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Abstract

Conventional deep learning based methods for 3D object
detection require a large amount of 3D bounding box anno-
tations for training, which is expensive to obtain in practice.
Sparsely annotated object detection, which can largely re-
duce the annotations, is very challenging since the missing-
annotated instances would be regarded as the background
during training. In this paper, we propose a sparsely-
supervised 3D object detection method, named SS3D. Aim-
ing to eliminate the negative supervision caused by the
missing annotations, we design a missing-annotated in-
stance mining module with strict filtering strategies to mine
positive instances. In the meantime, we design a reliable
background mining module and a point cloud filling data
augmentation strategy to generate the confident data for it-
eratively learning with reliable supervision. The proposed
SS3D is a general framework that can be used to learn
any modern 3D object detector. Extensive experiments on
the KITTI dataset reveal that on different 3D detectors, the
proposed SS3D framework with only 20% annotations re-
quired can achieve on-par performance comparing to fully-
supervised methods. Comparing with the state-of-the-art
semi-supervised 3D objection detection on KITTI, our SS3D
improves the benchmarks by significant margins under the
same annotation workload. Moreover, our SS3D also out-
performs the state-of-the-art weakly-supervised method by
remarkable margins, highlighting its effectiveness.

1. Introduction
Three-dimensional (3D) object detection, aiming to lo-

calize and categorize objects from 3D sensor data (e.g.,

LiDAR point cloud), has attracted increasing attention

due to its diversified applications in autonomous driving,
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Figure 1. Demonstration of the required annotations of the fully-

supervised method and our method. The left case shows the train-

ing stage of PV-RCNN [16] which is a high-performance detector

with full annotations as input, while our model only annotates one

instance for each scene. The right case shows the prediction results

of PV-RCNN and our model, indicating that our model achieves

comparable performance of the fully-supervised method.

augmented/virtual reality, and indoor robotics. Recently,

a number of approaches [1, 17, 18, 34, 35] based on ei-

ther voxel-wise or point-wise features have been proposed

and achieved high performance on large-scale benchmark

datasets [2, 21]. However, most of the proposed 3D ob-

ject detectors require fully supervised learning, implying a

fully annotated dataset is required for the model learning.

Compared to 2D image objects, annotating 3D point cloud

objects is more labor-intensive: annotators have to switch

viewpoints or zoom in and out throughout a 3D scene care-

fully for labeling each 3D object. Therefore, developing 3D

detectors with on-par detection performance, while only re-

quiring light-weighted object annotations, is a meaningful

problem to tackle for practical applications.
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Recently, few works [10, 15, 24, 26, 33] have been pro-

posed to address this issue. In [10], the weakly-supervised

learning strategy was adopted. Specifically, the point an-

notation scheme was used to reduce the burden of annotat-

ing bounding boxes. However, the supervision information

provided by the point annotation is weak, so that a certain

amount of full annotations have to be provided addition-

ally, in order to achieve optimal performance. In [24, 33],

the semi-supervised learning strategy was used, where just

part of the dataset was annotated with the rest unlabeled.

The teacher-student framework was leveraged to transfer

information from labeled data to unlabeled data. Neverthe-

less, the information transfer tends to be ineffective when

the gap between labeled and unlabeled data is large. Be-

sides, although just part of the dataset is annotated, it still

takes non-negligible labour to label an individual scene, es-

pecially for crowded scenarios with many 3D objects, as

shown as Fig. 1.

In this paper, we adopt the sparse annotation strategy and

just annotate one 3D object in a scene, as illustrated in the

left of the Fig. 1. In this way, we are capable of obtain-

ing full supervision information of one 3D object for each

scene. Intuitively, this facilitates the learning of information

on unlabeled objects, since infra-scene information transfer

is much easier than cross-scene knowledge transfer. How-

ever, sparsely annotated object detection also raises new

challenges: missing-annotated instances will bring incor-

rect supervision signals (i.e., as negative samples) to dis-

turb the training of the network. During training, due to

that the missing-annotated instances and the region near

those instances could be incorrectly marked as background,

the weight updated of the network will be misguided sig-

nificantly when gradients back-propagated. This challenge

has been tackled in 2D sparse object detection methods

[11, 27] by utilizing overlap or hierarchical relation infor-

mation among 2D objects. However, such information may

be absent in 3D datasets e.g., in KITTI [2], which impedes

directly applying such methods to 3D applications.

To address the challenge, we propose a novel and ef-

fective method for sparsely annotated 3D object detection,

namely SS3D, which can be applied to any advanced 3D

detector. The main idea of our SS3D is to iteratively mine

positive instances and background with high confidence,

and further use these generated data to train the 3D de-

tector. We design two effective modules, namely missing-

annotated instance mining module and reliable background

mining module, to mine reliable missing positive instances

and background, respectively. This ensures the 3D detector

to be trained with confident supervision data. By this de-

sign, compared with the 3D detector trained with the fully

annotated dataset, our SS3D can achieve comparable per-

formance, where only 20% annotation is required for the

sparsely annotated dataset.

To summarize, our contributions are as follows:

• We propose a novel method for sparsely annotated 3D

object detection from point cloud which can be used

as a general framework to train any existing 3D fully-

supervised detector. To the best of our knowledge, this

is the first work to explore the sparsely annotated strat-

egy for the 3D object detection task.

• We design two effective modules to mine reliable miss-

ing positive instances and background, respectively,

which ensures the 3D detector to be trained with con-

fident supervision data.

• Experimental results show that our method with

sparse annotations can achieve comparable perfor-

mance with fully-supervised methods and highly out-

performs state-of-the-art semi-supervised and weakly-

supervised 3D object detection methods.

2. Related Work
2.1. Fully-Supervised 3D Object Detection

The existing 3D detection methods can be broadly cate-

gorized into two types: voxel-based methods [4,5,28,34,35]

and point-based methods [12, 17, 19, 29, 30, 32].

For voxel-based methods, voxelization is a common

measure for irregular point clouds to apply traditional 2D

or 3D convolution. In voxelNet [36], voxel feature encoding

layer was adopted for unified feature representation extrac-

tion from point cloud. SECOND [28] effectively extracted

features from 3D voxels by modifying the sparse convolu-

tion algorithm [3, 7]. TANet [8] leveraged the stacked at-

tention module to exploit the multi-level feature relation.

Part-A² [18] proposed a two-stage network to explore the

spatial relationship by grouping intra-object part features.

SE-SSD [35] adopted a pair of teacher and student detec-

tors to improve the performance without introducing extra

computation in the inference. Voxel R-CNN [1] designed a

voxel RoI pooling to directly aggregate spatial context from

3D voxel feature volumes.

Point-based methods directly take the raw irregular

points as input to extract local and global features [13, 14].

PointRCNN [17] fused extracted features and raw points

from 3D proposals generated in a bottom-up manner for re-

finement. STD [30] proposed a novel spherical anchor to

reduce the number of anchors and exploited the sparse to

dense idea to improve the performance. 3DSSD [29] pro-

posed a fusion sampling strategy based on feature distance

for rich information preservation. PV-RCNN [16] utilized

voxel-to-keypoint scene encoding and keypoint-to-grid fea-

ture aggregation to improve the performance.

Although prior works have made significant progress

and show impressive performance, such results deeply de-

pend on the large-scale manual annotations, which are
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Figure 2. Our SS3D pipeline. The missing-annotated instance mining module searches the missing-annotated instances and stores them

in the instance bank. The reliable background mining module leverages the instance bank to further obtain broken scenes with reliable

background. Then the point cloud filling data augmentation strategy is used to generate confident data for iteratively learning the detector.

time-consuming and labor-intensive. Our proposed method

adopts the sparse annotation strategy which just annotates

one object for each scene, while achieving comparable per-

formance with these fully-supervised methods. Moreover,

whether voxel-based or point-based detectors, our SS3D

can be directly applied.

2.2. Weakly/Semi-Supervised 3D Object Detection

To reduce annotations of 3D objects, the weakly-

supervised learning strategy is adopted in WS3D [24],

which is achieved by a two-stage architecture based on the

click-annotated scheme. WS3D [10] generated cylindri-

cal object proposals by click-annotated scenes in stage-1

and refined the proposals to get cuboids using slight well-

labeled instances in stage-2. However, the supervision in-

formation provided by the weakly-supervised point annota-

tion is weak, so that a certain amount of full annotations

have to be provided additionally. Meanwhile, based on

VoteNet [12], SESS [33] firstly proposed a semi-supervised

3D object detection, which leveraged a mutual teacher-

student [22] framework to enforce three kinds of consis-

tency losses. Following SESS, 3DIoUMatch [24] was pro-

posed to estimate 3D IoU as a localization metric and set a

self-adjusted threshold to filter pseudo labels.

Different from these methods, our proposed method

makes precise supervision information of an object existing

in each scene, which enables us to transfer reliable super-

vision information within a scene. Intuitively, this would

be superior to transferring supervision information across

scenes, especially for largely variable scenes.

2.3. Sparsely-Supervised 2D Object Detection

The sparsely annotated object detection is another way

to reduce the dependence of networks on data annotation

which only annotates a part of objects. Due to that a part of

instances are missing annotated, weight updated of the net-

work may be misguided significantly when gradients back-

propagated. To address this issue, existing advanced meth-

ods employed re-weight or re-calibrates strategy on the loss

of RoIs (regions of interest) to eliminate the effect of un-

labeled instances. Soft sampling [27] utilized overlaps be-

tween RoIs and annotated instances to re-weight the loss.

Background recalibration loss [31] based on focal loss [6]

regarded the unlabeled instances as hard-negative samples

and re-calibrates their losses, which is only applicable to

single-stage detectors. Especially, part-aware sampling [11]

ignored the classification loss for part categories by using

human intuition for the hierarchical relation between la-

beled and unlabeled instances. Co-mining [25] proposed

a co-generation module to convert the unlabeled instances

as positive supervisions.

Above sparsely annotated object detection methods are

all for 2D image objects. Due to the modal difference be-

tween 2D images and 3D point cloud, these methods can

not be applied to our 3D object detection task. For exam-

ple, in KITTI [2], 3D objects are naturally separated, which

means the overlaps among objects are zero and the hierar-

chical relation between objects does not exist. Comparing

with the re-weight and re-calibrates methods, in this paper,

we propose a novel method for sparsely annotated 3D ob-

ject detection which leverages a missing-annotated instance

mining module and a simple but effective background min-

ing module to mine confident positive instances and back-

grounds, which is key for training detectors with high per-

formance.

3. Method
3.1. Overall Framework

As a general framework, the proposed SS3D aims at fa-

cilitating the learning of a 3D detector to obtain the opti-

mal detection performance when training from the scratch

based on the sparsely annotated dataset. As shown in

Fig. 2, the proposed SS3D is mainly composed of a missing-

annotated instance mining module, a reliable background

mining module, a point cloud filling data augmentation,
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Figure 3. The illustration of our proposed missing-annotated instance mining module. The training data and corresponding augmented

data are two different inputs for the detector. Then we leverage the score-based filtering to remove the augmented predictions of raw

training data and predictions of augmented data with a low confidence score. Further, the IoU-guided suppression is proposed to filter out

low-quality predictions. Lastly, we store the remained predictions as pseudo instances in the instance bank.

and an instance bank. Given a 3D detector, initially, we

train the detector from the scratch on the sparsely annotated

dataset. Then, we use the detector to mine reliable missing-

annotated instances from the point cloud in training data

through the missing-annotated instance mining module with

strict filtering strategies. We store the mined instances (or-

ange color) and original annotated instances (red color) into

the instance bank. Relying on the instance bank, we further

use the detector to mine reliable background through the re-

liable background mining module. Based on the results of

these two modules, we leverage the proposed point cloud

filling data augmentation to construct a confident data set,

which can be further used to retrain the detector. By this it-

eratively learning style, we can finally obtain a 3D detector

with high performance. Details are introduced below.

3.2. Architecture of Detector

Our method is a general framework for training 3D ob-

ject detectors with the sparsely annotated dataset, which

can be directly applied to kinds of detectors. In this paper,

we verify our SS3D with state-of-the-art 3D detectors of

PointRCNN [17], Part-A2 [18], PV-RCNN [16], and Voxel-

RCNN [1]. We take PV-RCNN as an example and briefly

review this method. PV-RCNN is a high-performance and

efficient two-stage point cloud detector that deeply inte-

grates both the multi-scale 3D voxel Convolutional Neural

Network (CNN) features and the PointNet++-based set ab-

straction features to a small set of keypoints by the novel

voxel set abstraction module.

3.3. Missing-Annotated Instance Mining Module

As shown in Fig. 3, we design a missing-annotated in-

stance mining module, which combines IoU-guided sup-

pression and a score-based filtering scheme as a strength-

ening measure for mining the unlabeled positive instances

as high-quality pseudo instances. Then, selected pseudo in-

stances are stored in the instance bank to further guide the

reliable background mining module.

Score-based filtering As shown in Fig. 3, to start, the

raw input point cloud x goes through the top detector to gen-

erate the predictions pt. Then, we perform a set of global

augmentation, which includes a random rotation, flipping,

and scaling on x to generate augmented point cloud x̂, in

synchronizing with pt to produce augmented predictions p̂t,
and the bottom detector generates predictions pb based on x̂.

Finally, we set a classification confidence threshold τcls to

filter out predictions of pb and p̂t that may contain a wrong

category and then obtain the filtered predictions.

IoU-guided suppression Note that only a score-based

filtering strategy can not get reliable predictions. Inspired

by FixMatch [20], we further propose an effective IoU-

guided suppression strategy. After we get the filtered pre-

dictions, we calculate the IoU matrix between every pair of

bounding boxes from p̂t and pb, aiming to match the boxes

of two predictions from the irregular point cloud. Then we

filter out outmatched paired bounding boxes with IoUs less

than threshold τIoU , thus further improving the quality of

pseudo instances.

Final-step instance bank processing Combining score-

based filtering and IoU-guided suppression, we can avoid

low-quality pseudo instances generation effectively and fi-

nally obtain a set of bounding boxes {br}Nn=1, where N and

r are the numbers of training scenes and bounding boxes

remained in a scene, respectively. Then, we compute the

IoU between boxes brn and bBn (bounding boxes from the in-

stance bank B) of the same scene of index n, and choose

brn which does not overlap with bBn . Finally, the chosen

bounding boxes (orange color) along with corresponding

predicted class labels and point cloud are stored in the in-

stance bank which also contains all sparsely annotated in-
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Figure 4. The illustration of our proposed reliable background mining module. To start, we feed the original point cloud to the detector

without NMS to produce near-duplicate predictions, and leverage the instances stored in the instance bank to filter out unreliable object

points. This will lead to broken scene which is further processed through the point cloud filling strategy.

stances (red color). By this design, with the iteration of

the network, our instance bank can store more and more

positive instances to guide the reliable background mining

module for mining more reliable background.

3.4. Reliable Background Mining Module

Relying on the updated instance bank, we leverage the

proposed reliable background mining module to mine back-

ground points and further eliminate the negative supervision

information due to missing-annotated instances. Compared

to the existing re-scale strategy [11, 31] for incorrect super-

vision, our approach is more simple and effective.

As shown in Fig. 4, to get reliable background point

cloud, we adopt the strategy of finding potential foreground

points as far as possible. Specifically, we use the detector

with a low confidence score threshold τl to obtain object de-

tection results. Meanwhile, we remove the Non-Maximum

Suppression (NMS) operation from the detector. In this

way, we make sure that the results contain potential fore-

ground points as far as possible, which thus means that the

rest of the original point cloud tend to be reliable back-

ground point cloud. For producing new training data, we

remove the point data inside the 3D bounding boxes of the

detected objects which do not overlap with the instances

within the instance bank.

3.5. Point Cloud Filling Data Augmentation

After the reliable background selection processing, the

point cloud scene is broken. Meanwhile, the instances in

the scene may be very sparse. These issues will degrade the

performance of the network significantly. Inspire by ground

truth (GT) sampling augmentation proposed by [28], we

further propose a point cloud filling data augmentation strat-

egy to address these issues. For each remained bounding

box, we randomly select a bounding box from the instance

bank and place the corresponding point cloud inside the se-

lected bounding box at the center of the remained bounding

box, if the selected bounding box does not overlap with ex-

isting bounding boxes in the broken scene. Then we lever-

age the GT sampling augmentation [28] to further enhance

the current scene. Finally, we obtain the merged point cloud

Algorithm 1 Our SS3D Algorithm.

Input: Detector F trained from the scratch on the sparsely

annotated training data D, instance bank B, low score

threshold τl, iteratively learning times M , training

epoch E;

1: for m = 1, 2, ...,M do
2: for point cloud x in D do
3: Preform missing-annotated mining on x;

4: Update instance bank B;

5: end for
6: for e = 1, 2, ..., E do
7: Shuffle the point cloud in training data D;

8: for mini-batch Dk in D do
9: for point cloud x in Dk do

10: P = F (x,W ), with τl and no NMS;

11: boxgt = boxes from Bx;

12: for boxi in P do
13: if IoU(boxi, boxgt) = 0 then
14: Delete points inside boxi in x;

15: end if
16: end for
17: Point cloud filling data augmentation on x;

18: end for
19: Calculate the loss L on Dk ;

20: Update the weight W of detector F by L;

21: end for
22: end for
23: end for
Output: Updated weight parameter W

with confident positive instances and reliable background.

By this design, we can fix the density unevenness caused by

deleting the points before, in the meantime, more ground

truth boxes also reduce the negative impact on the network

when only a small amount of instances are sparsely anno-

tated in each scene.

Through the previous processing, ambiguous points that

may cause negative impact on the network are largely re-

moved, including those missing-annotated instances and not
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Method Data
Car - 3D Detection Car - BEV Detection Cyclist - 3D Detection Cyclist - BEV Detection

Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

1. PointRCNN [17] Full 88.88 78.63 77.38 90.21 87.89 85.51 86.13 69.70 65.40 87.16 73.47 67.61

2. PointRCNN [17] Sparse (20%) 63.71 53.74 51.87 74.03 69.70 66.23 73.83 62.81 58.26 75.86 65.42 60.26

3. Ours (PointRCNN-based) Sparse (20%) 87.18 77.10 76.13 89.74 87.41 85.71 86.62 73.22 66.92 87.21 74.27 71.54

4. Improvements 2 → 1 - -25.17 -24.89 -25.51 -16.18 -18.19 -19.28 -12.30 -6.89 -7.14 -11.30 -8.05 -8.90

5. Improvements 3 → 1 - -1.70 -1.53 -1.25 -0.47 -0.48 +0.20 +0.49 +3.52 +1.52 +0.05 +0.80 +3.93

1. Part-A2 [18] Full 89.47 79.47 78.54 90.42 88.61 87.31 85.50 69.90 64.48 86.92 73.35 70.77

2. Part-A2 [18] Sparse (20%) 72.92 64.41 60.49 79.38 75.38 71.81 74.52 63.39 58.91 76.23 66.26 61.91

3. Ours (Part-A2-based) Sparse (20%) 89.26 83.10 78.41 90.09 87.73 87.25 85.15 71.74 69.21 87.11 74.60 71.81

4. Improvements 2 → 1 - -16.55 -15.06 -18.05 -11.04 -13.23 -15.50 -10.98 -6.51 -5.57 -10.69 -7.09 -8.86

5. Improvements 3 → 1 - -0.21 +3.63 -0.13 -0.33 -0.88 -0.06 -0.35 +1.84 +4.73 +0.19 +1.25 +1.04

1. PV-RCNN [16] Full 89.35 83.90 78.70 90.08 87.90 87.40 86.06 69.47 64.50 88.52 73.32 70.36

2. PV-RCNN [16] Sparse (20%) 76.38 66.67 66.09 82.24 78.50 72.80 74.65 61.40 56.94 77.19 65.20 60.09

3. Ours (PV-RCNN-based) Sparse (20%) 89.49 79.30 78.28 90.45 87.98 87.00 88.01 70.35 67.40 89.72 72.33 70.14

4. Improvements 2 → 1 - -12.97 -17.23 -12.61 -7.84 -9.40 -14.60 -11.41 -8.07 -7.56 -11.33 -8.12 -10.27

5. Improvements 3 → 1 - +0.14 -4.60 -0.42 +0.37 +0.08 -0.40 +1.95 +0.88 +2.90 +1.20 -0.99 -0.22

1. Voxel-RCNN [1] Full 89.41 84.52 78.93 90.21 88.28 87.77 - - - - - -

2. Voxel-RCNN [1] Sparse (20%) 65.70 57.05 57.56 71.67 70.09 63.60 - - - - - -

3. Ours (Voxel-RCNN-based) Sparse (20%) 89.30 84.28 78.23 90.32 88.42 87.47 - - - - - -

4. Improvements 2 → 1 - -23.71 -27.47 21.37 -18.54 -18.19 -24.17 - - - - - -

5. Improvements 3 → 1 - -0.11 -0.24 -0.70 +0.11 +0.14 -0.30 - - - - - -

Table 1. Comparison with different detectors trained with full annotations and extremely sparse split (20% instances of full annotations) on

KITTI val split. The 3D object detection and bird’s eye view detection are evaluated by mean average precision with 11 recall positions.

mined by our missing-annotated instance mining module.

Moreover, confident data is generated, which provides vital

supervision information to retrain the detector in an iterative

manner. Algorithm 1 summarizes our SS3D.

4. Experiments

4.1. Datasets and Evaluation Metrics

Following the state-of-the-art methods [4, 8, 17, 18, 34,

35], we evaluate our SS3D on the KITTI 3D and BEV

object detection benchmark [2]. This is a popular dataset

widely used for performance evaluation and consists of full

annotations for 3D object detection. There are 7,481 sam-

ples for training and 7,518 samples for test and we further

divide the training samples into train split of 3,712 samples

and val split of 3,769 samples as a common practice [16].

In addition, due to the occlusion and truncation levels of ob-

jects, the KITTI benchmark has three difficulty levels in the

evaluation: easy, moderate, and hard. Following sparsely

annotated dataset generation in [31], we randomly keep one

annotated object in each 3D scene from train split to gener-

ate the extremely sparse split. Compared with the full an-

notation of all objects on KITTI, the extremely sparse split

only need to be annotated with 20% objects. For fair com-

parisons, we report the mAP with 40 and 11 recall positions,

with a 3D overlap threshold of 0.7, 0.5, 0.5 for the three

classes: car, pedestrian and cyclist, respectively.

4.2. Implementation Details

At first, we train our detector in a supervised manner fol-

lowing PCDet [23] with the extremely sparse split, and keep

the same supervised loss as the used detector. At the train-

ing stage, we adopt the ADAM optimizer and cosine an-

nealing learning rate [9] with a batch size of 8 for 6 epochs.

We set the low score threshold τl as 0.01 in reliable back-

ground selection. For score-based filtering and IoU-guided

suppression, we set both the confidence score threshold τcls
and the IoU threshold τIoU as 0.9. Note that we set the times

of iteratively learning M = 10. In our global augmenta-

tion, we randomly flip each scene along X-axis and Y-axis

with 0.5 probability, and then scale it with a uniformly sam-

pled factor from [0.8, 1.2]. Finally, we rotate the point cloud

around Z-axis with a random angle sampled from
[−π

4 ,
π
4

]
.

4.3. Comparisons with State-of-the-art Methods

Comparison with fully-supervised methods We com-

pare the proposed method with four state-of-the-art fully-

supervised methods: PointRCNN [17], Part-A2 [18], PV-

RCNN [16], Voxel-RCNN [1], with fully-annotated train
split and the extremely sparse train split, respectively,

where these detectors trained on the extremely sparse split

are used as the initial detectors of our method. The results

of different methods are shown in Tab. 1.

It can be seen from the table, due to the negative impact

of missing-annotated instances, the performance of the four

detectors trained on extremely sparse split decrease by more

than 10% on average. Our method significantly improves

the performance of these detectors and makes them close

to the performance of full supervision, which indicates that

our method has a good effect on mining missing-annotated

instances and reliable background.

The visualizations of our SS3D prediction results are il-
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Car - 3D Detection Pedstrian - 3D Detection Cyclist - 3D Detection
Data Method (PV-RCNN-based)

Easy Mod Hard Easy Mod Hard Easy Mod Hard

semi-1% 3DIoUMatch [24] 89.0 76.0 70.8 37.0 31.7 29.1 60.4 36.4 34.3

sparse-1% Ours SS3D 96.2 88.1 86.9 61.7 58.7 54.5 85.6 62.8 58.4
semi-2% 3DIoUMatch [24] - 78.7 - - 48.2 - - 56.2 -

sparse-2% Ours SS3D 98.28 89.2 88.3 67.5 62.3 61.0 90.1 72.2 68.3

Table 2. Comparison with 3DIoUMatch on KITTI val split under 1% or 2% labeled data. Both our SS3D and 3DIoUMatch are based on

PV-RCNN. We report the mAP with 40 recall positions, under IoU thresholds 0.5, 0.25, 0.25 for car, pedestrian, and cyclist, respectively.

Car - 3D Detection
Data Method

Easy Mod Hard

weakly* + 534 precisely# WS3D [10] 84.04 75.10 73.29

534 precisely#

Ours (Voxel-RCNN-based) 88.85 78.53 76.92

Ours (PointRCNN-based) 85.59 75.85 73.93

Ours (Part-A2-based) 88.67 78.17 76.86

Ours (PV-RCNN-based) 88.29 78.07 76.77

Table 3. Comparison with WS3D on KITTI val split. We report

the mAP with 11 recall positions. ‘*’ denotes the scenes with

center-click and ‘#’ denotes precisely-annotated instance.

lustrated in Fig. 5. For a better view of results, we project

the prediction of 3D point cloud onto the corresponding

color images. As we can see from this figure, the proposed

method has high-quality prediction results.

Comparison with the semi-supervised method We

compare the proposed method with the semi-supervised

method 3DIoUMatch [24], which is based on the advanced

detector PV-RCNN [16]. To make a fair comparison, we

also adopt the PV-RCNN as the detector and keep all meth-

ods with the same number of annotated objects for train-

ing. In KITTI train split, there are 3,712 scenes and these

scenes contain a total of 17,289 objects for cars, pedestrians,

and cyclists. For semi-supervised methods, 1% labeled data

means 37 (3712× 1%) scenes, which include an average of

172 (17289 × 1%) labeled objects used for training. So as

for 1% labeled data in our extremely sparse split, we ran-

domly select 172 scenes including 172 labeled objects for

training. We also test the case of 2% labeled training data

for both methods. The results with different ratios of la-

beled data can be seen from Tab. 2, which illustrates that our

SS3D significantly outperforms the current state-of-the-art,

3DIoUMatch, under three classes with all three difficulty

levels. Compared with 3DIoUMatch, the greater advantage

of our network is that only 172 scenes are used during train-

ing. We abandon the remaining scenes, while 3DIoUMatch

uses all 3712 scenes in the train split for information trans-

fer.

Comparison with the weakly-supervised method In

the weakly-supervised method, WS3D [10], 500 scenes

with center-click labels and 534 precisely-annotated in-

stances are used to train the network. Since the standard de-

tectors are not applicable with center-click labels, we only

use the same 534 precisely-annotated instances to train our

Figure 5. Qualitative results of our SS3D (PV-RCNN-based) on

KITTI val dataset. The ground truth 3D bounding boxes of cars,

cyclists, and pedestrians are drawn in green, yellow, and cyan, re-

spectively. We set the predicted bounding boxes in red and project

boxes in point cloud back onto the color images for visualization.

proposed SS3D. Tab. 3 shows the comparison results. Ob-

viously, our SS3D with different 3D detectors achieves the

highest results for all difficulty levels, outperforming WS3D

by a large margin with less labeled efforts.

4.4. Ablation Study

In this section, we present a series of ablation studies

to analyze the effects of our proposed modules in SS3D.

Following the general principles, all models are trained on

KITTI extremely sparse split and evaluated on val split. We

take Voxel-RCNN [1] as our detector to conduct our ab-

lation study due to the fast training speed, and our meth-

ods with other detectors are similar. Tab. 4 summarizes the

ablation results on our IoU-guided suppression (IoU-GS),

score-based filtering (Score-BF), reliable background min-

ing module (RBMM), and point cloud filling data augmen-

tation (PCFD) strategy. All results are with 11 recall points.

Effect of the reliable background mining module In

the 1st row of Tab. 4, we remove all modules, so it rep-

resents the standard Voxel-RCNN detector trained on the

extremely sparse split. In the 2nd, we add the RBMM and

replace PCFD with the GT sampling [28]. Moreover, the

instance bank only contains sparsely annotated instances

without updating. Our reliable background mining module
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IoU-GS Score-BF RBMM PCFD
Car-3D Detection

Easy Mod Hard

- - - - 65.70 57.05 57.56

- - � - 86.83 78.03 75.32

- - � � 87.42 78.12 75.72

- � � � 88.57 82.78 76.12

� - � � 88.27 83.95 77.68

� � � � 89.30 84.28 78.23

Table 4. Effects of the different components on our designed SS3D

network. We report the mAP with 11 recall positions.

significantly boosts the performance in all three difficulty

levels. This large improvement shows that mining reliable

background can contribute to a better negative supervision

removal caused by the missing-annotated instances.

Effect of the point cloud filling data augmentation
strategy In the 3rd row of Tab. 4, by combining RBMM

and PCFD, our SS3D further improves the performance.

This demonstrates our PCFD outperforms GT sampling

data augmentation by fixing the structure information of the

raw point cloud due to the previous points removal opera-

tion.

Effect of the missing-annotated instance mining mod-
ule As shown in the 4th and 5th rows from Tab. 4, whether

to use IoU-GS or Score-BF alone for pseudo instances fil-

tering, it has a certain improvement compared with only us-

ing the reliable background mining module, indicating that

more positive instances can contribute to a better model op-

timization. Further, by combining IoU-GS with Score-BF

to obtain high-quality pseudo instances, our SS3D boosts

the performance of the easy, moderate, and hard by about

1.88, 6.16, and 2.51 percentage points, respectively, as

shown in the 3rd and 6th rows. This verifies the effective-

ness of the jointly filtering strategy and also shows the im-

portance of high-quality pseudo instances for the network.

4.5. Quality Analysis

In this section, we explore how our SS3D trains on the

extremely sparse split and further analyze the quality of

pseudo instances in the instance bank. The curves in Fig. 6

show that the coverage rate of the generated pseudo in-

stances increases on the missing-annotated instances during

the training process. Here coverage rate at a preset threshold

means the percentage of missing-annotated instances that

can pair a pseudo label with an IoU larger than the thresh-

old [24]. As we can see from Fig. 6, in the beginning, the

coverage rate of the pseudo instances is relatively low due to

the strict filtering mechanism. As the training goes on, the

improved detector leads to a higher passing rate of filter and

hence a higher coverage of the pseudo instances, which in

return fuels SS3D. At the end of training, the coverage rate

at IoU@0.7 can achieve 0.75, which means our network ef-

fectively mines 75% of unlabeled instances.

Figure 6. Pseudo instances coverage rate during the training pro-

cess on extremely sparse split on KITTI.

4.6. Limitation

In principle, the performance of the fully-supervised

method is the ceiling of our SS3D. However, in Tab. 1,

our method even surpasses the fully-supervised methods in

some cases, which may be due to that our method can mine

some missing-annotated instances in the original dataset,

and these missing instances may cause a negative impact

on the training of the fully-supervised methods. For future

work, we plan to validate the above hypotheses.

5. Conclusion

In this paper, we propose a novel method, called SS3D,

to iteratively learn a 3D object detector from the sparsely

annotated point cloud. Through the combination of our

missing-annotated instance mining module and reliable

background mining module, we largely ensure that each

scene possesses confident supervision information when it-

eratively training the detector, hence eliminating the nega-

tive impact of missing-annotated instances of the sparsely

annotated strategy. In addition, our SS3D is a general

method that can be applied to learn any advanced detector.

Extensive experiments validate the effectiveness of our pro-

posed method with only 20% annotations, where our net-

work achieves impressive results, which are close to the de-

tector trained with the fully annotated dataset. Besides, our

method exceeds the current semi-supervised and weakly-

supervised methods on KITTI by a large margin.
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