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Abstract

Observing that the 3D captioning task and the 3D
grounding task contain both shared and complementary in-
formation in nature, in this work, we propose a unified
framework to jointly solve these two distinct but closely re-
lated tasks in a synergistic fashion, which consists of both
shared task-agnostic modules and lightweight task-specific
modules. On one hand, the shared task-agnostic modules
aim to learn precise locations of objects, fine-grained at-
tribute features to characterize different objects, and com-
plex relations between objects, which benefit both caption-
ing and visual grounding. On the other hand, by casting
each of the two tasks as the proxy task of another one,
the lightweight task-specific modules solve the captioning
task and the grounding task respectively. Extensive ex-
periments and ablation study on three 3D vision and lan-
guage datasets demonstrate that our joint training frame-
work achieves significant performance gains for each indi-
vidual task and finally improves the state-of-the-art perfor-
mance for both captioning and grounding tasks.

1. Introduction
There is increasing research interest in the intersection

field between 3D visual understanding and natural language
processing, such as 3D dense captioning [9] and 3D visual
grounding [1, 7, 21, 50]. These two tasks push the advance
of the intersection field along different directions (i.e., from
vision to language versus from language to vision), and en-
couraging progress has been achieved by separately solving
each task. It still remains an open issue on whether it is pos-
sible to develop a unified framework to jointly solve the two
closely related tasks in a synergistic fashion.

We observe that the two 3D vision-language tasks con-
tain both shared and complementary information in nature,
and it is possible to enhance the performance of both tasks
if we treat one task as a proxy task of the other. On one
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hand, each of the two tasks can be decomposed into several
sub-tasks, and some of these sub-tasks share the common
objectives and network structures. For example, as shown
in the previous vision-language works [1,7,9,21,44,47,50]
on RGB-D scans, both 3D dense captioning and 3D vi-
sual grounding require: 1) a 3D object detector to detect
the salient object proposals in a 3D scene, 2) a relation
modeling module to model complex 3D relations among
these detected objects, and 3) a multi-modal learning mod-
ule to learn fused information from both visual features and
textual features to generate sentences or produce bounding
boxes based on each input sentence. On the other hand,
the opposite procedures are also used to separately solve
the two problems, namely, the captioning task is to gener-
ate a meaningful textual description from the detected boxes
(i.e., from vision to language), while the grounding task is
to locate the desired box by understanding a given textual
description (i.e., from language to vision).

Moreover, the 3D point clouds generated from RGB-D
scans often contain rich and complex relations among dif-
ferent objects, while the corresponding RGB data provides
more fine-grained attribute information, such as color, tex-
ture, and materials. Thus, the RGB-D scans intrinsically
contain rich and abundant attribute and relation information
for enhancing both 3D captioning and 3D grounding tasks.
However, we empirically observe that the 3D dense caption-
ing task is more object-oriented, which tends to learn more
attribute information of the target objects (i.e., the objects
of interest) in a scene and only the primary relationship be-
tween the target object and its surrounding objects. In con-
trast, the 3D visual grounding task is more relation-oriented,
which focuses more on the relations between objects and
distinguishes different objects (especially the objects from
the same class) based on their relations. Thus, it is desir-
able to develop a joint framework to unify both 3D dense
captioning and 3D visual grounding tasks and take advan-
tage of each other for improving the performance of both
tasks.

To this end, in this work, we propose a joint frame-
work by unifying the distinct but closely related 3D vision-
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language tasks of 3D dense captioning and 3D visual
grounding. Specifically, the proposed framework consists
of three main modules: (1) a 3D object detector, (2) an at-
tribute and relation-aware feature enhancement module, and
(3) a task-specific grounding or captioning head. Specifi-
cally, the 3D object detector and the feature enhancement
module are task-agnostic, which are designed for collab-
oratively supporting both captioning and grounding tasks.
The two modules output the object proposals as the initial
localization results of the potential objects in a scene, as
well as the improved features within the proposals by inte-
grating both attribute information from each object proposal
and the complex relations between multiple proposals. With
the strong task-agnostic modules, the task-specific caption-
ing head and grounding head are designed as lightweight
networks for dealing with each task, which consist of a
lightweight transformer-based module together with simple
preprocessing modules (i.e., the Query/Key/Value genera-
tion modules) and lightweight postprocessing modules (i.e.,
the word prediction or bounding box selection module). In
this way, the 3D captioning and 3D visual grounding tasks
can be cast as the proxy task of each other. In other words,
the more object-oriented captioning task can provide more
attribute information to potentially improve the grounding
performance, while the more relation-oriented grounding
task can help improve the captioning results by enhancing
the captioning task with more relation information. More-
over, our joint framework also inspires the insights of the
design of each individual captioning network and ground-
ing network.

The contribution of this work is two-fold: (1) By an-
alyzing both 3D dense captioning and 3D visual ground-
ing tasks, we propose a unified framework to jointly solve
the two distinct but closely related tasks by using our
simple and strong network structure, which consists of a
task-agnostic module with a 3D object detector and an
attribute and relation-aware feature enhancement module,
and two lightweight task-specific modules (i.e., a caption-
ing head and a grounding head). (2) Extensive exper-
iments conducted on three benchmark datasets ScanRe-
fer [7], Scan2Cap [9], and Nr3D dataset [1] demonstrate
our joint framework achieves the state-of-the-art results for
both 3D dense captioning and 3D visual grounding tasks.

2. Related Work
2D Vision and Language tasks. Deep learning technolo-
gies have been extensively studied in various 2D vision and
language tasks, such as visual grounding [15, 26, 35, 45].
image captioning & dense captioning [2, 11, 17, 18, 42], vi-
sual question answering [2, 4, 43] and text-to-image gen-
eration [25]. These impactful research problems advance
the intersection research field between computer vision and
natural language processing. With the rapid development of

deep learning, researchers introduced several collaborative
methods (e.g., speaker-listener models [3, 46]) to solve var-
ious 2D vision and language tasks jointly. However, these
models focus on 2D image-based tasks, while our method
focuses on RGB-D-based tasks, where different types of
data to be handled in our work require different network
design strategies. Specifically, we propose a carefully de-
signed task-agnostic feature enhancement module and the
lightweight task-specific captioning and grounding heads,
which all build upon the transformer architecture. Recently,
several joint frameworks [8,23,24,27,41,48] focus on learn-
ing more generalizable image-text representations through
a cumbersome model (e.g., VilBERT [23]) by using abun-
dant and diverse 2D vision and language datasets. By con-
trast, based on in-depth analysis of the intrinsic properties of
RGB-D scans and the characteristics of both 3D captioning
and grounding tasks, our carefully designed joint learning
framework with lightweight modules can effectively solve
both tasks in a synergistic fashion without relying on a huge
amount of paired training data.
3D Dense Captioning and Visual Grounding. Deep
learning in 3D data has attracted a great deal of inter-
est [10, 13, 20, 22, 32–34, 39, 40, 49, 51]. Recently, some
dense captioning and visual grounding tasks tailored to 3D
data are proposed. For example, some researches [9] pro-
posed the 3D dense captioning methods and achieved im-
pressive results by explicitly modeling the relation between
different objects [9]. However, the dense captioning task is
more object-oriented, which often focuses on the precise at-
tribute descriptions based on the object appearance and thus
the complex 3D geometrical relations among different ob-
jects might be ignored (even though they are intrinsically
contained in the 3D data). As a result, the generated cap-
tions may be monotony.

Except for 3D dense captioning, visual grounding on 3D
point clouds [1, 7, 14, 16, 44, 47, 50] has also attracted in-
creasing research interest. Chen et al. [7] introduced the
ScanRefer dataset for localizing objects by using natural
language descriptions. Most recent 3D visual grounding
methods [7, 16, 47] are composed of two stages. In the
first stage, a 3D object detector or a panoptic segmentation
model is applied to generate the target object proposals from
the input scenes. In the second stage, a referring module is
used to match the most relevant regions from the selected
object proposals and the query sentences. These methods
mainly focus on how to model the complex relations based
on the object detection results, and pay less attention to the
appearance features that characterize different objects, es-
pecially the objects within the same class. In other words,
the current grounding methods are more relation-oriented.

Our joint framework takes advantage of the overlooked
attribute information in the grounding task through the help
of the more object-oriented captioning task, and employs
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the relatively less explored relation information in the cap-
tioning task to increase the variety of generated sentences
with the help of the more relation-oriented grounding task.

3. Methodology
In this section, we describe the technical details of our

framework. As shown in Fig. 1(a), our framework con-
sists of three modules: 1) the object detection module, 2)
the attribute and relation-aware feature enhancement mod-
ule, and 3) the task-specific captioning head and grounding
head. The object detection module and feature enhance-
ment module are task-agnostic and shared by both tasks.
The captioning and grounding heads are task-specific with
the lightweight transformer-based network structures for
the captioning and grounding tasks, respectively. Specifi-
cally, the point clouds are encoded by the VoteNet [31] ob-
ject detection module with an improved bounding box mod-
eling method to more precisely locate the salient objects
and produce the initial object proposals. Then the proposal
features are enhanced through a task-agnostic attribute and
relation-aware feature enhancement module to generate the
enhanced object proposals. The enhanced object proposals
are then fed into the captioning head and grounding heading
for the dense captioning task and the visual grounding task,
respectively, and generate the final result for each task.

3.1. Detection Module

The input of the detection module is the point cloud
P ∈ RN×(3+K), which represents the whole 3D scene by
N 3D coordinates together with K-dimensional auxiliary
features. Here, we adopt the same 132-dimensional aux-
iliary features as in [7, 9], which include the pretrained
128-dimensional multi-view appearance features [7], 3-
dimensional normals, and 1-dimensional height of each
point above the ground.

We use VoteNet [31] as our detection module. Since
the success of both captioning and grounding tasks relies
on precise localization of initial object proposals together
with discriminative features, we borrow the idea from the
anchor-free FCOS method [36] to generate the initial ob-
ject proposals by predicting the distance between the voting
point and each side of the object proposal.

3.2. Attribute and Relation-aware Feature En-
hancement Module

The initial object proposal features produced by the de-
tection module are discriminative with respect to different
object classes, thanks to the detection-related loss. How-
ever, they are unaware of the fine-grained object attributes
(e.g., object positions, colors, and materials), especially for
the within-class objects, and the complex relations among
different objects, which are the key to the success of both
3D captioning and 3D grounding tasks. Hence, we further

propose an attribute and relation-aware feature enhance-
ment module to strengthen the features for each proposal
and better model the relations between proposals. Moti-
vated by the Transformer encoder structure [37], we model
the proposal feature enhancement module as two multi-head
self-attention layers with additional attribute encoding mod-
ule and relation encoding module, where the attribute or re-
lation encoding module is composed of several fully con-
nected layers.

The attribute encoding module. To aggregate the at-
tribute features and the initial object features, we encode
the auxiliary bounding box attribute related features (i.e., a
155-dimensional feature via a concatenation operation on
the 27-dimensional box center and corner coordinates, and
the 128-dimensional multi-view RGB features that poten-
tially contain the attribute information such as colors and
materials) into a 128-dimensional attribute embedding by
using a fully connected layer. The attribute embedding has
the same dimension as the initial object proposal features. It
can then be added to the initial proposal features to enhance
the initial object features with more attribute information.

The relation encoding module. Motivated by [50], we
also encode the pairwise distances between any two object
proposals to capture the complex object relations. Different
from [50], we encode not only the (inverse) relative Eu-
clidean distances (i.e., Dist ∈ RM×M×1) but also three
pairwise distances between any two centers of the initial
object proposals along x, y, z direction (i.e., Dx, Dy , Dz

∈ RM×M×1) to better capture object relations along dif-
ferent directions, where M is the number of initial object
proposals. All four spatial proximity matrices (Dx, Dy ,
Dz , and Dist) are then aggregated along the channel di-
mension and fed into fully connected layers to produce the
relation embeddings with the channel dimension H matches
the number of attention heads (i.e., H = 4 in our implemen-
tation) in the multi-head attention module. Each relation
embedding (with the size of M × M × 1) is then added
with the similarity matrix (i.e., the so-called attention map)
generated from each head of the multi-head self-attention
module.

Note the task-agnostic 3D object detector and the feature
enhancement module can produce more accurate localiza-
tion results and improved object features for both captioning
and grounding tasks, and thus we can use more lightweight
task-specific captioning head and grounding head in our
framework which are simpler than the state-of-the-art meth-
ods [9, 50]. For both task-specific heads, we adopt similar
lightweight 1-layer multi-head cross-attention-based net-
work structures together with simple preprocessing mod-
ules (i.e., Query/Key/Value generation as shown in Fig. 2)
and postprocessing modules (i.e., word prediction or BBox
selection).
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Figure 1. (a) The overview of our framework. (b) The attribute and relation aware feature enhancement module. (c) The captioning head
within our framework (d) The grounding head within our framework. “FC” means the fully connected layer.
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Figure 2. The Query, Key & Value generation processes for both
captioning head and grounding head. For the captioning head, we
firstly choose the object of interest to produce the target object pro-
posal. We concatenate the target proposal feature, the tokenized
word feature from the previous word and the hidden feature recur-
rently output by the multi-head cross-attention module, and use
fully connected layers to generate the Query. We select K nearest
neighbors of the target object proposal as the Key and Value. For
the grounding head, the textual input is firstly tokenized and fed
into a GRU cell to produce the the Key and Value of the multi-
head cross-attention module. The Query for the grounding task is
the enhanced object proposal features (see Fig. 1(d)).

3.3. Captioning Head

The 3D dense captioning task is to generate descriptions
for each detected bounding box from the input point cloud,
which is more object-oriented. Thus, the objectness (for
accurately locating each object), the attribute information
(for reasonably describing the attributes of objects), and the
primary context (for further describing the key relations be-

tween each object with other objects) of all the objects in
a scene are of great importance. Since the object detec-
tor and the feature enhancement module can provide rich
object class information, attribute features, and global con-
text features, we simply design our captioning head with
a 1-layer multi-head cross-attention network structure for
effective message passing between the enhanced features
from the target object proposal and all other initial object
proposals, which will focus more on the primary context
features.

For generating the query (Q) input of the multi-head
cross-attention module, we firstly select the target object
proposal and then encode the corresponding object features
with a fully connected layer. During the training stage, we
select the object proposal with the highest IoU score with
the ground-truth bounding box as the query object. In the
testing stage, we use all object proposals in the scene (after
the Non-Maximum Suppression (NMS) process) in a one-
by-one fashion as the query object. For the target object
proposal, we follow most of the captioning methods [9] to
use a recurrent network structure to progressively generate
each word of the caption. Then, we recurrently aggregate
the hidden feature output by the multi-head cross-attention
module and the tokenized word feature of the previous word
(which is the ground-truth word in the training stage, and
the newly predicted word in the testing stage) with the cur-
rent query object features. The fused features form the final
generated query input.

In the recursive query generation process, to alleviate
the exposure bias [6] in the sequence generation task be-
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tween the training stage (which uses the ground-truth word)
and the testing stage (which uses the previously predicted
word), we randomly use the autoregressive strategy dur-
ing training. In details, we randomly replace 10% of the
ground-truth word tokens with the predicted word tokens as
the input word feature during the training process.

In the key (K) and value (V) generation module, we use
the k-NN strategy to select the top k object proposals that
are located closest to the target proposal based on their cen-
ter distance in the 3D coordinate space, which filters out
the less related objects in the scene. The selected object
proposals are used as the key and value for the multi-head
cross-attention module. In our experiment, k is empirically
set as 20. This strategy is specially designed for the cap-
tioning task, because it mainly cares about the most obvi-
ous (or primary) relations between the target object and its
surrounding objects and the rest of the relation information
might be less important to the captioning task.

Finally, the multi-head cross-attention module is fol-
lowed by a fully connected layer and a simple word pre-
diction module to predict each word of the caption in a one-
by-one fashion.

3.4. Grounding Head

For the 3D visual grounding task, the inputs include the
3D point clouds of a scene and the text-form language de-
scriptions of one of the objects in the scene, and the task
is to locate the object of interest based on the language de-
scription. Since the task-agnostic 3D object detector and
the feature enhancement module already capture the ob-
ject attributes and the complex relations among objects in a
scene, the grounding head mainly focuses on matching be-
tween the given language descriptions and the detected ob-
ject proposals. The grounding head in our method is more
lightweight by simply using a 1-layer multi-head cross-
attention module instead of multiple stacked cross-attention
modules as used in [50] and [14].

The key (K) and value (V) inputs are generated based
on the input language descriptions. Specifically, we use the
similar language encoder as in ScanRefer [7]. The input
language is firstly encoded by using a pretrained Glove [30]
module, and then input to a GRU cell. The output word
feature of the GRU cell forms the key (K) and value (V) in-
puts. Moreover, a global language feature is also generated
from the GRU cell to predict the subject category of each
sentence. The object proposals are used as the query (Q)
input. By using the multi-head cross-attention mechanism
between the language descriptions (K & V) and the object
proposals (Q), the relationship between the sentence and the
detected proposals is well captured.

To fully explore the contextual relations among the given
textual description, we follow [50] to use two data augmen-
tation strategies for both modalities (e.g., randomly erase

some words or change the order of the input text for the text
input, and randomly copy some object proposals from other
scene as the negative samples for enhancing object propos-
als), please refer to [50] for more details about the two data
augmentation strategies.

Finally, a grounding classifier is used to generate the
confidence score of each object proposal, and the proposal
with the highest prediction score is considered as the final
grounding result.

3.5. Training details

The loss function of our framework is a combination of
the detection loss Ldetection, the grounding loss Lgrounding and
the captioning loss Lcaptioning.

The object detection loss is similar to that used in Qi et
al. [31] for the ScanNet dataset [12], where Ldetection =
10Lvote-reg + Lobjn-cls + Lsem-cls + 200Lboundary-reg, except
that we replace the bounding box classification loss Lbox-cls
and the regression loss Lbox-reg in [7, 31] with the boundary
regression loss Lboundary-reg [36]. For the visual grounding
task, we apply the similar loss function as used in ScanRe-
fer [7], which is a combination of the localization loss Lloc
for visual grounding and an auxiliary language-to-object
classification loss Lcls to enhance the subject classification
of the input sentence, and Lgrounding = Lloc + Lcls. For the
dense captioning task, we input the ground-truth words (or
the predicted words with a probability of 10%) sequentially
and Lcaptioning is the average cross-entropy loss over all gen-
erated words. The final loss is a linear combination of these
loss terms, i.e., L = Ldetection +0.3Lgrounding +0.2Lcaptioning,
where the trade-off parameters are empirically set for bal-
ancing different loss terms.

4. Experiments
4.1. Datasets and implementation details

Visual Grounding Dataset: We use the ScanRefer [7]
dataset to evaluate our method for the visual grounding
task. The ScanRefer dataset contains 51, 583 textual de-
scriptions about 11, 046 objects from 800 scenes. The over-
all accuracy and the accuracies on both“unique” and “mul-
tiple” subsets are reported. We label each grounding data
as “unique” if it only contains a single object from its class
in the scene, otherwise it will be labeled as “multiple”. For
this dataset, we use Acc@0.25IoU and Acc@0.5IoU as our
evaluation metrics. We also compare our method with the
baseline methods on both the validation set and the online
test set available at the ScanRefer’s benchmark website1.

Visual Captioning Datasets: Scan2Cap [9] is a dense
captioning dataset for 3D scenes. The descriptions that are
longer than 30 tokens in the ScanRefer dataset are truncated
and two special tokens [SOS] and [EOS] are added to

1http://kaldir.vc.in.tum.de/scanrefer_benchmark
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Table 1. Comparison of the visual grounding results from different methods on the ScanRefer [7] dataset. We report the percentage of the
correctly predicted bounding boxes whose IoU scores with the ground-truth boxes are larger than 0.25 and 0.5, respectively. The results on
both “unique” and “multiple” subsets are also reported. [*]: Note the InstanceRefer [47] method filters the predicted 3D proposals based
on the object class prediction results such that this method only selects the target object proposal from the proposals in the same class,
which simplifies the 3D visual grounding problem. This strategy is not adopted in our work.

Unique Multiple Overall
Detector Data Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

Validation set
ScanRefer [7] VoteNet 3D Only 67.64 46.19 32.06 21.26 38.97 26.10
InstanceRefer [47]* PointGroup 3D Only 77.13 66.40 28.83 22.92 38.20 31.35
Non-SAT [44] VoteNet 3D Only 68.48 47.38 31.81 21.34 38.92 26.40
3DVG-Transformer [50] VoteNet 3D Only 77.16 58.47 38.38 28.70 45.90 34.47
Ours VoteNet 3D Only 78.75 61.30 40.13 30.08 47.62 36.14
ScanRefer [7] VoteNet 2D + 3D 76.33 53.51 32.73 21.11 41.19 27.40
TGNN [16] 3D-UNet 2D + 3D 68.61 56.80 29.84 23.18 37.37 29.70
SAT [44] VoteNet 2D + 3D 73.21 50.83 37.64 25.16 44.54 30.14
InstanceRefer [47]* PointGroup 2D + 3D 75.72 64.66 29.41 22.99 38.40 31.08
3DVG-Transformer [50] VoteNet 2D + 3D 81.93 60.64 39.30 28.42 47.57 34.67
Ours VoteNet 2D + 3D 83.47 64.34 41.39 30.82 49.56 37.33

Online Benchmark
ScanRefer [7] VoteNet 2D + 3D 68.59 43.53 34.88 20.97 42.44 26.03
TGNN [16] 3D-UNet 2D + 3D 68.34 58.94 33.12 25.26 41.02 32.81
InstanceRefer [47]* PointGroup 2D + 3D 77.82 66.69 34.57 26.88 44.27 35.80
3DVG-Transformer [50] VoteNet 2D + 3D 75.76 55.15 42.24 29.33 49.76 35.12
Ours VoteNet 2D + 3D 76.75 60.59 43.89 31.17 51.26 37.76

Table 2. Comparison of the 3D dense captioning results from different methods on the Scan2Cap [9] validation set. We average the scores
from the conventional captioning metrics based on the predicted bounding boxes whose IoU scores with the ground-truth boxes are larger
than 0.25 and 0.5, respectively.

Detector Data C@0.25 B-4@0.25 M@0.25 R@0.25 C@0.5 B-4@0.5 M@0.5 R@0.5
Scan2Cap [9] VoteNet 3D Only 53.73 34.25 26.14 54.95 35.20 22.36 21.44 43.57
Ours VoteNet 3D Only 60.86 39.67 27.45 59.02 47.68 31.53 24.28 51.08
VoteNetRetr [31] VoteNet 2D + 3D 15.12 18.09 19.93 38.99 10.18 13.38 17.14 33.22
Scan2Cap [9] VoteNet 2D + 3D 56.82 34.18 26.29 55.27 39.08 23.32 21.97 44.48
Ours VoteNet 2D + 3D 64.70 40.17 27.66 59.23 49.48 31.03 24.22 50.80

indicate the start and end of the description, and thus the
textual descriptions for ScanRefer and Scan2Cap datasets
are different.

As a sub-dataset of ReferIt3D [1], Nr3D is also built
based on ScanNet with additional textual descriptions, and
it contains 41, 503 samples collected by ReferItGame. We
use the same metric as used for performance evaluation on
the Scan2Cap dataset.

Specifically, the metric for performance evaluation on
these two 3D captioning datasets combines the standard
image captioning metrics under different IoU scores be-
tween the predicted bounding boxes and the target bound-
ing boxes. The combined metric is defined as m@kIoU =
1
P

∑P
i=0 miui , where ui ∈ {0, 1} is set to 1 if the detec-

tion IoU score for the i-th bounding box is greater than k,
and 0 otherwise. We use mi to represent the captioning
metrics such as CiDEr [38], BLEU [28], METEOR [5] and
ROUGE-L [19], which are respectively abbreviated as C,

B-4, M and R in the following tables. P is the number of
ground-truth or detected object bounding boxes.

Implementation Details. We follow [50] to use 8 sen-
tences for each scene from both datasets when training our
framework. Our experiment is carried out on the machine
with a single NVIDIA 11GB 2080Ti GPU and it tasks 200
epochs to train our framework on both ScanRefer [7] and
Scan2Cap [9] datasets with a batch size of 10 in each it-
eration (i.e., there are 80 sentences from 10 point clouds).
We apply the cosine learning rate decay strategy with the
AdamW optimizer and a weight decay factor of 1e-5 to train
our method. We empirically set the initial learning rate as
2e-3 for the detector, and 5e-4 for other modules of our
framework (i.e., the feature enhancement module and two
task-specific heads). In addition, the captioning task with
the cross-entropy loss is prone to overfitting, so we only
add the captioning loss during the last 50 epochs.
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4.2. Comparison with the state-of-the-art methods

Following the works ScanRefer [7] and Scan2Cap [9],
we report the results under both “3D Only” and “2D +
3D” settings according to whether the auxiliary features are
used. Under the “3D Only” setting, we use “xyz + RGB +
normals” as the auxiliary features. Under the “2D + 3D”
setting, the auxiliary features contain “xyz + multiviews +
normals”, where “multiviews” means multiview image fea-
tures from a pretrained ENet [29], and “normals” means the
normal vectors from point clouds.

In Table 1 and Table 2, we compare the dense cap-
tioning and visual grounding results of our framework
with several state-of-the-art methods on both ScanRefer [7]
and Scan2Cap [9] datasets. Specifically, on the Scan-
Refer dataset, we compare our method with the 3D in-
stance segmentation-based methods TGNN [16] and In-
stanceRefer [47] and the 3D detection-based methods in-
cluding ScanRefer [7] and 3DVG-Transformer [50]. On
the Scan2Cap dataset, we compare our method with the
state-of-the-art 3D detection-based method Scan2Cap [9]
and VoteNetRetr [31].

From Table 1, we observe that our method outperforms
the baseline methods for the visual grounding task. Note
that we use a simpler network structure when compared
with the state-of-the-art method 3DVG-Transformer [50],
so the results validate that our joint learning framework
can benefit the grounding task with only a lightweight
grounding head. Specifically, in terms of Acc@0.25 and
Acc@0.5 metrics, our method achieves around 1.9% and
2.6% improvements in the “overall” case when compared
with 3DVG-Transformer [50] on the validation set under
the “2D+3D” setting. When compared with other detection-
based methods, our method achieves more improvement
on the “Unique” subset, possibly because the attribute in-
formation of the objects plays a more important role in
the “Unique” subset when there is no confusing objects
from the same category in the scene. The results also ver-
ify that the object-oriented captioning task enhances the
grounding performance by providing more attribute infor-
mation. Note that the baseline methods InstanceRefer [47]
and TGNN [16] use the extra instance segmentation masks
for generating 3D proposals, while the InstanceRefer [47]
method further filters the instances based on the semantic
prediction results, namely, it only retains the instances from
the same predicted class for generating the visual grounding
results. Possibly due to these two aspects, the InstanceRe-
fer [47] method achieve good results in the “Unique” subset.
In contrast to [16,47], our work only relies on the detection
results, and it still outperforms both methods in both “Mul-
tiple” and “Overall” cases.

When compared with the baseline method “Scan2Cap”,
from the results in Table 2, we observe that our joint learn-
ing framework using a simple feature enhancement module

and a lightweight captioning head achieves significant per-
formance improvement for the captioning task. Under the
“2D+3D” setting, our method achieves remarkable perfor-
mance improvement of 10.4%, 7.71% and 6.32% in terms
of C@0.5IoU, B-4@0.5IoU and R@0.5IoU, respectively.
For this task, the improvement comes from both network
structure design (e.g., the attribute and relation aware fea-
ture enhancement module, and the lightweight captioning
head) and the joint training strategy. The contribution of
each module will be discussed in the ablation study below.

4.3. Ablation Study

Effectiveness of the feature enhancement module and
the joint training strategy. To evaluate the effectiveness
of the proposed task-agnostic feature enhancement mod-
ule as well as the joint training strategy, we conduct the
ablation study and report the corresponding results in Ta-
ble 3. Without using the joint training strategy, the alterna-
tive method “w/o Grounding Head” (resp., “w/o Captioning
Head”) means we train the two separate networks consist-
ing of two task-agnostic modules and the captioning head
(resp., grounding head) for the 3D dense captioning task
(resp., the visual grounding task). “w/o Feature Enhance-
ment” means we remove the “attribute & relation aware fea-
ture enhancement” module in our joint learning framework.
For both dense captioning and the visual grounding tasks,
our complete 3DJCG method based on the default train-
ing data (i.e., from both Scan2Cap and ScanRefer datasets)
outperforms those alternative methods, which indicate both
strategies contribute to the final performance improvement
to certain degree.
Does performance improvement come from more train-
ing data? Our joint training framework uses both the cap-
tioning and grounding training data, in which the only dif-
ference is the textual descriptions (i.e., the descriptions used
for the grounding task are relatively longer or with more
complex relations, while the dense captions are shorter tex-
tual descriptions focusing more on the object class and the
corresponding attributes). Hence, we conduct the experi-
ments to verify whether the performance improvement is
due to the utilization of more training data (i.e., more tex-
tual descriptions from both tasks).

In Table 3 (a) and (b), 3DJCG (“Captioning Data Only”
(resp., 3DJCG (“Grounding Data Only”)) indicates that we
only use the 3D captioning dataset Scan2Cap [9] (resp., the
3D visual grounding dataset ScanRefer [7]) when training
our joint learning framework including both captioning and
grounding heads and the two task-agnostic modules. Note
both Scan2Cap and ScanRefer datasets can be readily used
as the training data for these two tasks. By default, we use
both datasets as the default training data when training our
joint learning framework.

The results show that our 3DJCG framework using “Cap-
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Table 3. Comparison of the visual grounding results under the “2D+3D” setting and the dense captioning results based on the correctly
predicted bounding boxes whose IoU scores with the ground-truth boxes are larger than 0.5. In the “Network Modules” column, for better
presentation, we label our detector, the feature enhancement module, the captioning head and the grounding head as “DE”, “FE”, “CH”
and “GH”, respectively.

(a) The 3D dense captioning results on the dataset Scan2Cap [9]

Training Dataset(s) Network Modules Dense Captioning Results
Scan2Cap ScanRefer DE FE CH GH B-4@0.5 C@0.5 R@0.5 M@0.5

3DJCG (w/o Grounding Head) / 3DJCG-C ✓ ✓ ✓ ✓ 26.24 45.04 46.69 23.27
3DJCG (w/o Feature Enhancement) ✓ ✓ ✓ ✓ ✓ 29.08 47.67 49.58 23.78
3DJCG (Captioning Data Only) ✓ ✓ ✓ ✓ ✓ 30.40 47.29 50.29 23.91
3DJCG (Default Training Data) ✓ ✓ ✓ ✓ ✓ ✓ 31.03 49.48 50.80 24.22

(b) The 3D visual grounding results on the dataset ScanRefer [7]

Training Dataset(s) Network Modules Visual Grounding Results
Scan2Cap ScanRefer DE FE CH GH Unique@0.5 Multiple@0.5 Overall@0.5

3DJCG (w/o Captioning Head) / 3DJCG-G ✓ ✓ ✓ ✓ 62.60 30.48 36.72
3DJCG (w/o Feature Enhancement) ✓ ✓ ✓ ✓ ✓ 63.20 28.36 35.12
3DJCG (Grounding Data Only) ✓ ✓ ✓ ✓ ✓ 64.50 30.29 36.93
3DJCG (Default Training Data) ✓ ✓ ✓ ✓ ✓ ✓ 64.34 30.82 37.33

Table 4. The dense captioning results of different methods and dif-
ferent training strategies on the Nr3D dataset from ReferIt3D [1].

B-4@0.5 C@0.5 R@0.5 M@0.5
Scan2Cap [9] 17.24 27.47 49.06 21.80
3DJCG-C (From Scratch) 20.45 33.03 51.73 23.05
3DJCG-C* (Finetune) 22.82 38.06 52.99 23.77

tioning Data Only” (resp., “Grounding Data Only”) gen-
erally improves the performance for the captioning task
(resp., the grounding task) when compared to the alternative
method 3DJCG (“w/o Grounding Head”) (resp., 3DJCG
(“w/o Captioning Head”)), especially for the dense caption-
ing task. The results validate that the performance gains
come from both strategies (i.e., our network design and
utilization of the additional training data). Moreover, the
improved results from our joint learning framework under
“Captioning Data Only” and “Grounding Data Only” set-
tings also verify that our joint framework can also inspire
the network design of each individual task.
Experiments on the Nr3D [1] dataset. We also take
the dense captioning task on the Nr3D dataset as an ex-
ample to evaluate our proposed framework when training
from scratch or using the fine-tuning strategy. “3DJCG-C
(From Scratch)” indicates that we train our 3DJCG-C net-
work from scratch without using any pre-training strate-
gies. “3DJCG-C* (Finetune)” indicates we fine-tune the
pretrained model based on the Nr3D dataset. Note the
pretrained model is learnt based on both ScanRefer and
Scan2Cap datasets, and we also remove “Grounding Head”
before performing the finetune process. We also list the re-
sults of the baseline method Scan2Cap trained from scratch
based on the Nr3D dataset. As shown in Table 4, our

method “3DJCG-C (From Scratch)” outperforms the base-
line method “Scan2Cap [9]”, which further verifies the ef-
fectiveness of our newly designed network structure. We
also observe that our “3DJCG-C* (Finetune)” method fur-
ther improves “3DJCG-C (From Scratch)”, which demon-
strates that the results of our framework could also be
boosted by using the fine-tuning strategy.

5. Conclusion and Future Work

Observing the shared and complementary properties of
two different but closely related tasks 3D dense captioning
and 3D visual grounding, we propose a unified framework
to jointly solve the two tasks in a synergistic manner. In
our framework, the task-agnostic modules are responsible
for the precise object localization, the enhancement of the
geometry and the fine-grained attribute features, and fully
exploration of the complex geometrical relations between
objects in a 3D scene, while the task-specific lightweight
captioning head and grounding head solve the two tasks, re-
spectively. The experimental results validate the effective-
ness of the proposed framework for both tasks. While the
joint framework improves the performance of both tasks,
the performance improvement for the visual grounding task
is not as significant as that for the dense captioning task. In
our future work, we will develop more advanced joint train-
ing framework to further improve the 3D visual grounding
performance.
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