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Abstract

In this supplementary material, we provide i) details
of PnP/RANSAC, ii) detailed evaluation results on YCB-
V [17], iii) results on LM-O [1] and YCB-V [17] under
BOP [5] setup, and iv) qualitative results for LM [2], LM-
O [1] and YCB-V [17].

A. Details of PnP/RANSAC

The implementation and hyper-parameters of
PnP/RANSAC follow the state-of-the-art method
CDPN [11] for all our experiments. Specifically, we
leverage EPnP [9] together with 100 RANSAC iterations
using a reprojection error threshold of 3 and confidence
threshold of 0.99.

B. Detailed Results of YCB-V

We present detailed evaluation results on YCB-V [17]
for our GDR-Net in Tab. B.1 and Tab. B.2 and com-
pare them to state-of-the-art approaches w.r.t. ADD(-S) and
AUC of ADD-S/ADD(-S), respectively. As for methods
trained simultaneously for all objects, our GDR-Net clearly
outperforms all other state-of-the-art methods. Further-
more, when GDR-Net is trained separately for each indi-
vidual object, we can even surpass refinement-based meth-
ods such as DeepIM [10] w.r.t. AUC of ADD-S/ADD(-S)
metric.

C. BOP Results on LM-O and YCB-V

In the main paper, we have presented the results on LM-
O and YCB-V following the most commonly used evalua-
tion protocol following another learned PnP [6] and many
other works such as [17, 13, 14, 18, 10, 8]. Nevertheless, the
evaluation protocol of BOP Challenge [4, 5] has recently

become more popular. Therefore, we also present the re-
sults of our GDR-Net on LM-O and YCB-V under the BOP
setup.

The BOP evaluation protocol differs from the former in
three main aspects as follows. i) No real data should be
used for LM-O, thus we only employ the provided syn-
thetic pbr data [5] for training on LM-O; ii) The num-
ber of test images for both LM-O and YCB-V is smaller,
i.e., they only contains a subset of the original test images;
iii) The evaluation metric is different. Thereby, for each
dataset, an Average Recall (AR) score is reported by calcu-
lating the mean Average Recall of three different metrics:
AR = (ARMSPD + ARMSSD + ARVSD)/3. Please refer to [5]
for the detailed explanation of these metrics.

Tab. C.3 presents the results of our GDR-Net on LM-
O and YCB-V compared with other state-of-the-art RGB-
based methods under BOP setup. Since our method is
built on top of CDPN [11], we follow [11] to train one
network per object for the sake of fairness. We utilize
the publicly available detections from FCOS [16] 1 fol-
lowing CDPNv2 [11]. We can see that our GDR-Net
significantly outperforms all other state-of-the-art methods
without refinement. It is worth noting that most of these
top-performing methods [12, 3, 11] rely on the indirect
PnP/RANSAC solver, while ours directly regresses the 6D
object pose leveraging geometric guidance, which again
demonstrates the effectiveness of our proposed learning-
based Patch-PnP. Our GDR-Net even outperforms the state-
of-the-art refinement-based method CosyPose [8] on LM-
O. On YCB-V, ours is worse than CosyPose but far better
than all other methods without refinement. Nevertheless,
our method runs much faster than CosyPose as no refine-
ment step is needed. Moreover, our method can be com-
bined with an additional refiner such as CosyPose to achieve
better results.

1https://github.com/LZGMatrix/BOP19 CDPN 2019ICCV
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Method PoseCNN [17] SegDriven [7] Single-Stage [6] GDR-Net (Ours)
P.E. 1 1 N 1 N

002 master chef can 3.6 33.0 - 51.7 41.5
003 cracker box 25.1 44.6 - 45.1 83.2
004 sugar box 40.3 75.6 - 83.9 91.5
005 tomato soup can 25.5 40.8 - 48.3 65.9
006 mustard bottle 61.9 70.6 - 92.2 90.2
007 tuna fish can 11.4 18.1 - 29.1 44.2
008 pudding box 14.5 12.2 - 39.7 2.8
009 gelatin box 12.1 59.4 - 34.6 61.7
010 potted meat can 18.9 33.3 - 36.3 64.9
011 banana 30.3 16.6 - 60.2 64.1
019 pitcher base 15.6 90.0 - 96.3 99.0
021 bleach cleanser 21.2 70.9 - 73.0 73.8
024 bowl∗ 12.1 30.5 - 35.0 37.7
025 mug 5.2 40.7 - 39.3 61.5
035 power drill 29.9 63.5 - 57.7 78.5
036 wood block∗ 10.7 27.7 - 50.8 59.5
037 scissors 2.2 17.1 - 6.6 3.9
040 large marker 3.4 4.8 - 13.7 7.4
051 large clamp∗ 28.5 25.6 - 40.3 69.8
052 extra large clamp∗ 19.6 8.8 - 35.3 90.0
061 foam brick∗ 54.5 34.7 - 61.1 71.9
MEAN 21.3 39.0 53.9 49.1 60.1

Table B.1: Detailed results on YCB-V [17] w.r.t. ADD(-S). P.E. means whether the method is trained with 1 pose estimator
for the whole dataset or 1 per object (N objects in total). (∗) denotes symmetric objects and “-” denotes unavailable results.

D. Qualitative Results
We demonstrated additional qualitative results for

LM [2], LM-O [1], and YCB-V [17] in Fig. D.1, Fig. D.2
and Fig. D.3, respectively. Thereby, in Fig. D.1, we visu-
alize the 6D pose by overlaying the image with the corre-
sponding transformed 3D bounding box. In Fig. D.2 and
Fig. D.3, we illustrate the estimated 6D poses by rendering
the 3D models on top of the input image and highlighting
the respective contours. Note that while Blue constitutes the
ground-truth poses, we demonstrate in Green the predicted
poses from GDR-Net. For better visualization we cropped
the images and zoomed into the area of interest.
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Method
w/o Refinement w/ Refinement

PoseCNN [17] PVNet [13] GDR-Net (Ours) DeepIM [10] CosyPose [8]
P.E. 1 N 1 N 1 1

Metric
AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

002 master chef can 84.0 50.9 81.6 96.6 71.1 96.3 65.2 93.1 71.2 - -
003 cracker box 76.9 51.7 80.5 84.9 63.5 97.0 88.8 91.0 83.6 - -
004 sugar box 84.3 68.6 84.9 98.3 93.2 98.9 95.0 96.2 94.1 - -
005 tomato soup can 80.9 66.0 78.2 96.1 88.9 96.5 91.9 92.4 86.1 - -
006 mustard bottle 90.2 79.9 88.3 99.5 93.8 100.0 92.8 95.1 91.5 - -
007 tuna fish can 87.9 70.4 62.2 95.1 85.1 99.4 94.2 96.1 87.7 - -
008 pudding box 79.0 62.9 85.2 94.8 86.5 64.6 44.7 90.7 82.7 - -
009 gelatin box 87.1 75.2 88.7 95.3 88.5 97.1 92.5 94.3 91.9 - -
010 potted meat can 78.5 59.6 65.1 82.9 72.9 86.0 80.2 86.4 76.2 - -
011 banana 85.9 72.3 51.8 96.0 85.2 96.3 85.8 91.3 81.2 - -
019 pitcher base 76.8 52.5 91.2 98.8 94.3 99.9 98.5 94.6 90.1 - -
021 bleach cleanser 71.9 50.5 74.8 94.4 80.5 94.2 84.3 90.3 81.2 - -
024 bowl∗ 69.7 69.7 89.0 84.0 84.0 85.7 85.7 81.4 81.4 - -
025 mug 78.0 57.7 81.5 96.9 87.6 99.6 94.0 91.3 81.4 - -
035 power drill 72.8 55.1 83.4 91.9 78.7 97.5 90.1 92.3 85.5 - -
036 wood block∗ 65.8 65.8 71.5 77.3 77.3 82.5 82.5 81.9 81.9 - -
037 scissors 56.2 35.8 54.8 68.4 43.7 63.8 49.5 75.4 60.9 - -
040 large marker 71.4 58.0 35.8 87.4 76.2 88.0 76.1 86.2 75.6 - -
051 large clamp∗ 49.9 49.9 66.3 69.3 69.3 89.3 89.3 74.3 74.3 - -
052 extra large clamp∗ 47.0 47.0 53.9 73.6 73.6 93.5 93.5 73.3 73.3 - -
061 foam brick∗ 87.8 87.8 80.6 90.4 90.4 96.9 96.9 81.9 81.9 - -
MEAN 75.9 61.3 73.4 89.1 80.2 91.6 84.3 88.1 81.9 89.8 84.5

Table B.2: Detailed results on YCB-V [17] w.r.t. AUC of ADD-S and ADD(-S). As in [17], ADD-S uses the symmetric
metric for all objects, while ADD(-S) only uses the symmetric metric for symmetric objects. P.E. means whether the method
is trained with 1 pose estimator for the whole dataset or 1 per object (N objects in total). (∗) denotes symmetric objects and
“-” denotes unavailable results.

Method Ref. LM-O [1] YCB-V [17] Time (s)ARMSPD ARMSSD ARVSD AR ARMSPD ARMSSD ARVSD AR
AAE [15] 25.4 9.5 9.0 14.6 41.0 41.3 30.7 37.7 0.190
Pix2Pose [12] 55.0 30.7 23.3 36.3 57.1 42.9 37.2 45.7 1.168
EPOS [3] 65.9 38.0 29.0 44.3 78.3 67.7 62.6 69.6 0.530
CDPNv2 [11] 81.5 61.2 44.5 62.4 63.1 57.0 39.6 53.2 0.153
GDR-Net (Ours) 86.4 65.2 50.2 67.2 84.2 75.6 66.8 75.5 0.065
CosyPose [3] X 81.2 60.6 48.0 63.3 85.0 84.2 77.2 82.1 0.395

Table C.3: Results on LM-O and YCB-V under BOP [5] setup. The results for other methods are obtained from
https://bop.felk.cvut.cz/leaderboards/. The time (s) is the average image processing time averaged over the datasets. Ref.
stands for refinement. For each column, we denote the best score in bold and the second best score in italics.
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Figure D.1: Qualitative Results on LM [2]. We visualize the 6D pose by overlaying the image with the corresponding
transformed 3D bounding box. We demonstrate in Blue and Green the ground-truth pose and the predicted pose, respectively.

5



Figure D.2: Qualitative Results on LM-O [1]. For each image, we visualize the 6D poses by rendering the 3D models
and overlaying the contours on the right. We demonstrate in Blue and Green the ground-truth pose and the predicted pose,
respectively.
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Figure D.3: Qualitative Results on YCB-V [17]. For each image, we visualize the 6D poses by rendering the 3D models
and overlaying the contours on the right. We demonstrate in Blue and Green the ground-truth pose and the predicted pose,
respectively.
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