained
on Nvidia RTX 2080 Ti GPUs. In the training stage, we
apply Adam optimizer with a learning rate of 10−3 and a
batch size of 64. Momentum and weight decay are set to
0.9 and 10−4 respectively for 50 epochs.

5.2. Upright Orientation Estimation Performance

We quantitatively evaluate the Upright-Net via two per-
formance measurement metrics. One is Mean Error (ME),
which measures the average angular deviation between the
estimated upright orientation ôi and its ground truth oi:

ME =
1

N

N∑
i=1

arccos ⟨ôi,oi⟩, (13)
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Figure 3. Example shapes of UprightNet15 posing in their upright orientations..

Table 1. The quantitative comparison for upright orientation esti-
mation of our Upright-Net to ConvNets.

ME (◦) Accuracy (%)
ConvNets [12] 21.52 69.01
Upright-Net 12.78 91.80
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Figure 4. Accuracy visualization with increasing threshold τ .

where ⟨·, ·⟩ represents the inner product operation, N de-
notes the number of test models, ôi and oi are unit vectors.
We also evaluate the accuracy of upright orientation estima-
tion via computing the proportion of models with angular
deviation smaller than a given angle τ :

Accuracy =
Narccos ⟨ôi,oi⟩<τ

N
. (14)

where τ is set as 10◦ in our experiments.
In Tab. 1, we compare Upright-Net with ConvNets [12]

on upright orientation estimation task. Our network sig-
nificantly outperforms ConvNets which adopt a divide-and-
conquer scheme. There are two possible reasons for this re-
sult: first, ConvNets formulate the upright orientation prob-
lem as a regression problem, which is hard to train with
limited discrete rotational samples even though training dif-
ferent regressor for different categories; second, the erro-
neous predictions from classification network directly feed
the data into a wrong regression network, which probably
lead to deviating orientation prediction. In our experiments,
the overall classification accuracy of ConvNets achieves
83.89%. On the other hand, Upright-Net applies end-to-
end learning and formulate the continuous orientation prob-
lem as a classification problem, which is approved an easier
training task.

The Upright-Net may perform better than the statistics
suggested in Tab. 1. We compare the accuracy of our net-

Figure 5. Example models with incorrect orientation predictions.
Blue colors the estimated supporting plane, and red colors the
ground truth. As we can see that, the upside-down error predic-
tions may be caused by the interfering planar structures on models.

Table 2. Comparison of generalization capability between
Upright-Net and ConvNets.

ConvNets [12] Upright-Net

ME Accuracy ME Accuracy
BASKET 50.16 39.85 23.33 80.55

MICROPHONE 73.73 22.40 20.10 83.15
POT 81.24 18.75 14.55 86.65

SKATEBOARD 65.58 10.75 17.58 63.85
TOWER 37.51 50.25 8.89 92.75
MEAN 61.64 28.40 16.89 81.39

work and ConvNets via gradually increasing the angular
threshold τ and analyzing their error distribution of orien-
tation predictions. As shown in Fig. 4, for Upright-Net, its
accuracy is up to 90% at τ = 10◦, then remains stable and
boosts around τ = 180◦, which indicate that the errors are
mainly caused by the upside-down predictions, as shown in
Fig. 5, and its ME also boosted because of them. On the
other side, for regression-based ConvNets, the error predic-
tions are more randomly distributed, which is not perceptu-
ally interpretable compared to the results in Fig. 5.

5.3. Generalization Capability

To validate the generalization capability of our network,
we test the trained Upright-Net and ConvNets on Upright-
Net5, which is introduced in Sec.5.1, consisting of 2000
shapes (20 shapes × 5 categories × 100 rotations).

As shown in Tab. 2, the Upright-Net achieves much
higher accuracy than ConvNets on all categories. The
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True Positives True Negatives False Positives False Negatives

Figure 6. Visualized results of the Upright-Net on unseen object categories in dataset of UprightNet5.

Table 3. Classification results on RobustPointSet.

Org / Org Org / Rot Rot / Rot
PointNet [15] 89.06 8.83 49.03
DGCNN [23] 92.52 13.43 58.95

Rotation3D [14] 88.05 8.71 25.57
Upright-Net 90.94 14.18 67.83(fully supervised)
Upright-Net 87.60 49.92 79.62(pre-trained)

Upright-Net treats all categories equally, and it learns both
global and local features and emphasis functionality-related
geometric structures via constraining the training using spe-
cially designed loss terms. Thus for an unseen category,
it is the geometrical characteristics of its natural base, not
its semantic information that dominates the prediction of
Upright-Net. See visualized results of Upright-Net in Fig. 6.

On the other side, the result of ConvNets heavily re-
lies on a category-specific system: a classification network,
which classifies BASKET as CUP, MICROPHONE as LAMP,
POT as TOILET, SKATEBOARD as BENCH and TOWER as
BOTTLE, and category-specific regression networks that ap-
parently overfitted in terms of unseen categories, as a result,
its accuracy drops dramatically.

5.4. Transfer Capability

We validate the transfer capability of Upright-Net via a
downstream object classification task on the dataset of Ro-
bustPointSet [18]. As shown in Fig. 7, we use the pre-
trained Upright-Net encoder for feature embedding and then
fine-tune the MLP Layers to gain classification scores for c
categories. We compare our approach to fully supervised
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Figure 7. Upright-Net classifier architecture.

methods [15,23] and the self-supervised method [14]. Since
the previous methods are usually evaluated on the original
dataset or dataset with rotation augmentation in a small an-
gle range, for the sake of fairness, we perform the compar-
ison under three different settings: 1) train and test mod-
els both on original RobustPointSet, denoted as Org/Org;
2) train models on the original dataset, but test them on
the rotationally augmented dataset, denoted as Org/Rot; 3)
train and test models both on the rotationally augmented
dataset, denoted as Rot/Rot. We rotate each shape of Ro-
bustPointSet 100 times by uniform random sampled angles
to generate rotationally augmented dataset.

Tab. 3 shows the results of the experiments. Upright-
Net obtains comparable accuracy on the original Robust-
PointSet (Org/Org) while achieving enormous superiority
on the rotational augmented dataset (Rot/Rot). It suggests
that our network gains much stronger expressive power
on rotational variations than other designs. Moreover,
with a pre-trained encoder, the performance of Upright-Net
is boosted and significantly outperforms other approaches
on the rotational augmented dataset (Org/Rot, Rot/Rot).
Therefore, we can conclude that our network is capable
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Table 4. Results of upright orientation estimation using different
segmentation backbones.

ME (◦) Accuracy (%)
PointNet 24.80 77.68
DGCNN 13.24 90.26

Upright-Net 12.78 91.80

Table 5. Hyperparameters tuning of Upright-Net.

α1 α2 ME (◦) Accuracy (%)
0 0 20.98 85.13

0.1 16.43 88.87
1 15.59 88.37

0.1 0 14.91 89.47
0.1 12.81 91.74
1 12.78 91.80

1 0 14.95 89.01
0.1 11.87 92.47
1 13.57 91.22

of learning orientation-aware features of 3D models, which
boosts its transfer capability in downstream tasks.

5.5. Ablation Study

In this subsection, we first verify the effectiveness of
our Upright-Net backbone, then we analyze the hyper-
parameter of the loss function, and visualize the feature map
learned inside Upright-Net.

Comparison of segmentation backbones. We compare
Upright-Net with PointNet [15] and the DGCNN [23] for
supporting points segmentation. Our experiment results
suggest that the Upright-Net achieves the lowest ME (Mean
Error) and highest accuracy, see Tab. 4. We believe it bene-
fits from its EdgeConv Layers, which extract local features,
and the Attention mechanism that emphasizes functional-
related geometrical features. Besides, linking hierarchical
features from different layers allow the network to consider
all the global, local, and weighted features to gain a more
informative embedding.

Hyperparameters tuning. The hyperparameters α1 and
α2 in the loss function are tuned by running the whole train-
ing job with different parameter settings and selecting the
best performance setup. Tab. 5 indicate that Upright-Net
trained with α1 = 1 and α2 = 0.1 deliver the best perfor-
mance on test set, however, we found it performed poorer on
unseen categories. Therefore, we set α1 = 0.1 and α2 = 1
in our model for a reasonable trade-off between estimation
performance and generalization ability.

Visualization. We visualize the concatenated features be-
fore the last MLP layer of Upright-Net with a heatmap rep-

Low Response High Response

Figure 8. Visualization of the feature map learned by Upright-Net.

resenting feature averages. As shown in Fig. 8, the points
close to the natural base gain higher responses as we ex-
pected, and the points closing to the upright axis also gain
high, which is an explainable and positive phenomenon, as
it represents the strong response to the stability term.

6. Conclusion and Limitation

In this paper, we formulate the continuous upright ori-
entation problem as a classification model while still pre-
serving the continuity of the solution space. To encode the
intricate rules defining the natural base of objects, we pro-
pose a new simple network architecture, the Upright-Net,
based on EdgeConvs and Attention mechanism, and con-
strained by a special design loss function. The experiments
indicate that our network outperforms previous approaches
on both orientation estimation and downstream classifica-
tion tasks. Besides, we can easily extend our framework
into a multi-class setting in the case of objects with multi-
ple natural bases. However, in rare cases of upside-down
predictions may suggest that our model did not gain enough
semantic cues for instances with interfering planar struc-
tures, thus further study on balancing semantic and geomet-
rical features via improvements on three aspects is valuable:
balancing training data, architecture capturing more seman-
tics, loss providing much stronger cues. Another limita-
tion is that our dataset is composed of complete shapes, fur-
ther experiments on partial point cloud would be interesting
and meaningful. To encourage future works, we release our
dataset on our website~.
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