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Abstract

Given a set of putative 3D-3D point correspondences,
we aim to remove outliers and estimate rigid transformation
with 6 degrees of freedom (DOF). Simultaneously estimat-
ing these 6 DOF is time-consuming due to high-dimensional
parameter space. To solve this problem, it is common to
decompose 6 DOF, i.e. independently compute 3-DOF ro-
tation and 3-DOF translation. However, high non-linearity
of 3-DOF rotation still limits the algorithm efficiency, es-
pecially when the number of correspondences is large. In
contrast, we propose to decompose 6 DOF into (2+1) and
(1+2) DOF. Specifically, (2+1) DOF represent 2-DOF ro-
tation axis and 1-DOF displacement along this rotation
axis. (1+2) DOF indicate 1-DOF rotation angle and 2-
DOF displacement orthogonal to the above rotation axis.
To compute these DOF, we design a novel two-stage strat-
egy based on inlier set maximization. By leveraging branch
and bound, we first search for (2+1) DOF, and then the re-
maining (1+2) DOF. Thanks to the proposed transformation
decomposition and two-stage search strategy, our method
is deterministic and leads to low computational complex-
ity. We extensively compare our method with state-of-the-
art approaches. Our method is more accurate and robust
than the approaches that provide similar efficiency to ours.
Our method is more efficient than the approaches whose ac-
curacy and robustness are comparable to ours.

1. Introduction
Rigid point cloud registration is to align two 3D point

clouds by an unknown-but-sought transformation with 6 de-
grees of freedom (DOF) [1]. It is a fundamental problem
in computer vision and robotics. Existing methods can be
classified into two categories in terms of whether the pu-
tative 3D-3D point correspondences (corrupted by outliers)
are required. The methods that do not require correspon-
dences typically rely on the initial value, which leads to
low generality [6, 7], or provides low efficiency [36, 8]. To
overcome these limitations, several methods requiring puta-
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Figure 1. The proposed two-stage transformation estimation and
outlier removal method. (xi,yi) denotes a 3D-3D point corre-
spondence. (a) In stage I, we search for 2 DOF of rotation, i.e.
rotation axis, and 1 DOF of translation, i.e. displacement along
the rotation axis. The optimal (2+1) DOF fit the most candidate
inliers composed of both true and pseudo inliers. We save candi-
date inliers and discard partial outliers. (b) In stage II, we search
for the remaining 1 DOF of rotation, i.e. rotation angle, and 2 DOF
of translation, i.e. displacement orthogonal to rotation axis. The
optimal (1+2) DOF fit the largest number of true inliers. We save
true inliers and discard pseudo inliers.

tive correspondences have been proposed [4, 24, 35, 38]. In
practice, putative correspondences can be relatively easily
obtained using the handcrafted or deep learning-based de-
scriptors [11, 14, 29]. In this paper, we consider the cases
that putative correspondences are known.

For a set of putative correspondences, only inliers but
not outliers can be fitted by the same transformation. Ac-
cordingly, point cloud registration with putative correspon-
dences is commonly formulated as the inlier set maximiza-
tion problem [20, 26]. Specifically, our problem aims to
find the optimal 6-DOF transformation that fits the largest
number of (inlier) correspondences. To tackle this prob-
lem, a straightforward way is to simultaneously search the
6 DOF [8, 27, 36]. However, their efficiency is unsatis-
factory due to the high-dimensional search space. To over-
come this limitation, a common strategy is to decompose
the 6 DOF, i.e. independently compute 3-DOF rotation and
3-DOF translation [12, 16, 26, 31, 35]. However, existing
decomposition methods have two main limitations. First,
high non-linearity of 3 DOF of rotation still limits the al-
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gorithm efficiency [26, 31]. Second, in order to generate
translation/rotation-invariant features, the size of input in-
creases a lot [24, 35]. Another group of methods to solve the
problem is based on sampling, such as RANSAC [12, 16].
But they are non-deterministic: outputs on independent tri-
als with the same setup may be inconsistent. The inconsis-
tency affects the algorithm robustness.

In contrast, we propose a deterministic and more effi-
cient method based on a novel decomposition strategy. The
proposed strategy first computes 2 DOF of rotation and 1
DOF of translation, followed by estimating the remaining
1 DOF of rotation and 2 DOF of translation. Specifically,
as shown in Fig. 1(a), the 2 DOF of rotation and 1 DOF of
translation refer to a 2-DOF rotation axis and a 1-DOF dis-
placement along the rotation axis, respectively. We define
“candidate” inliers as the observations fitted by the same
2 DOF of rotation and 1 DOF of translation. We search
for these (2+1) DOF to fit as many candidate inliers (see
blue and green correspondences) as possible. The search
processing is based on branch and bound (BnB) [15]. Com-
pared with searching for 3-DOF rotation with higher non-
linearity [26, 31], the proposed search can provide tighter
bound and thus improve the efficiency.

After obtaining 2 DOF of rotation and 1 DOF of trans-
lation, we compute the remaining 1 DOF of rotation and 2
DOF of translation. As shown in Fig. 1(b), the remaining 1
DOF of rotation and 2 DOF of translation represent 1-DOF
rotation angle and 2-DOF displacement orthogonal to rota-
tion axis, respectively. We define “true” inliers as a subset of
candidate inliers that can be also fitted by the same 1 DOF
of rotation and 2 DOF of translation. We search for these
(1+2) DOF to fit as many true inliers (see green correspon-
dences) as possible and discard pseudo-inliers (see blue cor-
respondences). Our search in this stage is based on nested
BnB. Attributed to relatively low computational complexity
of nested BnB, our search achieves good efficiency.

Our main contributions are summarized as follows:

• We propose a novel strategy for transformation decom-
position. It reduces the non-linearity of 3-DOF rota-
tion, and thus improves the algorithm efficiency.

• We design a deterministic and efficient two-stage
search strategy for parameter estimation. It leads to
tight bounds and low computational complexity.

We extensively compare our method with state-of-the-art
approaches. Our method is more accurate and robust than
the approaches that provide similar efficiency to ours. Our
method is more efficient than the approaches whose accu-
racy and robustness are comparable to ours.

2. Related Works
We classify existing works into two main categories in

terms of whether decomposition of the 6-DOF transforma-

tion is conducted.
Methods without Decomposition. Several optimization
algorithm-based methods simultaneously estimate 6-DOF
transformation. They typically leverage BnB to search over
a bounded 6D parameter space [15, 5, 8, 27, 36]. By com-
puting the bounds of the objective functions, these methods
continuously narrow down the search scope until the opti-
mal parameters are found. While they achieve global op-
timality in terms of their objectives, their efficiency is un-
satisfactory due to the high-dimensional parameter space.
Instead of searching on the 6-DOF space, Zhou et al. [38]
proposed to linearize the transformation as a 6D vector, and
estimated this vector based on a robust cost function. This
approach improves the efficiency, but can hardly handle the
cases with high outlier ratios.

Some deep learning-based methods simultaneously esti-
mate 6-DOF transformation in an end-to-end manner. They
use different parameterization methods to represent the
transformation. PointNetLK [2] represents the transforma-
tion by a 6D twist that can be regarded as a mapping in Lie
group. DGR [10] expresses the rotation in a redundant 6D
continuous space [40] and translation in a 3D space. Ac-
cordingly, transformation is encoded by a 9D vector. Lee
et al. [19] proposed to map transformation into a 6D Hough
space that facilities the cast voting-based parameter estima-
tion. While these methods provide high accuracy on certain
datasets, their generalization is relatively unsatisfactory.
Methods Based on Decomposition. Independently es-
timating 3-DOF rotation and 3-DOF translation is com-
monly used in the closed-form solvers [3, 16]. In pres-
ence of outliers, several methods integrate these solvers
into RANSAC [12, 28] to conduct iterative sampling. At
each iteration, they first use a solver and samples to hy-
pothesize a transformation, and then verify this hypothesis.
In addition, some approaches [24, 35] conduct exhaustive
sampling to enumerate correspondence primitives. They
search for the “invariant” primitives that satisfy the con-
straints with respect to only rotation or translation. For ex-
ample, Liu et al. [24] first found a set of rotation-invariant
primitives to compute the translation. Then they fixed the
translation and computed the rotation. Yang et al. [35]
first searched for a set of translation-invariant primitives to
compute rotation, followed by computing translation. The
decomposition-based methods are generally faster than the
above approaches without decomposition. However, due to
numerous samplings and high non-linearity of 3-DOF rota-
tion, there is still room for efficiency improvement.

Different from the aforementioned methods that use
sampling to identify inlier correspondences, some deep
learning-based methods [22, 4, 25, 33] directly predict in-
liers using neural networks. Then based on these inliers,
they employ the closed-form solvers to compute the trans-
formation. A representative work of the deep learning-
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based methods is PointDSC [4]. It considers the spatial con-
sistency of correspondences to improve the accuracy of in-
lier prediction. These methods are not deterministic, which
affects the algorithm robustness.

3. Problem Formulation
We formulate point cloud registration as an inlier set

maximization problem in Section 3.1. To tackle this
problem efficiently, we decompose it into two novel sub-
problems based on transformation decomposition in Sec-
tion 3.2. We discuss the optimality in Section 3.3.

3.1. Inlier Set Maximization
Similar to [4, 24], we assume that N putative 3D-3D

point correspondences corrupted by outliers are known in
our problem setting. In the noise-free case, an inlier cor-
respondence (xi,yi) (1 ≤ i ≤ N ) is strictly fitted by
the unknown-but-sought transformation R ∈ SO(3) and
t ∈ R3, i.e. Rxi + t − yi = 0. In presence of noise, we
rewrite this constraint as ∥Rxi+t−yi∥ ≤ ξ, where ξ is an
inlier threshold. We aim to find the optimal transformation
that fits the largest number of (inlier) correspondences, i.e.

max
R, t

⌊I⌋

s.t. ∥Rxi + t− yi∥ ≤ ξ, ∀i ∈ I
(1)

where I is the index set of the inlier correspondences, “⌊·⌋”
denotes the cardinality of set, and “∥ · ∥” denotes the L2

norm. Following [15], we also represent the rotation using
the angle-axis representation. We denote the rotation axis
by r and the rotation angle by θ. Note that, we consider the
purely rotational registration in the supplementary material.

3.2. New Transformation Decomposition
For problem in Eq. (1), simultaneously or independently

estimating 3-DOF rotation R and 3-DOF translation t are
both time-consuming due to high-dimensional parameter
space or high non-linearity of rotation (see Section 1). To
solve this issue, the original problem in Eq. (1) is decom-
posed into two new sub-problems based on transformation
decomposition. Specifically, we first compute 2 DOF of ro-
tation and 1 DOF of translation, followed by the remaining
1 DOF of rotation and 2 DOF of translation. We begin with
introducing a lemma used in the following.

Lemma 3.1. For any 3D point p, it satisfies a constraint
with respect to the rotation R and rotation axis r of this
rotation, i.e.

r⊤ (Rp) = r⊤p. (2)

Proof is available in the supplementary material. This
lemma is the basis of our transformation decomposition.
First sub-problem. We reduce the inlier constraint ∥Rxi+
t− yi∥ ≤ ξ in Eq. (1) as

∥Rxi + t− yi∥ ≤ ξ (3a)
⇔ ∥r∥ · ∥Rxi + t− yi∥ ≤ ∥r∥ · ξ (3b)

⇒ |r⊤ (Rxi + t− yi) | ≤ ξ (3c)

⇔ |r⊤ (xi − yi) + r⊤t︸︷︷︸
d

| ≤ ξ (3d)

where Eq. (3c) is based on the Cauchy–Schwarz inequality1

and ∥r∥ = 1; Eq. (3d) is based on Lemma 3.1; “| · |” denotes
the absolute value; d = r⊤t in Eq. (3d) geometrically repre-
sents the projection of translation onto the rotation axis, i.e.
the 1D displacement along the rotation axis (see Fig. 1(a)).

The constraint definded by Eq. (3d) is with respect to 2
DOF of rotation r and 1 DOF of translation d. Based on
this constraint, the first sub-problem is derived and defined.
Namely, given the input correspondences, we aim to find
the optimal r and d to maximize the number of inliers, i.e.

max
r,d

⌊I1⌋

s.t. |r⊤ (xi − yi) + d| ≤ ξ, ∀i ∈ I1
(4)

where I1 is the index set of the identified inliers. Note that
Eq. (4) is only with respect to (2+1) DOF of the transforma-
tion. Accordingly, we treat the identified inliers in the first
sub-problem as “candidate” inliers (see Fig. 1(a)). From an-
other perspective, some outliers, which coincidentally sat-
isfy this constraint, cannot be identified. We call these out-
liers “pseudo” inliers. These pseudo inliers will be removed
in the second sub-problem introduced in the following.
Second sub-problem. By fixing the rotation axis r and dis-
placement d estimated in the first sub-problem, the inlier
constraint ∥Rxi + t − yi∥ ≤ ξ in Eq. (1) can be simpli-
fied as

∥Rθxi + t′ − yi∥ ≤ ξ (5)

where Rθ is with respect to the remaining 1-DOF rotation
angle θ around the known axis r, and t′ is a 2-DOF trans-
lation whose component of displacement along the rotation
axis is known, but component of displacement orthogonal
to the rotation axis is unknown. Based on this constraint,
we define the second sub-problem. That is, given the candi-
date inliers, we aim to find the optimal θ and t′ to maximize
the number of true inliers, i.e.

max
θ,t′

⌊I2⌋

s.t. ∥Rθxi + t′ − yi∥ ≤ ξ, ∀i ∈ I2
(6)

where I2 is the index set of true inliers. Eq. (6) is with re-
spect to the remaining (1+2) DOF of the transformation.
Pseudo inliers fail to satisfy this constraint. In another
word, we can prune pseudo inliers from candidate inliers
(see Fig. 1(b)), and thus retain only true inliers.

To solve the above two sub-problems, we propose a two-
stage search strategy, which will be introduced in Section 4.

1|a · b| = ∥a∥ · ∥b∥ · | cos (∠(a,b)) | ≤ ∥a∥ · ∥b∥
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3.3. Discussion about Optimality

In this section, we discuss the global optimality in terms
of maximizing the number of inliers. Recall that at the
stage I, we aim to find a model that fits the largest num-
ber of candidate inliers. Ideally, for these candidate inliers,
all the true inliers are incorporated, and all the pseudo in-
liers can be pruned at the second stage. However, in prac-
tice, the identified candidate inliers may neglect partial true
inliers, and also incorporate some pseudo inliers that can-
not be pruned at the second stage. The reason is that the
number of the neglected partial true inliers is smaller than
the number of mistakenly incorporated pseudo inliers (our
goal is to maximize the carnality of candidate inlier set).
Therefore, our method indeed cannot theoretically guaran-
tee global optimality in terms of maximizing the number of
(true) inliers. Please note that this is also an inherent flaw
shared by the other approaches based on transformation de-
composition [24, 32, 35].

However, the above sub-optimal case only occurs when
the true inliers and some outliers are not distinct enough.
Otherwise, our method can (nearly) identify all the true in-
liers, which has been validated by the experiments in Sec-
tion 5. In addition, to facilitate understanding of the above
optimality discussion, we provide an analogy of line fitting
in the supplementary material.

4. Two-stage Search Strategy
We begin with illustrating our parameter space of trans-

formation in Section. 4.1. Then, we introduce our first stage
search regarding 2 DOF of rotation and 1 DOF of transla-
tion in Section 4.2, and our second stage search regarding
the remaining 1 DOF of rotation and 2 DOF of translation
in Section 4.3.

4.1. Parameter Space of Rotation and Translation

Rotation. As shown in Figs. 2(a) and 2(c), we fol-
low [21, 23] to model the parameter space of the rotation
axis r by a unit hemisphere, and the parameter space of
rotation angle θ by the interval [−π, π]. To facilitate our
search-based estimation of rotation axis (introduced in Sec-
tion 4.2), we discretize the hemisphere. Our discretization
is based on the Miller’s method [30] which is a variant of
common longitude-latitude discretization. Miller’s method
improves the efficiency and accuracy of our rotation axis
estimation, as shown in the supplementary material.
Translation. Following [36], we assume that the norm of
translation is smaller than a threshold l2. Accordingly, the
original parameter space of t corresponds to a solid ball
whose radius is l. Recall that we decompose the transla-
tion t into d in Eq. (3d) and t′ in Eq. (5). We thus decom-

2We follow [38] to normalize the point cloud. Accordingly, the variable
l is equal to 1.

(a) 2D parameter space of r (b) 2D parameter space of t⊥

Miller 
Projection

-

(c) 1D parameter space of θ

Miller 
Projection

-

(d) 1D parameter space of d

Figure 2. The parameter space of rotation and translation. (a) r
denotes the 2 DOF of rotation, i.e. the rotation axis. We discretize
the hemisphere based on Miller’s method [30], i.e. a non-uniform
latitude discretization. (b) t⊥ represents the 2-DOF displacement
orthogonal to the rotation axis. (c) θ denotes the 1 DOF of rotation,
i.e. the rotation angle. (d) d represents the 1-DOF displacement
along the rotation axis.

pose the above ball-shaped parameter space, which is intro-
duced as follows. As shown in Fig. 2(d), we model the pa-
rameter space of d by the 1D interval [−l, l]. The parameter
space of t′ is modeled based on two geometric constraints
(see Fig. 2(b)). First, t′ lies within the above ball-shaped
space. Second, t′ lies on the plane defined by r⊤t′ = d
(r and d are known based on the first-stage search). There-
fore, the intersection of the above ball-shaped and plane-
shaped spaces corresponds to the parameter space of t′, a
disk-shaped space. We express t′ by the component paral-
lel to the rotation axis t∥ and the component orthogonal to
the axis t⊥, i.e. t′ = t∥ + t⊥. On the one hand, t∥ cor-
responds to the vector defined by the center of ball and the
center of disk, i.e. t∥ = dr. On the other hand, t⊥ repre-
sents a vector whose initial point is the center of disk and
terminal point lies on the disk. We express t⊥ by

t⊥ = (h cosφ) · e1 + (h sinφ) · e2 (7)

where {e1, e2} is an arbitrary known orthogonal basis of the
null space of the axis r and (φ, h) are unknown-but-sought
polar coordinates in the disk-shaped space.

In the following, we first search for 2 DOF of rotation,
i.e. r and 1 DOF of translation, i.e. d (we can obtain t∥ =
dr accordingly). Then we search for the remaining 1 DOF
of rotation, i.e. θ and 2 DOF of translation, i.e. t⊥ (with
respect to polar coordinates (φ, h)).

4.2. Stage I: Searching for (2+1) DOF

We first search for 2 DOF of rotation, i.e. rotation axis r,
and 1 DOF of translation, i.e. displacement d along the ro-
tation axis. Our search is based on BnB [15] that continu-
ously divides the search space, and computes the upper and
lower bounds of the cost function for each sub-space. A
sub-space is pruned if its associated bounds prove it does
not contain the optimal solution. BnB converges when the
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Figure 3. The bound computation for 2-DOF rotation axis. The
red trapezoid cap on the hemi-shpere represents a sub-space of
the parameter space of rotation axis r. The maximum value of
∥r− rc∥ in the sub-space is ∥OA∥ or ∥OB∥.

upper and lower bounds are equal up to a threshold. The
tightness of bounds determines the algorithm convergence.
In our context, for the problem of inlier set maximization,
lower bound can be easily computed based on any position
in the parameter space [36]. We aim to derive tight upper
bound to improve the algorithm efficiency as follows.

Let a trapezoid cap in Fig. 3 be a sub-space of the pa-
rameter space of the 2-DOF rotation axis r. We denote the
center of this cap by rc. Let an interval

[
d, d

]
be a sub-

space of the parameter space of the 1-DOF displacement d.
We denote the center of this interval by ḋ . We take these
sub-spaces and a correspondence (xi,yi) for example to
derive our upper bound of the constraint of candidate inlier
in Eq. (4). For arbitrary r and d in their sub-spaces, we have

|r⊤ (xi − yi) + d| (8a)

= |r⊤c (xi − yi) + ḋ+ (r− rc)
⊤
(xi − yi) + (d− ḋ)|

(8b)

≤ |r⊤c (xi − yi) + ḋ|+ | (r− rc)
⊤
(xi − yi) |+ |d− ḋ|

(8c)

≤ ξ + ∥r− rc∥ · ∥xi − yi∥+ |d− ḋ| (8d)
≤ ξ + τ∥xi − yi∥+ δd (8e)

where Eq. (8c) is owing to the triangle inequality; Eq. (8d)
relies on the Cauchy–Schwarz inequality; In Eq. (8e), τ =
max(∥r− rc∥) represents the maximum distance from cen-
ter of cap rc to all the points within this cap, and δd =
max(|d− ḋ|) is the maximum displacement from the center
ḋ to all points in the interval, i.e. δd is the half length of the
interval of d. In the following, we introduce the geometric
meaning of τ .

The specific value of τ only relies on the relative distance
from the center to other points in the trapezoid cap. As
illustrated in Fig. 3, O is the center of the trapezoid cap.
We note that the shortest distances from the center O to the
edge AB and CD are equal. Since the parallel lines on
the unit sphere with higher latitudes have smaller perimeter,
the length of AB is larger than the length of CD. Then,
we can conclude that both ∥OA∥ and ∥OB∥ maximize the
term ∥r− rc∥ in the trapezoid cap.

According to the derivation from (8a) to (8e), the resid-
ual of |r⊤ (xi − yi) + d| (for any r in the cap and d in the
interval) will be at most ξ+τ∥xi−yi∥+δd. In other words,
the upper bound is valid if we choose the values of r and d
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Figure 4. The bound computation for the second sub-problem de-
fined in Eq. (6). (a) Illustration of the point Rθxi which is gen-
erated by rotating xi by the rotation angle θ around fixed rotation
axis r. θ is in a sub-space θ ∈

[
θ, θ

]
centered at θ̇ and with

half-length of δ. The upper bound of ∥ (Rθxi −Rθ̇xi) ∥ in this
sub-space is the distance from Rθ̇xi to Rθxi or Rθxi. (b) Illus-
tration of a sub-space (blue sectors) of the parameter space of t⊥.
The maximum value of ∥t⊥ − tc⊥∥ in the sector-shaped space is
the maximum distance from the center to four corners.

as their centers rc and ḋ respectively. Thus, given the initial
putative correspondences, we compute the upper bound Q1

of the number of candidate inliers as

Q1 =
∑

1(|r⊤c (xi − yi) + ḋ| ≤ ξ + τ∥xi − yi∥+ δd)

(9)
where 1(·) is an indicator function that returns 1 if the inside
condition (·) is true and 0 otherwise. As mentioned above,
we choose centers of sub-spaces to compute lower bound of
the number of candidate inliers by

Q
1
=

∑
1(|r⊤c (xi − yi) + ḋ| ≤ ξ) (10)

4.3. Stage II: Searching for Remaining (1+2) DOF

By fixing 2 DOF of rotation r and 1 DOF of transla-
tion d estimated in stage I, we search for the remaining 1
DOF of rotation θ and 2 DOF of translation t⊥. Similar
with the stage I, we search for the remaining (1+2) DOF
based on BnB. Specifically, inspired by [36], we design
a nested BnB composed of the outer and inner BnB. We
search for t⊥ by outer BnB, and θ by inner BnB. Outer BnB
divides the search space with respect to t⊥ into four 2D sub-
spaces, and passes each sub-space to inner BnB. Inner BnB
searches on the whole 1D space with respect to θ, and re-
turns the bounds on each sub-space to outer BnB. Compared
with directly searching on a 3D non-linear space [15], our
outer and inner BnB search on 2D and 1D linear spaces, re-
spectively. Accordingly, our nested structure improves the
efficiency. In the following, we first derive the bounds of
parallel BnB (that divides the parameter spaces of t⊥ and θ
simultaneously). Then based on these bounds, we compute
the bounds of our nested BnB.
Bounds of Parallel BnB. Let an interval θ ∈

[
θ, θ

]
be a

sub-space of rotation angle θ. We denote the center of the
interval by θ̇. Let a local rectangular region (centered at
(φc, hc)) be a sub-space of displacement t⊥. The associated
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local space in the plane r⊤t = d is a sector (see Fig. 4(b)).
We denote the center of the sector by tc⊥. Accordingly, the
center of t′ is derived by t′c = t∥ + tc⊥. We take these sub-
spaces and a correspondences (xi,yi) for example to derive
our upper bound of the constraint of true inlier in Eq. (6).
For arbitrary θ and t⊥ in their sub-spaces, we have

∥Rθxi + t′ − yi∥ (11a)

= ∥Rθ̇xi + t′c − yi +
(
Rθxi −Rθ̇xi

)
+ (t′ − t′c) ∥

(11b)

≤ ∥Rθ̇xi − yi∥+ ∥
(
Rθxi −Rθ̇xi

)
∥+ ∥t′ − t′c∥

(11c)

= ∥Rθ̇xi − yi∥+ ∥
(
Rθxi −Rθ̇xi

)
∥+ ∥t⊥ − tc⊥∥

(11d)

≤ ξ + ηθ + ηt (11e)

where Ineq. (11c) follows from the triangle inequality;
Eq. (11d) is based on t′ = t∥ + t⊥ and t′c = t∥ + tc⊥.
In Ineq. (11e), ηθ = max(∥Rθxi − Rθ̇xi∥) denotes the
maximum distance from the center Rθ̇xi to the all point
Rθxi; and ηt = max(∥t⊥ − tc⊥∥) represents the maximum
distance from the center to all the points in the sector.

We specify the values of ηθ and ηt in their sub-spaces as
follows. As shown in Fig. 4(a), ηθ can be derived as:

∥
(
Rθxi −Rθ̇xi

)
∥ ≤

√
2− 2 cos δ∥xi∥

.
= ηθ (12)

where δ = θ̇ − θ is the half length of the interval of θ. As
shown in Fig. 4(b), the sector is symmetrical. The relative
distances from the center rc⊥ to arbitrary point t⊥ and its
symmetry point in the sector are equal, i.e. ∥t1⊥ − tc⊥∥ =
∥t2⊥−tc⊥∥ and ∥t3⊥−tc⊥∥ = ∥t4⊥−tc⊥∥. Since the length of
t4⊥ is bigger than the length of t1⊥, the maximum distance of
∥t⊥ − tc⊥∥ is attained at t3⊥ and t4⊥. With the specific value
of ηθ and ηt, we compute the upper bound Q2 and lower
bound Q

2
of the true inliers at the center by

Q2 =
∑

1(|Rθ̇xi + t′c − yi∥ ≤ ξ + ηθ + ηt) (13a)

Q
2
=

∑
1(|Rθ̇xi + t′c − yi∥ ≤ ξ) (13b)

Bounds of Our Nested BnB. We extend the above parallel
BnB to our nested BnB as follows. Bounds in Eqs. (13a)
and (13b) of parallel BnB are with respect to both t⊥ and θ.
We extract the part only with respect to t⊥ for outer BnB,
obtaining the bounds

Q2,t⊥
=

∑
1(|Rθxi + t′c − yi∥ ≤ ξ + ηt) (14a)

Q
2,t⊥

=
∑

1(|Rθxi + t′c − yi∥ ≤ ξ) (14b)

We extract the part only with respect to θ for inner BnB,
obtaining the bounds

Q2,θ =
∑

1(|Rθ̇xi + t′c − yi∥ ≤ ξ + ηθ + ηt) (15a)

Q
2,θ

=
∑

1(|Rθ̇xi + t′c − yi∥ ≤ ξ + ηt) (15b)

5. Experiments
We first compare our method with state-of-the-art ap-

proaches for the pairwise registration task. We report ex-
perimental results on synthetic and real-world datasets in
Sections 5.1 and 5.2, respectively. Then we evaluate var-
ious methods for the multi-way registration task in Sec-
tion 5.3. We implement our method in C++, and conduct
experiments on a PC with a 3.70GHz CPU and an NVIDIA
GeForce RTX2060 GPU.
Methods to Compare. We denote our method based on
TRansformation DEcomposition by TR-DE. We compare it
with the state-of-the-art approaches introduced in Section 2:

• RANSAC-xk [4, 12]3: A classical method based on
RANSAC with xk iterations, including RANSAC-1k,
RANSAC-10k, and RANSAC-100k;

• PointDSC [4]: A deep learning-based method leverag-
ing the spatial consistency. We test the officially pro-
vided network pre-trained on 3DMatch dataset [37].

• GORE [26]: A guaranteed method that separately es-
timates rotation and translation based on BnB and ex-
haustive sampling, respectively.

• FGR [38]: A fast method that simultaneously com-
putes rotation and translation by robust cost function;

• TEASER [35]: A certifiable method that first estimates
rotation by translation-invariant feature and robust cost
function, and then translation by adaptive voting.

RANSAC-xk and PointDSC are non-deterministic due to
sampling uncertainty, i.e. their outputs on independent tri-
als with the same setup may be inconsistent. In contrast,
FGR, TEASER and GORE are deterministic.
Evaluation Metrics. Following [4, 10, 35], we evaluate the
algorithm performance based on 1) Rotation Error (RE), 2)
Translation Error (TE), 3) Success Rate (SR)4, and 4) F1-
score. The successful case with respect to SR represents
that RE and TE are lower than thresholds defined in [4].
F1 -score is the harmonic mean of precision and recall. We
use it to evaluate the quality of the identified inliers.

5.1. Comparison on Synthetic Dataset

Data Generation. Similar to [34, 26], we synthesize sev-
eral points within a unit cube, and treat them as the source
point cloud. We add zero-mean Gaussian noise whose stan-
dard deviation is 0.005. By moving the source point cloud
with a random transformation, we generate the target point
cloud. A pair of the original and moved points defines an
inlier correspondence. We contaminate inlier correspon-
dences by outliers generated by random transformations.
We vary the number of correspondences N and outlier ra-
tio ρ. Specifically, we conduct robustness comparisons by
varying ρ from 55% to 95% and fixing N as 3000. In ad-

3“k” represents 1000 in our context.
4SR is equivalent to Registration Recall (RR) used in [4, 10, 35]
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Figure 5. Robustness comparisons with respect to the outlier ratio.
Left: mean of RE. Right: mean of TE. The curves of TEASER,
GORE and our TR-DE are flat and difficult to visually distinguish,
demonstrating that they are all robust to outliers.

2000 2500 3000 3500 4000
No. of Correspondences

0

0.5

1

1.5

R
ot

at
io

n 
Er

ro
r

2000 2500 3000 3500 4000
No. of Correspondences

10-3

10-2

10-1

Tr
an

sl
at

io
n 

Er
ro

r

TR-DE (ours)
RANSAC-1k

RANSAC-10k
RANSAC-100k

PointDSC [4]
FGR [38]

GORE [26]
TEASER [35]

Figure 6. Accuracy comparisons with respect to the number of cor-
respondences. Left: mean of RE. Right: mean of TE.
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Figure 7. Efficiency comparison between our TR-DE and deter-
ministic methods with respect to the number of correspondences.

dition, we conduct accuracy and efficiency comparisons by
increasing N from 2000 to 4000 and fixing ρ as 55%.
Robustness. Under each outlier ratio ρ, we conduct 200 in-
dependent trials and reports the average result. As shown
in Figs. 5(a) and 5(b), the errors of a series of RANSAC in-
crease sharply as the outlier ratio grows. Even in the low
outlier ratio such as 65%, RANSAC-1k may lead to regis-
tration failure. Similar to RANSAC, PointDSC follows the
hypothesize-and-verify pipeline, and thus is prone to result
in incorrect registration from the outlier ratio of 65%. In
contrast, the deterministic methods such as GORE, TEASER
and our TR-DE provide low error under high outlier ratios.
An exception is that FGR fails to deal with the outlier ratios
higher than 85%.
Accuracy and Efficiency. Under each data size N , we
conduct 200 independent trials. As shown in Figs. 6(a)
and 6(b), in terms of accuracy, a series of RANSAC lead
to relatively low accuracy due to the noise of samples. The
accuracy of PointDSC is unsatisfactory since our synthetic

Inlier ratio: -score: -score: 

Inlier ratio: -score: -score: 

(a) Ground truth (b) RANSAC-1k [12] (c) TR-DE (ours)
Figure 8. Comparisons between RANSAC-1k and our TR-DE on
representative point cloud pairs from 3DMatch (first row) and
KITTI (second row). True positive, true negative and false pos-
itive are shown in green, red and blue, respectively.

dataset is different from the dataset used to train PointDSC.
For the deterministic methods, the accuracy of GORE and
FGR is lower than that of TEASER and our TR-DE. Com-
pared with TEASER, our TR-DE computes more accurate
translation but less accurate rotation. In the following, for
the methods with high accuracy, i.e. TEASER, GORE and
our TR-DE, we compare their efficiency. Figure 7 shows
that the run time of GORE and TEASER increase signifi-
cantly as the number of correspondences grows. In con-
trast, the efficiency of our method is less affected by the
number of correspondences. Particularly, when N grows
to 4000, the run time of TEASER and GORE are about 103

times that of TR-DE. Overall, our TR-DE achieves the best
efficiency among the deterministic methods while keeping
competitive accuracy.

5.2. Comparison on Real-world Datasets

We conduct comparisons on the indoor RGB-D
3DMatch [37], indoor low-overlap 3DLoMatch [17], and
outdoor large-scale KITTI [13] datasets. Figure 8 shows the
qualitative results on two representative point clouds from
3DMatch and KITTI.
3DMatch Dataset [37]. The test set of the 3DMatch dataset
which contains RGB-D scans from eight different scenes is
utilized in our comparisons. Following [35, 4], we down-
sample the dense point clouds with a 5 cm voxel grid filter
and set the inlier threshold to 10 cm. The thresholds for
successful registration are RE ≤ 10◦ and TE ≤ 30 cm [35].
Average RE and TE are computed only on the successfully
registered pairs [4, 10].

Following [35], we use 3DSmoothNet [14] to compute
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Table 1. Accuracy and efficiency comparison on 3DMatch
dataset [37] with 3DSmoothNet [14] descriptors following [35].

SR (%) RE (°) TE (cm) F1 (%) Time (s)
FGR [38] 73.26 2.51 7.45 - 0.03
TEASER [35] 91.99 2.01 6.29 87.59 0.13
RANSAC-1k [12] 68.02 3.17 9.28 70.97 0.05
RANSAC-10k 86.08 2.72 8.33 84.17 0.34
RANSAC-100k 92.05 2.50 7.71 87.62 2.59
PointDSC [4] 91.68 1.88 6.12 88.55 0.02
TR-DE (ours) 92.98 1.85 6.08 90.24 0.16

Table 2. Success rate on the 3DLoMatch dataset [17] with different
number of correspondences. “↑” represents the average increase
with respect to RANSAC.

5000 2500 1000 500 250 ↑
FCGF [11]

RANSAC [12] 35.7 34.9 33.4 31.3 24.4 -
PointDSC [4] 52.0 51.0 45.2 37.7 27.5 +10.74
TR-DE (ours) 49.5 50.4 48.4 43.4 34.3 +13.26

Predator [17]
RANSAC [12] 54.2 55.8 56.7 56.1 50.7 -
PointDSC [4] 61.5 60.20 58.5 55.4 50.4 +2.50
TR-DE (ours) 64.0 64.8 61.7 58.8 56.5 +6.46

local descriptors. The putative correspondences are gener-
ated by the nearest-neighbour search in the feature space.
As shown in Tab. 1, our method is compared with the state-
of-the-art methods including FGR, TEASER, RANSAC and
PointDSC. While FGR has the fastest computing speed, its
success rate is low. The performance of RANSAC-based
methods can be improved by increasing iteration times, but
the computation time is also increasing sharply. Compare to
these methods, our method attains the best results in terms
of SR, RE, TE and F1 -score with a low time consuming.
3DLoMatch Dataset [17]. We further report registration
results on the more challenging 3DLoMatch dataset (over-
lap ratio < 30%). Following [4, 17], we use FCGF [11]
and Predator [17] to generate putative correspondences.
We compare the success rates of registration by RANSAC,
PointDSC and our TR-DE. As shown in Tab. 2, regardless of
the registration methods, Predator has a better performance
in the low-overlap cases than FCGF. No matter utilizing
FCGF or Predator as descriptors, the proposed TR-DE im-
proves the SR with a large margin, which is 3 − 4% higher
than the improvement brought by PointDSC.
Outdoor KITTI Dataset [13]. Using the same data prepa-
ration strategy in [4, 17, 19], we compare these methods on
the outdoor LIDAR scans that are at least 10 m away from
each other. The inlier threshold is set to 60 cm. The thresh-
olds for successful registration are 5◦ for RE and 60 cm for
TE. We report the registration results on the dataset with
FCGF descriptors (see more results in the supplementary
material). As shown in Table 3, almost all methods have
satisfactory results. The reason is that the outlier ratio of
the input correspondences is low (about 58.7% on aver-
age). Nonetheless, our TR-DE outperforms other methods

Table 3. Registration results on the outdoor KITTI [13] dataset
using FCGF descriptors.

SR (%) RE (°) TE (cm) F1 (%) Time (s)
FGR [38] 96.22 0.37 22.03 - 2.61
TEASER [35] 95.5 0.33 22.38 85.77 31.46
RANSAC-1k [12] 97.12 0.48 23.37 84.26 0.22
RANSAC-10k 98.02 0.41 22.94 85.29 1.43
PointDSC [4] 97.84 0.33 20.99 85.29 0.31
TR-DE (ours) 98.2 0.38 18 85.99 3.01

Table 4. Multi-way registration comparison in terms of absolute
trajectory error (cm) on the Augmented ICL-NUIM [9] dataset.

Living1 Living2 Office1 Ofiice2 AVG
FGR [38] 20.43 23.27 13.14 15.49 18.09
RANSAC [12] 19.46 20.21 17.07 13.7 17.61
PointDSC [4] 19.82 23.56 17.91 13.53 18.71
TR-DE (ours) 19.33 14.44 11.4 11.63 14.2

in terms of SR, TE and F1-score. In addition, our method
is more efficient than TEASER.

5.3. Application in Multi-way Registration

The multi-way registration [38] is a task to obtain a
model of scene or object by registering multiple fragments.
It usually contains two steps: pairwise registration between
fragments and global registration by pose graph optimiza-
tion [18]. We show the application of our method in this
task on the Augmented ICL-NUIM dataset [9]. Follow-
ing [4, 10], we replace the pairwise registration steps in the
multi-way pipeline implemented in Open3D [39] with our
and some baseline methods. We first compute FCGF [11]
descriptors from the down-sampled point cloud fragments.
Then, we perform pairwise registration to compute aligned
fragment poses and optimize the poses with pose graph op-
timization. We use the absolute trajectory error (ATE) as the
evaluation metric. As shown in Tab. 4, our method achieves
lower ATE than other methods in all scenes, which implies
our better accuracy in practical application.

6. Conclusion
In this paper, we proposed a deterministic and efficient

point cloud registration method based on a novel transfor-
mation decomposition. We decompose 6 DOF of transfor-
mation into (2+1) DOF and (1+2) DOF. This decomposi-
tion reduces the non-linearity of 3-DOF rotation, and thus
improves the algorithm efficiency. Then based on branch
and bound, we sequentially search for (2+1) DOF and (1+2)
DOF. We extensively compare our method with state-of-
the-art approaches. our method is more accurate and robust
than the approaches that provide similar efficiency to ours.
Our method is more efficient than the approaches whose ac-
curacy and robustness are comparable to ours.
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