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Abstract

Post-training quantization compresses a neural network
within few hours with only a small unlabeled calibration
set. However, so far it has been only discussed and empiri-
cally demonstrated in the context of uniform quantization on
convolutional neural networks. We thus propose a new post-
training non-uniform quantization method, called Mr.BiQ,
allowing low bit-width quantization even on Transformer
models. In particular, we leverage multi-level binarization
for weights while allowing activations to be represented as
various data formats (e.g., INT8, bfloat16, binary-coding,
and FP32). Unlike conventional methods which optimize
full-precision weights first, then decompose the weights into
quantization parameters, Mr.BiQ recognizes the quantiza-
tion parameters (i.e., scaling factors and bit-code) as di-
rectly and jointly learnable parameters during the optimiza-
tion. To verify the superiority of the proposed quantization
scheme, we test Mr.BiQ on various models including con-
volutional neural networks and Transformer models. Ac-
cording to experimental results, Mr.BiQ shows significant
improvement in terms of accuracy when the bit-width of
weights is equal to 2: up to 5.35 p.p. improvement in CNNs,
up to 4.23 p.p. improvement in Vision Transformers, and up
to 3.37 point improvement in Transformers for NLP.

1. Introduction

As deep neural networks scale up rapidly to improve
model accuracy, it becomes more challenging not only to
reduce memory footprint but also to achieve low end-to-
end latency in resource-constrained environments. To mit-
igate such challenges, many researchers have made a con-
siderable amount of effort on advancing model compression
techniques such as pruning [12, 24, 28], low-rank approxi-
mation [23, 37], knowledge distillation [9, 14], and quanti-
zation [4, 7, 11, 22, 29, 35, 40].

*Equal contribution. Correspondence to: dragwon.jeon@samsung.com
†This work was done when they were working at Samsung Research.

Quantization, among such compression techniques, is
particularly effective in terms of reducing the model size
and accelerating inference even on commodity hardware.
By representing each parameter with lower bit-width, quan-
tization can reduce the model size, and hence alleviate
memory bottleneck issues. In addition, since quantization
maintains dense formats of tensors, parallelism can be fully
exploited without irregular data structures. These irregular-
ities, induced by certain compression methods such as prun-
ing, require much support for specialized hardware designs.
As such, quantization can be implemented efficiently with-
out a lot of support for specialized hardware designs and
makes it practical to deploy quantized models on various
hardware form factors.

By and large, quantization can be classified into two cat-
egories: quantization-aware training (QAT) [7, 47, 49] and
post-training quantization (PTQ) [22, 29, 40, 44]. In gen-
eral, QAT yields higher accuracy than PTQ because it di-
rectly aims to minimize the loss of the network. Nonethe-
less, QAT relies on the entire training dataset and requires
a thorough hyperparameter search, which leads to the same
amount of training time and overhead as the full-precision
models. On the other hand, PTQ allows the quantization of
pre-trained models with only a small calibration dataset or
without any dataset, which enables us to compress models
even when data access is restricted due to various reasons
including privacy concerns. PTQ also does not require a
comprehensive understanding of the model, and thus has
been attracting attention recently.

Early works on post-training quantization are concen-
trated on minimizing the quantization error which is defined
as the mean squared error between the original weights and
the quantized weights (i.e., minE[(w − wq)2]). However,
recent works [22, 29] tend to focus on minimizing the re-
construction error (i.e., minE[(Wx −Wqx)2]) that can
be derived from the second-order approximation of the loss
by the Taylor series. Although minimizing the reconstruc-
tion error for PTQ is proven to be effective, PTQ has been
discussed and empirically demonstrated only in the context
of uniform quantization on convolutional neural networks
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(CNNs). We also notice that the previous works study map-
ping scheme for weights and step-size learning for activa-
tions separately, and thus we may miss the opportunity to
investigate any synergistic effects when those two are opti-
mized jointly.

In this work, we propose Mr.BiQ1, a post-training
non-uniform quantization method that follows the form
of multi-level binary (or binary code) while minimizing
the reconstruction error. We extend general principles of
post-training quantization to non-uniform quantization and
demonstrate our proposed method on recently proposed
Transformer models for vision tasks and natural language
processing (NLP) tasks in addition to CNNs. In particu-
lar, we introduce a novel approach that enables optimization
of quantization parameters (i.e., both binary-coding and the
multi-level step size) jointly. Since the search space of uni-
form quantization is a subset of that of non-uniform quanti-
zation, our work provides a comprehensive search of quan-
tized models and pushes the limit of quantization to signifi-
cantly low bit-width (i.e., W2A42 or W2A8) with negligible
accuracy drop.

Note that, in terms of acceleration, multi-level binary as
the form of quantized weights can be combined with various
formats for activations (e.g., INT, bfloat16, and FP32) as
well as binary code. When both weights and activations are
binary-coded, matrix multiplications can be accelerated by
xnor-popcnt operations [4]. If activations are maintained to
be full-precision, we can exploit a dedicated computational
kernel, BiQGEMM [16], available for commodity hardware.
Furthermore, with fixed-point activations, the computation
mainly requires integer adders which is effective in terms of
chip area and power consumption [1, 8].

To sum up, we propose a new method for post-training
multi-level binary quantization. Unlike the conventional
approaches, Mr.BiQ recognizes both quantization parame-
ters as learnable parameters and obtains quantized weights
by multiplying them in a bottom-up fashion. Overall, we
achieve state-of-the-art accuracy not only in CNNs but also
in Transformer models: up to 5.35 p.p. improvement in
CNNs (RegNetX-3.2GF [33]-W2A4), up to 4.23 p.p. im-
provement in Vision Transformers (DeiT-S [42]-W2A8),
and up to 3.37 point improvement in Transformers for NLP
(DistilBERT [39]-SQUAD v1.1-W2A8).

2. Preliminaries

In multi-level binary (or binary-coding) quantization
(BiQ), multiple bits share the scaling factor αi ∈ R while
each bit in the binary codes bi ∈ {−1, 1}n (1 ≤ i ≤ q) de-
termines the sign of the corresponding scaling factor. And a

1Post-training Multi-Level Binary Quantization based on Minimizing
the Reconstruction error.

22-bit Weights, 4-bit Activations

linear combination of {αi}qi=1 and {bi}qi=1 produces quan-
tized weights wq . Thus, we have

Q(w) = wq ∈ QBiQ =

{
q∑

xi|xi ∈ {+αi,−αi}

}n

,

(1)

where q is quantization bit-width.
AMQ [47] and LQ-Nets [49] proposed BiQ methods in a

quantization-aware training (QAT) manner, where the quan-
tizer Q decomposes w ∈ Rn into the scale factors {αi}qi=1

and the binary coding vectors {bi}qi=1, such that w is ap-
proximated to be wq =

∑q
i α

∗
ib

∗
i as a result of minimizing

the mean squared error:

α∗
i ,b

∗
i = arg min

αi,bi

||w −
q∑

i=1

αibi||2. (2)

Algorithm 1 Alternating Multi-bit Quantization [47]
Input: Full-precision weight w ∈ Rn, bit-width q, alternating cycles

(AC) T
Output: αi ∈ R, bi ∈ {−1, 1}n, 1 ≤ i ≤ q

1: procedure DECOMPOSITION(w, q, T )
2: {αi,bi}qi=1 ← greedy method (w) ▷ See Eq. (3)
3: for t← 1 to T do
4: {αi}qi=1 ← least squares (B, w) ▷ See Eq. (4)
5: {bi}qi=1 ← binary search (α1, ..., αq , w)

Algorithm 1 describes a method to reduce the mean
squared error as in Eq. (2). When the residue ri denotes
w −

∑i−1
k=0 αkbk, for i ≥ 1, we can obtain bi and αi se-

quentially as

bi = sign(ri) and αi =
r⊤i bi

n
, (3)

for 1 ≤ i ≤ q and α0 = 0, which is the greedy method
(Line 2 in Algorithm 1) [10]. Furthermore, scaling factors
{αi}qi=1 can be refined with ordinary least squares (Line
4) [10]:

[α1, ..., αq] = ((B⊤B)−1B⊤w)⊤, (4)

where B = [b1, ...,bq] ∈ {−1, 1}n×q . Then, the bi-
nary coding vectors {bi}qi=1 can be optimized by bi-
nary search, which re-calibrates the binary codes such
that each weight is assigned to the nearest neighbor in
{
∑q

xi|xi ∈ {+αi,−αi}} (Line 5). This alternating pro-
cess can be performed iteratively (Line 3–5) to further min-
imize the quantization error as in Eq. (2) [47].

Existing methods perform Algorithm 1 every step during
training, and update full-precision weights w using straight
through estimator (STE) ( ∂L

∂w = ∂L
∂wq ) [2] (See the left of

Figure 1).
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Figure 1. Comparing the proposed method (bottom-up) with conventional methods (top-down).

3. Mr.BiQ
We propose a novel post-training multi-level binary

quantization (BiQ) method with a low computational cost.
Unlike the conventional methods [47, 49], which decom-
pose w into {αi}qi=1 and {bi}qi=1 (i.e., a top-down ap-
proach) with a least squares solution, our method optimizes
scale factors and bit-code as learnable parameters that are to
be combined to yield quantized weights wq (i.e., a bottom-
up approach, see Figure 1).

Given a pre-trained model, parameters {αi}qi=1 and
{bi}qi=1 are initialized as illustrated in Algorithm 1 and
then followed by our quantization techniques which aim to
minimize the block-wise reconstruction error within a few
epochs. A block can be defined as one or more consecutive
layers and is usually set to a residual block. The objec-
tive function per-block to be optimized during our proposed
quantization process is as follows:

argmin
wq

∆zT ·H(z) ·∆z, (5)

where ∆z is the perturbation of the block outputs and H(z)

is the Hessian matrix of the block outputs. However, com-
puting the Hessian requires high computational cost, so we
approximate it as c × I, where c is a constant and I is the
identity matrix. Thus, the objective function becomes as
follows:

argmin
wq

∣∣∣∣z− zq
∣∣∣∣2
F
, (6)

where z and zq are the block outputs of the pre-trained full-
precision network and the quantized network, respectively
(i.e., ∆z = z − zq). Thus, we can consider this process
a sort of knowledge distillation [9, 14] in which the pre-
trained model corresponds to a teacher while the quantized
model becomes a student. Note that, we also used the em-
pirical Fisher instead of the Hessian as done in BRECQ [22],
but there were no significant differences in the results be-
tween utilizing the Fisher or not. In fact, the empirical
Fisher approximation may negatively affect the results [19].

To explain a naı̈ve approach optimizing quantization pa-
rameters in a bottom-up manner, we suppose that a quan-
tized weight wq is equals to α1b1 + α2b2 + α3b3, the order
of αi is given as α1 > α2 > α3 ≥ 0, and g denotes ∂L

∂wq .
Then, we can compute the gradient with respect to bi as
g · αi, which means the gradient to be accumulated into b1

becomes the largest due to the magnitude of α1. Such a
large gradient for b1, however, is not desirable because the
change in b3 (of the lower bit-position) should be more fre-
quent than that in b1 (of the higher bit-position) if we target
smoothness in the amount of the overall change in wq when
the corresponding bit-code is updated. To be more specific,
we would like to mutate the bit-code gradually from the
lower bit-position (e.g., 111 → 110), which would be also
observed in the changes of full-precision weights, not rad-
ically (e.g., 111 → 011). Such radical change may arise
from a non-differentiable step function of which the output
is binary parameter bi. In practice, binary parameters could
not converge during the optimization by the naı̈ve approach.

To fundamentally address this issue, we reformu-
late full-precision weights w using the initial {αi}qi=1

and {bi}qi=1 before conducting post-training quantization,
where {bi}qi=1 is translated to softbit vector, a differentiable
form.

For brevity, we define several functions as follows:

• base(w) := the smaller one of the 2-nearest neighbors
(2-nn) in C to w, where C = {

∑q
xi|xi ∈ {+αi,−αi}}

• scale(w) := the distance between 2-nn in C to w

• m(w) := the distance between w and base(w)

• sb=softbit(w) := clip( m(w)
scale(w) , 0, 1)

By exploiting such functions, we can reformulate w as
follows:

w ≈ wr = base(w) + softbit(w)× scale(w) (7)

which is identical to full-precision w except outliers of
|w| >

∑
αi. Figure 2 provides an example of reformula-

tion when quantization bit-width is equal to 2. Note that
softbit(w) can be considered the result of min-max
scaling of w’s for each section.

To encourage softbit to converge towards either 0 or
1, we use an adaptive rounding method proposed in
AdaRound [29] where rectified sigmoid [26] is utilized as
follows:

h(v) = clip(S(v)(ζ − γ) + γ, 0, 1), (8)

where S(·) denotes the sigmoid function, and ζ and γ are
stretch parameters. We initialize v as h−1(softbit(w))
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Figure 2. Reformulation. When quantization bit-width is 2, there are four quantization points (qij ∈ QBiQ, i, j ∈ {0, 1}) and three
sections ([q00, q01], [q01, q10], and [q10, q11]), where subscripts denote the bit-code corresponding to the quantization point. Weights in
each section share base and scale, but each weight has its own m. Reformulation allows softbit (sb) to be a real number between 0 and 1,
and sb is encouraged to be either 0 or 1 during the optimization. Provided that sb of w1 close to q00 is converged to 1 after the optimization,
the bit-code of w1 is changed from ’00’ to ’01’.

and add the regularization term to the objective to enforce
h(v) to be either 0 or 1, which can be expressed as

argmin
wq

∣∣∣∣z− zq
∣∣∣∣2
F
+ λ

∑
i

1−
∣∣2h(vi)− 1

∣∣β . (9)

In Eq. (9), β is annealed during the optimization such that
h(v) gets closer to either 0 or 1 [29]. By reformulating w
as in Eq. (7), we can compute the gradient of {αi}qi=1 and
sb as does in the computation of gradient of a floating-point
number. As shown in Figure 2, the scaling factors, the bi-
nary code, and softbit are involved when back-propagating
gradients. Depending on the optimized sb, each element
of w is assigned to one of the two nearest neighbors in
{
∑q

xi|xi ∈ {+αi,−αi}} which is revised by optimized
{αi}qi=1.

Algorithm 2 summarizes how Mr.BiQ optimizes a block
by minimizing the reconstruction error. Mr.BiQ only needs

Algorithm 2 Mr.BiQ
Input: Full-precision weights wb ∈ Rn in a block fb, bit-width q,

Sampled data set Dc

Output: Quantized block fb(·;wq
b)

1: procedure MR.BIQ(wb, q, Dc)
2: {αi, bi}qi=1 ← Decomposition(wb, q, 50) ▷ Algorithm 1
3: wr

b ← reformulation(wb, α1, . . . , αq) ▷ See Eq.(7)
4: for each input x ∈ Dc do
5: aq ← fq

b−1(. . . f
q
2 (f

q
1 (x;w

q
1);w

q
2) . . . ;w

q
b−1)

6: zq ← fb(a
q ;wr

b) ▷ Student block
7: a← fb−1(. . . f2(f1(x;w1);w2) . . . ;wb−1)
8: z ← fb(a;wb) ▷ Teacher block
9: L ←

∣∣∣∣zq − z
∣∣∣∣2
F

▷ See Eq.(6) and (9)
10: L.backward() ▷ Update wr

b and the step size of aq

11: QBiQ ← update(α1, . . . , αq)
12: {bi}qi=1 ← Restore(sb)

a small unlabeled calibration setDc sampled from the train-
ing data set Dt (i.e., Dc ⊂ Dt and |Dc| ≪ |Dt|). Af-
ter initialization of {αi}qi=1 and {bi}qi=1 (Line 2 in Algo-
rithm 2), Mr.BiQ reformulates wb using initial {αi}qi=1 and
the binary coding vectors is translated into softbit vector
sb ∈ Rn (Line 3). Then, Mr.BiQ optimizes both {αi}qi=1

and sb to minimize the reconstruction error (Line 4–10).
After the optimization, QBiQ is updated based on the opti-
mized {αi}qi=1 (Line 11) and each element of softbit vector
sb is restored to the nearest bit-code (Line 12). The op-
timization is sequentially performed from the block closest
to the input layer. To compensate accumulation of quantiza-
tion error, the student block takes the quantized activations
passed through the previous quantized blocks as the input
(i.e., aq in Line 5) which is different from the input of the
teacher block (i.e., a in Line 7). The notation fq

b indicates
the quantized output of the block fb (i.e., fq

b =Q(fb), where
Q is any quantizer.). In Section 4, we utilize LSQ [7] as the
activation quantizer and the step size of activations can be
optimized along with wr

b in Line 10.

4. Experimental Results
We evaluate our proposed method by testing it on re-

cently proposed Transformer models for vision tasks and
natural language processing (NLP) tasks in addition to
convolutional neural networks (CNNs). With randomly
sampled 1K images from ImageNet (ILSVRC12) [36],
we quantize various CNNs including ResNet [13], Mo-
bileNetV2 [38], RegNet [33] and MnasNet [41]. Also,
we quantize transformer models for vision tasks such as
ViT [6] and DeiT [42]. As for the NLP tasks, we evalu-
ate MNLI-matched, MRPC (from GLUE benchmark [43])
and SQuAD 1.1 [34] for on both BERT [5] and Distil-
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Table 1. Ablation Study (top-1 accuracy (%))

Methods
#Bits

(W/A)
ResNet-18 ResNet-50 MobileNetV2 RegNetX-600MF RegNetX-3.2GF MnasNet

Full Prec. 32/32 71.08 77.00 72.49 73.71 78.36 76.68

Alpha-only
2/32

37.20 48.21 27.33 35.64 53.34 33.45

Bit-only 66.83 72.12 58.83 65.45 73.06 60.12

Mr.BiQ 67.92 73.10 62.96 67.24 74.89 70.12
Alpha-only

3/32
65.23 72.61 65.79 68.09 74.52 71.84

Bit-only 69.71 75.52 69.26 71.45 76.91 74.17

Mr.BiQ 70.17 75.83 70.57 72.11 77.63 75.15
Alpha-only

4/32
68.88 75.31 70.66 71.88 76.97 75.45

Bit-only 70.41 76.19 71.28 72.79 77.65 75.97

Mr.BiQ 70.76 76.42 72.11 73.15 78.24 76.17

BERT [39].
Throughout this section, we mainly compare Mr.BiQ

with BRECQ [22], a post-training quantization framework,
which has shown the state-of-the-art result among integer-
based PTQ approaches while it has shown comparable re-
sults to QAT approaches. Such a framework includes
AdaRound [29] for weight quantization and learned step
size quantization (LSQ) [7] for activation quantization.
While BRECQ selects asymmetric quantization for both
weights and activations, Mr.BiQ utilizes symmetric quanti-
zation for both of them. In all experiments, weights and ac-
tivations are quantized channel-wise and layer-wise, respec-
tively. We also quantize activation uniformly using LSQ [7]
as did in BRECQ. Note that activation quantization opti-
mizes only the step size. Based on the step size optimized
offline, activations can be allocated to the nearest quantiza-
tion point at inference by rounding off.

For all CNNs evaluations, we quantize the weights of the
first and the last layer into 8 bits as did in [22]. For Trans-
former models (i.e., ViT [6], DeiT [42], BERT [5], and Dis-
tilBERT [39]), we do not quantize the input of the softmax
layer and the normalization layer as did in [25, 32, 50]. We
measure the accuracy of 20 runs with randomly sampled
datasets, and then the average values and the standard de-
viations are obtained. Moreover, we evaluate the t-test to
identify whether the figures are statistically different or not.
Please refer to Appendix for more details on other specific
experimental setups.

4.1. Ablation Study

In Table 1, we first compare three different schemes to
optimize quantization parameters: scaling factors (labeled
”Alpha-only”), binary codes (”Bit-only”), and both of them
(”Mr.BiQ”). To minimize the block-wise reconstruction er-
ror, each block is optimized for 20K steps with a batch size
of 32, except in the case of ”Alpha-only” optimization for
which 1k-step is enough to converge successfully. From our

evaluation, learning only scaling factors (”Alpha-only”) is
enough to achieve nearly full accuracy at 4-bit quantization
while the accuracy reaches a saturation point at 3-bit in most
schemes. Thus, ”Alpha-only” may be a good choice if we
use more than 3-bit for quantization since it is simple and
takes less time than others. At ultra-low bit-width (i.e., 2-
bit), however, improvement in accuracy is severely bound to
the initial bit-code, which implies that the bit-flipping is re-
quired in order to further improve the accuracy of the mod-
els. Indeed, ”Bit-only” shows a great improvement in accu-
racy and reaches nearly the same accuracy as prior works;
but there is still room for improvement of the accuracy by
optimizing both the multi-level step size and the bit-code to-
gether. Mr.BiQ is such an algorithm to allow both of them to
be optimized jointly and presents the best accuracy among
the three quantization schemes for multi-level binary quan-
tization.

4.2. Comparison on Convolutional Neural Nets

Weight-Only Quantized Models As the baseline, we test
”Data-free” quantization, a naı̈ve approach, which mini-
mizes the quantization error without any retraining, fine-
tuning, or calibration. In other words, ”Data-free” per-
forms Algorithm 1 once from the pre-trained model. We
also implement existing methods [47, 49] in a post-training
quantization manner (labeled ”Top-down”). By setting the
objective as minimizing the block-wise reconstruction er-
ror, ”Top-down” decomposes weights into {αi}qi=1 and
{bi}qi=1, and updates weights using STE during the opti-
mization. In addition, the results of BRECQ are included in
the comparison. As shown in Table 2, Mr.BiQ outperforms
other methods especially when weights are quantized into
2-bit. The results also indicate that our bottom-up approach
(i.e., Mr.BiQ) is clearly better than the conventional BiQ
method (”Top-down”) at least in post-training. In Table 2,
BRECQ uses the Fisher information matrix while Mr.BiQ
does not.

12333



Table 2. The evaluation on Weight-Only Quantized Models (top-1 accuracy (%))

Methods
#Bits

(W/A)
ResNet-18 ResNet-50 MobileNetV2 RegNetX-600MF RegNetX-3.2GF MnasNet

Full Prec. 32/32 71.08 77.00 72.49 73.71 78.36 76.68

BiQ
Data-free

2/32

0.16 0.12 0.07 0.11 0.11 0.11

Top-down 63.45 68.67 50.35 58.32 67.87 57.47

Mr.BiQ 67.92±0.11 73.10±0.11 62.96±0.18 67.24±0.10 74.89±0.10 70.12±0.17

INT BRECQ* [22] 66.30±0.12 72.40±0.12 59.67±0.13 65.83±0.13 73.88±0.14 67.13±0.13

BiQ
Data-free

3/32

5.50 15.75 0.53 4.95 20.65 5.52

Top-down 68.41 74.19 66.67 69.03 75.21 72.25

Mr.BiQ 70.17±0.08 75.83±0.07 70.57±0.10 72.11±0.10 77.63±0.08 75.15±0.09

INT BRECQ* [22] 69.81±0.05 75.61±0.09 69.50±0.12 71.48±0.07 77.22±0.04 74.58±0.08

BiQ
Data-free

4/32

55.69 58.19 29.32 36.67 66.58 54.47

Top-down 69.70 75.63 70.15 71.30 76.77 75.21

Mr.BiQ 70.76±0.06 76.42±0.06 72.11±0.07 73.15±0.07 78.24±0.05 76.17±0.06

INT BRECQ* [22] 70.70±0.07 76.29±0.04 71.66±0.04 73.02±0.09 78.04±0.04 76.00±0.02

* The figures are taken from [22].

Table 3. The evaluation on Fully-Quantized Models (top-1 accuracy(%))

#Bits
(W/A) ResNet-18 ResNet-50 MobileNetV2 RegNetX-600MF RegNetX-3.2GF MnasNet

Full Prec. 32/32 71.08 77.00 72.49 73.71 78.36 76.68
Mr.BiQ

2/4
66.61±0.10 71.38±0.15 57.27±0.22 64.15±0.12 72.50±0.11 65.48±0.18

BRECQ* [22] 64.80±0.08 70.29±0.23 53.34±0.15 59.31±0.49 67.15±0.11 63.01±0.35

AdaQuant* [15] 0.21 0.12 0.10 - - -
Mr.BiQ

4/4

69.68±0.08 75.17±0.08 68.97±0.09 71.18±0.09 76.65±0.10 73.39±0.13

BRECQ* [22] 69.60±0.04 75.05±0.09 66.57±0.67 68.33±0.28 74.21±0.19 73.56±0.24

Bit-Split* [44] 67.56 73.71 - - - -
AdaQuant* [15] 67.5 73.7 34.95 - - -
ZeroQ* [3] 21.71 2.94 26.24 28.54 12.24 3.89
LAPQ* [31] 60.3 70.0 49.7 57.71 55.89 65.32
* The figures are taken from [22].

Fully-Quantized Models Table 3 evaluates the accuracy
of the models quantized by various approaches, when both
weights and activations are quantized. Likewise, the results
show that Mr.BiQ outperforms other methods. Note that,
even if there is no accuracy drop due to activation quan-
tization in ”Top-down” (if so, the results of ”Top-down”
after activation quantization is the same as ”Top-down” in
Table 2), the performance is inferior to Mr.BiQ of Table 3
which includes activation quantization.

Table 4. The t-tests between Mr.BiQ and BRECQ [22] (p-value)

#Bits
(W/A) t-test ResNet-18 ResNet-50 RegNetX

-600MF
RegNetX

-3.2GF

2/4 Student 1.14E-33 1.46E-29 3.25E-28 9.84E-44
Welch 7.64E-35 4.25E-31 4.74E-34 9.89E-48

4/4 Student 2.98E-19 9.91E-23 1.17E-31 2.66E-42
Welch 2.37E-19 9.13E-23 6.28E-32 3.98E-43

We also perform the t-test to identify whether the fig-
ures listed in Table 3 have statistical significance. To con-
duct the test, we reproduce the results of BRECQ using their

open-source code3. Because we use the different sampled
datasets in each experiment, we evaluate an unpaired t-test
such as Student’s and Welch’s t-test [45]. When the sample
means from evaluations of Mr.BiQ and BRECQ are denoted
by X̃1 and X̃2, we set the null hypothesis and the alterna-
tive hypothesis as H0 : X̃1 = X̃2 and Ha : X̃1 > X̃2,
respectively. Table 4 shows the p-values of each evaluation
when quantization bit-width is W2A4 or W4A4. The results
indicate that the null hypothesis is rejected in favor of the al-
ternative hypothesis. In other words, the performance gap
between Mr.BiQ and BRECQ is not likely to have occurred
by chance.

4.3. Comparison on Transformer Models

We measure the accuracy on Transformer models not
only for vision tasks (such as ViT-Base (ViT-B), ViT-Large
(ViT-L), DeiT-Small (DeiT-S), and DeiT-Base (DeiT-B))
but also for NLP tasks (such as BERT and DistilBERT).

3https://github.com/yhhhli/BRECQ
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Table 5. Comparison on Vision Transformers (top-1 accuracy(%))

W/A ViT-B ViT-L DeiT-S DeiT-B
Full Prec. 78.04 76.93 79.72 81.74
Data-free

2/8
55.70 57.82 13.99 37.72

Mr.BiQ 75.46±0.11 75.86±0.12 73.15±0.16 78.97±0.07

BRECQ† [22] 71.52±2.76 72.45±1.04 68.92±0.15 76.91±0.13

Data-free
3/8

74.73 74.57 67.01 75.43
Mr.BiQ 77.41±0.06 76.73±0.07 78.09±0.10 81.10±0.08

BRECQ† [22] 75.56±1.90 76.08±0.44 77.46±0.09 80.76±0.05

Data-free
4/8

76.98 76.15 75.72 79.49
Mr.BiQ 77.76±0.05 76.84±0.05 79.07±0.05 81.45±0.04

BRECQ† [22] 76.49±1.70 76.58±0.06 78.96±0.06 81.43±0.05

Data-free

6/6

74.28 74.69 71.58 78.70
Mr.BiQ 77.34±0.07 76.33±0.08 76.82±0.10 80.86±0.07

BRECQ† [22] 77.34±0.06 75.99±0.04 77.88±0.06 81.03±0.06

Percentilea [21] 71.58 71.48 70.49 73.99
PTQVTa,b [25] 75.26 75.46 75.1 77.47
Bit-Splita [44] - - 74.04 76.39
EasyQuanta [46] - - 73.26 75.86
a The figures are taken from [25]. The baselines are 77.91, 76.53, 79.8 and 81.8 for

ViT-B, ViT-L, DeiT-S and DeiT-B, respectively.
b It represents the results for mixed-precision.
† We apply BRECQ to Transformer models for vision tasks based on the open-source

code.

Although BRECQ did not evaluate Transformer models, we
implemented block-wise adaptive rounding based on the
open-source code, as an integer-based approach, for com-
parison as shown in Table 5 and 6. For quantization, we
define a block as an encoder layer. In other words, we per-
form the optimization for each encoder consisting of several
layers.

Similar to results in CNNs, Mr.BiQ is especially effec-
tive when the weights are quantized to 2-bit. To the best of
our knowledge, this work is the first to present a reasonable
accuracy on Transformer models with 2-bit weights after
post-training quantization. Interestingly, when parameters
of BERT and DistilBERT are optimized with small datasets
such as MRPC, we observed the accuracy is improved over
the full-precision baseline, which is also reported in other
works (e.g., in [18]). This observation may indicated that
quantization has a regularization effect. Compared to QAT
approaches (such as Q8BERT [48], TerneryBERT [50], and
KDLSQ-BERT [17]), Mr.BiQ shows prominent results par-
ticularly in low bit-width (i.e., 2-bit). Note that QAT per-
forms end-to-end back-propagation with the entire dataset.
In terms of the amount of dataset and time required for op-
timization, Mr.BiQ shows competitive accuracy (or score)
even compared to QAT approaches.

5. Related Works
5.1. Quantization Strategies

Based on the types of constraints of dataset during the
optimization, quantization can be categorized into two ap-
proaches: quantization-aware training (QAT) [7,47,49] and
post-training quantization (PTQ) [22, 29, 30, 40, 44].

QAT demands whole training data set with associated
labels and requires a thorough hyperparameter search pro-

cedure. Assume that the output loss L of a network f is
measured by L = f(x,y,w), where (x,y) indicates pairs
of data and labels, and w denotes full-precision weights.
To let the loss be aware of quantization error, QAT mea-
sures the loss by feeding quantized weights wq instead of
w (i.e., L = f(x,y,wq ← Q(w)), where Q is a quantizer)
and updates full-precision weights w using straight through
estimator (STE) (i.e., ∂L

∂w = ∂L
∂wq ) [2] which means that

wt+1 = wt − γ ∂L
∂wq

t
, where γ denotes the learning rate.

PTQ, which is our choice in this work, compresses net-
works using a pre-trained model with a small amount of
unlabeled data set for calibration. Suppose that yl are acti-
vations of intermediate layer fl (i.e., yl = fl(x,w)). Then,
intermediate activations of quantized networks can be ex-
pressed as yq

l = fq
l (x,w

q). PTQ utilizes yl as soft labels
and trains sub-networks to minimize ||yl − yq

l ||2, which
is called minimizing the reconstruction error (MRE). This
process can be considered a sort of knowledge distillation
in which a pre-trained model corresponds to a teacher while
a model to be quantized becomes a student.

DFQ, one of the PTQ, refers to quantizing pre-trained
models without any data. Due to the lack of prior informa-
tion on input data, DFQ maps the weights to fixed points so
as to minimize mean squared error (MMSE). By estimat-
ing the input data distribution from the learned parameters,
one could improve the compression ratio or the accuracy of
DFQ further [30].

5.2. Post-Training Quantization

Prior works demonstrated noticeable accuracy improve-
ment when minimizing the reconstruction error (MRE) is
performed for post-training quantization [22, 29]. One of
the reasons for such outstanding quality is that MRE con-
siders in-domain distribution from input data x while opti-
mizing where to map each weight [40]. To illustrate spe-
cific steps of MRE, on the other hand, AdaRound [29] sets
the objective function as argmin∆w E[L(x,y,w+∆w)−
L(x,y,w)]. Then, the objective can be approximated by
the Taylor series:

E[L(x,y,wq)− L(x,y,w)]

≈ E[∆wT∇wL(x,y,w) +
1

2
∆wT · ∇2

wL(x,y,w) ·∆w].

(10)

Providing that a pre-trained model is successfully con-
verged, the first term can be neglected [20]. Then, Eq. (10)
is simplified as

∆L ≈ 1

2
∆wT ·H(w) ·∆w, (11)

where H(w) is the Hessian matrix with respect to w (i.e.,
E[∇2

wL(x,y,w)]). Assuming that there is no inter-layer

12335



Table 6. Evaluation on Natural Language Processing Tasks

Model BERT DistilBERT
Task (Dataset) SQuAD v1.1 MRPC MNLI SQuAD v1.1 MRPC MNLI

Metric F1 F1 Accuracy F1 F1 Accuracy
Full Prec. (Baseline) 88.22 88.93 84.01 85.64 85.91 81.03

Data-free
2/32

22.22 0.04 60.67 16.14 81.22 44.51
Mr.BiQ 86.87±0.12 89.21±0.28 83.29±0.11 83.86±0.14 86.62±0.36 79.97±0.14

BRECQ† [22] 84.24±0.14 88.85±0.36 82.88±0.18 80.49±0.17 86.32±0.39 79.96±0.16

Data-free
3/32

79.96 87.22 80.30 75.80 81.22 72.49
Mr.BiQ 87.80±0.08 89.63±0.42 83.88±0.12 85.30±0.09 86.71±0.35 80.87±0.08

BRECQ† [22] 87.65±0.07 89.24±0.34 83.79±0.11 85.22±0.07 86.45±0.52 80.76±0.10

Data-free

2/8

22.14 0.01 59.70 17.04 81.22 41.83
Mr.BiQ 86.69±0.17 89.13±0.36 83.15±0.13 83.78±0.16 86.17±0.63 79.88±0.15

BRECQ† [22] 84.23±0.10 88.79±0.54 82.81±0.18 80.39±0.12 86.02±0.60 79.81±0.16

Q8BERT‡ [48] 3.411 81.224 38.27 - - -
TernaryBERT‡ [50] 87.67 90.44 83.78 - - -
KDLSQ-BERT‡ [17] 88.45 90.29 83.51 - - -
Data-free

3/8
78.98 86.90 79.50 75.19 81.22 69.45

Mr.BiQ 87.69±0.09 89.43±0.31 83.80±0.10 85.15±0.12 86.42±0.38 80.76±0.08

BRECQ† [22] 87.41±0.10 89.05±0.34 83.75±0.10 85.00±0.09 86.40±0.36 80.68±0.12

† We apply BRECQ to Transformer models for NLP based on the open-source code.
‡ They are quantization-aware training (QAT) methods, whose figures are taken from [17]. The baselines of QAT methods

are 88.696 (F1), 90.625 (F1), and 84.463 (Acc.) for SQuAD v1.1, MRPC, and MNLI, respectively.

dependency, we can relax Eq. (11) to per-layer optimization
problem, namely,

arg min
∆w(l)

∆w(l)T ·H(w(l)) ·∆w(l), (12)

where w(l) and H(w(l)) are weights and the Hessian matrix
of layer l, respectively. Then, when z(l) = W(l) · x(l−1),
the Hessian matrix of layer l can be expressed as follows:

H(w(l)) = E[x(l−1)x(l−1)T ⊗∇2
zlL] (13)

(a1)≈ E[x(l−1)x(l−1)T ⊗ diag(∇2
zlLi,i)] (14)

(a2)≈ E[x(l−1)x(l−1)T ], (15)

where ⊗ denotes the Kronecker product. By further assum-
ing that (for (a1) in Eq. (14)) every off-diagonal element of
the Hessian is 0 and (for (a2) in Eq. (15)) ∇2

zl is a constant
independent of the input data samples (i.e., ∇2

zlLi,i = c),
the objective function can be approximated as follows:

arg min
∆w(l)

E[(∆W(l)x(l−1))2]. (16)

In other words, through a few approximation steps, mini-
mizing reconstruction error becomes equivalent to minimiz-
ing ∆L induced by quantization. As a key operation to per-
form Eq. (16) in a layer, AdaRound decides either rounding-
up or -down each parameter by gradient-based optimization
while maintaining the initial step size [29]. Meanwhile,
BRECQ [22] includes additional considerations as an exten-
sive study of AdaRound. Specifically, given that z is the

pre-activations of the last layer, BRECQ describes the fol-
lowing approximation step:

argmin
∆w

∆wT ·H(w) ·∆w ≈ argmin
∆w

∆zT ·H(z) ·∆z.

(17)

Then, BRECQ replaces the Hessian matrix with the diagonal
empirical Fisher [27] (diag(( ∂L

∂z1
)2, ..., ( ∂L

∂zn
)2)). BRECQ

also defines a set of reconstruction units (e.g., layer-, block-
, and network-wise), among which block-wise optimization
empirically shows the best performance. Thus, we adopt a
block-wise reconstruction scheme to quantize models in a
non-uniform manner.

6. Conclusion

We have proposed a post-training non-uniform quanti-
zation method, aiming at minimizing reconstruction error.
The method exploits multi-level binary as the quantization
data format, which has the benefits of a high compression
ratio and multiple choices for activation quantization. Un-
like prior works, this work has proposed a novel bottom-up
approach for optimizing the multi-level step size and bit-
code jointly. All in all, we have achieved a new state-of-the-
art accuracy of post-training quantization on various models
including CNNs and Transformer models.
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