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Abstract

In this supplementary material, we first present the im-
plementation details on HW-NAILRMA, HW-NGmeet and
HW-LLRT, and more comparison results. Then, we dis-
cuss loss objective functions of the proposed method for
training network and demonstrate experiments for compar-
ison. Finally, we provide details on the combination of the
proposed HWnet and the existing denoising networks and
present comparison results.

1. Implementation Details on Transfer Experi-
ments

In this section, we introduce more detail on HW-
NAILRMA, HW-NGmeet and HW-LLRT. Without addi-
tional annotations, ’/’ with respect to matrix or tensor means
elementwise division.

1.1. On HW-NAILRMA

The original NAILRMA [8] solves the denoising prob-
lem:

min
X
||Y −X||2F , s.t.rank(X) ≤ r, (1)

where Y ∈ Rhw×b denotes the observed noisy HSI. h,w
represent height and width respectively and b is spectral
number. The original NAILRMA performs two-stage up-
dating in each iteration. Specifically, in the k-th iteration,
the patchwise LRMA (PLRMA) denoising process is con-
ducted on the input image uk−1, and noise-adjusted itera-
tive regularization is performed on uk−1 and PLRMA out-
put fk

fk = PLRMAr(uk−1), (2)

uki = (1− δi)fki + δiu
k−1
i , i = 1, 2, ..., b. (3)

In the paper, δi is defined as

δi = e−cW(i,i), i = 1, 2, ..., b, (4)
*Corresponding author

where W(i, i) is the noise variance estimated by multiple
regression theory-based approach [4][1] on noisy HSI Y
and fixed during iterations.

We design two schemes to replace noise-adjust parame-
ter δi in (4). Remember that we estimate weights W 2 by
pretrained HWnet Cθ as the mode of Γ(α, β) where α, β
are outputs of Cθ. The first scheme is to directly replace
W(i, i) in (4) by 1/W :

δ̃1 = e−c/W . (5)

Note that in (4), the noise variance W(i, i) is estimated
band by band while W is estimated on the pixel level and
has the same size as the noisy HSI Y .

The second scheme is

δ̃2 =
W 2

W 2 + µ
. (6)

With this modified δ̃2, (3) is equal to the closed-form solu-
tion of the problem

min
u
||W � (u− uk−1)||2F + µ||u− fki ||2F . (7)

Here we set µ = 0.5 ∗mean(W 2) as in the WLRMF prob-
lem.

Tab. 1 shows comparison results of the proposed two
schemes (5) and (6) on ICVL dataset. Both proposed noise-
adjust schemes achieve better performance than the original
NAILRMA. It could be seen that the second scheme (6) per-
forms relatively better than the first scheme (5). Through
out all our experiments, we thus implemented the second
scheme (6) in our HW-NAILRMA.

1.2. On HW-NGmeet

The original NGmeet denoising problem [6][7] aims to
solve

min
A,M

1

2
||Y×3A

T −M||2F+λ||M||NL, s.t.ATA = I, (8)
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Table 1: PSNR values of denoising results of HW-NAILRMA under two noise-adjust shemes on ICVL dataset. The best
results are in bold.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
NAILRMA 32.47 31.11 30.64 29.79 26.25 27.89 24.71

scheme 1 (5) 35.29 33.31 34.12 32.25 28.05 30.17 27.27
scheme 2 (6) 36.52 34.96 34.47 33.83 29.07 31.62 28.13

where Y ∈ Rh×w×b represents the observed noisy image.
The original NGmeet applies half-quadratic splitting algo-
rithm by introducing an auxiliary variable Z to relax (8) as

min
A,M,Z

F (A,M,Z) =
1

2
||Y − Z||2F + λ||M||NL

+
µ

2
||Z−M×3 A||2F , s.t.ATA = I.

(9)

It is straightforward to modify (8) as its weighted vision
HW-NGmeet as:

minA,M
1

2
||W�(Y×3 A

T−M)||2F +λ||M||NL,

s.t.ATA = I,
(10)

and the corresponding relaxed problem is

min
A,M,Z

FHW (A,M,Z) =
1

2
||W � (Y − Z)||2F

+ λ̃||M||NL+
µ̃

2
||Z−M×3A||2F , s.t.ATA = I.

(11)

The alternative minimization strategy is readily used to
solve (9) and (11). Note that in the k-th iteration, the M-
subproblem andA-subproblem are the same in (9) and (11).
In the original NGmeet, by fixingMk−1 and Ak−1, the Z-
subproblem in (9) and its closed-form solution is

Zk = arg min
Z

1

2
||Y − Z||2F +

µ

2
||Z −Mk−1×3Ak−1||2F

=
Y + µMk−1 ×3 Ak−1

1 + µ
. (12)

In HW-NGmeet, the Z-subproblem in (11) and its closed-
form solution is

Z̃k = arg min
Z

1

2
||W�(Y−Z)||2F +

µ̃

2
||Z−M̃k−1×3Ãk−1||2F

=
W2 � Y + µ̃M̃k−1 ×3 Ãk−1

W2 + µ̃
. (13)

As the original NGmeet set µ = 9 in (12), here we set µ̃ =
9 ∗mean(W2) in (13). The other parameters are similarly
specified as in the original NGmeet. If all elements inW2

are 1, then HW-NGmeet problem (10) degrades to original
NGmeet (8) and (13) degrades to (12).

1.3. On HW-LLRT

The original LLRT [3] proposes the following denoising
problem:

min
X ,Li

1

2
||Y − X ||2F + µ||∇zX||p

+ ω
∑
i

[
1

λ2i
||RiX − Li||2F + rank2(Li)].

(14)

The alternative minimization scheme is applied to solve
(14). Fisrt fix the variable X and optimize Li with its corre-
sponding subproblem. Then LLRT fixes Li and applies al-
ternative direction multiplier method (ADMM) [2] to solve
the X -subproblem as

min
X

1

2
||Y−X ||2F +µ||∇zX||p+ω

∑
i

(
1

λ2i
||RiX −Li||2F ).

(15)
LLRT introduces two auxiliary variables D and Z and for-
mulates the augmented Lagrangian function as:

L(X ,D,Z) =
1

2
||Y − X ||2F + µ||D||p

+ω
∑
i

1

λi
||RiZ − Li||2F +

β

2
||D −∇zX −

J1
β
||2F

+
α

2
||Z − X − J2

α
||2F ,

(16)
where J1 and J2 are Lagrangian multipliers.

The proposed HW-LLRT replaces the term ||Y − X ||2F
in (14) with ||W � (Y − X )||2F and the denoising problem
then becomes

min
X ,Li

1

2
||W � (Y − X )||2F + µ̃||∇zX||p

+ω̃
∑
i

[
1

λ̃2i
||RiX − Li||2F + rank2(Li)].

(17)

Applying the same optimization strategy, the Li-
subproblem is unaltered, while the X -subproblem of
HW-LLRT becomes

min
X

1

2
||W � (Y − X )||2F + µ̃||∇zX||p

+ω̃
∑
i

(
1

λ2i
||RiX − Li||2F ).

(18)

We also apply ADMM to solve (18), and an additional aux-
iliary variable U is introduced. The corresponding aug-
mented Lagrangian function is

LHW (X ,D,Z,U) =
1

2
||W � (Y − U)||2F + µ̃||D||p

+ω̃
∑
i

1

λ̃i
||RiZ − Li||2F +

β̃

2
||D −∇zX −

J̃1
β̃
||2F

+
α̃

2
||Z − X − J̃2

α̃
||2F +

τ̃

2
||U − X − J̃3

τ̃
||2F .

(19)
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In the original LLRT, the optimization of
minX ,D,Z L(X ,D,Z) in the k-th iteration consists of

Xk = arg min
X

1

2
||Y − X ||2F

+
βk−1

2
||Dk−1 −∇zX −

(J1)k−1

βk−1
||2F

+
αk−1

2
||Zk−1 −X −

(J2)k−1

αk−1
||2F , (20)

Zk = arg min
Z

ω
∑
i

1

λi
||RiZ − Li||2F

+
αk−1

2
||Z − Xk −

(J2)k−1

αk−1
||2F , (21)

Dk = arg min
D

µ||D||p +
βk−1

2
||D −∇zXk −

(J1)k−1

βk−1
||2F ,

(22)

(J1)k = (J1)k−1 + βk−1(∇zXk −Dk), (23)

(J2)k = (J2)k−1 + αk−1(Xk −Zk), (24)

αk = ρ ∗ αk−1, (25)

βk = ρ ∗ βk−1. (26)

And in HW-LLRT, the optimization of
minX ,D,Z,U L

HW (X ,D,Z,U) in the k-th iteration
consists of

X̃k = arg min
X

τ̃k−1

2
||Ũk−1 −

(J̃3)k−1

τ̃k−1
−X||2F

+
β̃k−1

2
||D̃k−1 −∇zX −

(J̃1)k−1

β̃k−1

||2F

+
α̃k−1

2
||Z̃k−1 −X −

(J̃2)k−1

α̃k−1
||2F , (27)

Z̃k = arg min
Z

ω̃
∑
i

1

λ̃i

||RiZ − Li||2F

+
α̃k−1

2
||Z − X̃k −

(J̃2)k−1

α̃k−1
||2F , (28)

Ũk = arg min
U

1

2
||W � (Y − U)||2F

+
τ̃k−1

2
||U − (X̃k +

(J̃3)k−1

τ̃k−1
)||2F , (29)

D̃k = arg min
D

µ̃||D||p +
β̃k−1

2
||D −∇zX̃k −

(J̃1)k−1

β̃k−1

||2F ,

(30)

(J̃1)k = (J̃1)k−1 + β̃k−1(∇zX̃k − D̃k), (31)

(J̃2)k = (J̃2)k−1 + α̃k−1(X̃k − Z̃k), (32)

(J̃3)k = (J̃3)k−1 + τ̃k−1(X̃k − Ũk), (33)

α̃k = ρ ∗ α̃k−1, (34)

β̃k = ρ ∗ β̃k−1, (35)

τ̃k = ρ ∗ τ̃k−1. (36)

Updating of Z̃k and D̃k in (28) and (30) are unaltered. Up-
dating of X̃k in (27) has the same form as that in (20). Up-

dating of Ũk in (29) has the closed-form solution:

Ũk =
W2 � Y + τ̃k−1X̃k + (J̃3)k−1

W2 + τ̃k−1
. (37)

We set parameter τ̃0 = 0.5 ∗mean(W2) through out all the
experiments. It is the only additional parameter introduced
by HW-LLRT. The other parameters are set as the default
settings in the original LLRT. If we set all elements in W
in HW-LLRT as 1, the HW-LLRT problem (17) reduces
to LLRT problem (14), but the optimizations are slightly
different. Thus, we conduct ablation experiments for HW-
LLRT by setting all elements inW as 1.

2. Compared with LRTV
As the reviewer suggested, we also transfer the proposed

weighting scheme to LRTV [9], a widely used hyperspectral
mixed noise removal method. The optimization problem of
LRTV is formulated as follows:

min
L,X,S

||L||∗ + τ ||X||HTV + λ||S||1,

s.t.||Y − L− S||2F ≤ ε, rank(L) ≤ r, L = X,
(38)

where L ∈ Rhw×b represents the restored HSI. (38) is
solved by ALM method, and the corresponding augmented
Lagrangian funtion is

l(L,X, S,Γ1,Γ2) = ||L||∗ + τ ||X||HTV + λ||S||1
+〈Γ2, Y − L− S〉+ 〈Γ1, X − L〉

+
µ2

2
||Y − L− S||2F +

µ1

2
||X − L||2F

s.t.rank(L) ≤ r.
(39)

Note that the original LRTV model (38) is a kind of low-
rank and sparse decomposition and uses robust L1 loss to
constrain the sparse noise. We fomulate the HW-LRTV
model as

min
L,X
||L||∗ + τ ||X||HTV + κ||W � (Y − Z)||2F ,

s.t.L = Z,X = Z, rank(L) ≤ r.
(40)

Applying ALM method to solve (40), the augmented La-
grangian function is

l(Z,L,X) = ||L||∗ + τ ||X||HTV + κ||W � (Y − Z)||2F
+〈Γ1, L− Z〉+ 〈Γ2, X − Z〉

+
µ1

2
||L− Z||2F +

µ2

2
||X − Z||2F .

(41)

In original LLRT, the update scheme in the k-th iteration
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is

Lk = arg min ||L||∗

+
(µ1)k−1 + (µ2)k−1

2
||L− αk−1

(µ1)k−1 + (µ2)k−1
||2F ,

αk−1 = (µ1)k−1Xk + (µ2)k−1(Y − Sk)

+(Γ1)k−1 + (Γ2)k−1,

(42)

Xk = arg min τ ||X||HTV

+
(µ1)k−1

2
||X − (Lk −

(Γ1)k−1
(µ1)k−1

)||2F
(43)

Sk = arg minλ||S||1

+
(µ2)k−1

2
||S − (Y − Lk +

(Γ2)k−1
(µ2)k−1

)||2F ,
(44)

(Γ1)k = (Γ1)k−1 + µ1(Xk − Lk), (45)
(Γ2)k = (Γ2)k−1 + µ2(Y − Lk − Sk), (46)
(µ1)k = ρ ∗ (µ1)k−1, (47)
(µ1)k = ρ ∗ (µ1)k−1. (48)

The update scheme in the k-th iteration to solve HW-
LRTV problem is

Lk = arg min ||L||∗

+
(µ1)k−1

2
||L− (Zk−1 −

(Γ1)k−1
(µ1)k−1

)||,
(49)

Xk = arg min τ ||X||HTV

+
(µ2)k−1

2
||X − (Zk−1 −

(Γ2)k−1
(µ2)k−1

)||2F
(50)

Zk = arg minκ||W � (Y − Z)||2F

+
(µ1)k−1

2
||Lk − Z +

(Γ1)k−1
(µ1)k−1

||2F

+
(µ2)k−1

2
||Xk − Z +

(Γ2)k−1
(µ2)k−1

||2F ,

(51)

(Γ1)k = (Γ1)k−1 + µ1(Lk − Zk), (52)
(Γ2)k = (Γ2)k−1 + µ2(Xk − Zk), (53)
(µ1)k = ρ ∗ (µ1)k−1, (54)
(µ1)k = ρ ∗ (µ1)k−1. (55)

The parameter λ in original LRTV is set as 35/
√
hw and

the other parameters are set as the default setting. In HW-
LRTV optimization problem, we set parameter κ = 11 ∗

Table 2: Quantitative comparison of LRTV and HW-LRTV
on ICVL dataset. The best results are in bold

Case
LRTV HW-LRTV

PSNR SSIM PSNR SSIM
1 34.10 0.9357 35.09 0.9509
2 32.32 0.8780 34.48 0.9397
3 38.13 0.9578 38.92 0.9769
4 32.71 0.9284 32.81 0.9497
5 35.26 0.9240 32.32 0.9251
6 30.36 0.9082 31.37 0.9490
7 30.85 0.8979 30.73 0.9333
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Figure 1: PSNR of each band of restored HSIs by LRTV
and HW-LRTV for ’Gaussian + impulse’ noise case.

[(µ1)0 + (µ2)0]/mean(W 2) and τ =1e-3 through out all
the experiments.

Tab. 2 shows the denoising results of LRTV and HW-
LRTV on ICVL dataset. For most cases, HW-LRTV
achieves best results while LRTV is very suitable for remov-
ing ’Gaussian + impulse’ noise. From Fig. 1 we could see
that the average PSNR value of LRTV is better than HW-
LRTV, however, extreme noise on some bands fails to be
removed. For all cases, HW-LRTV better preserves struc-
tural similarity.

3. More Experimental Results

In this section, we present more experimental results
on CAVE, PaviaU and HYDICE Urban datasets. From
Tab. 3 and Tab. 4 one can see that the proposed HW-LRMF
achieves the best results under most cases. For cases 2,4
and 6, the SSIM values of HW-LRMF are very competi-
tive to the best results. And for experiments on PaviaU, the
proposed HW-LRMF is superior to all competitive methods
under all cases with significant improvements. Fig. 3 shows
visual denoising results of HW-LRMF and compared meth-
ods. It can be seen that the proposed method successfully
retrieves more details and achieves the best visual results
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among all competing methods.
Tab. 5 and Tab. 6 show quantitative comparison re-

sults on NAILRMA, NGmeet, LLRT and the correspond-
ing weighted visions. The proposed HW-NAILRMA, HW-
NGmeet and HW-LLRT are evidently superior to original
methods under complex noise cases. Fig. 4 and Fig. 5 show
the visual denoising results. From Fig. 4 we can see, for
severe Gaussian and impulse noises, the proposed weigthed
methods produce evidently higher image quality while the
original methods can not efficiently remove impulse noises.
Fig. 6 shows the denoising results of real noisy HYDICE
Urban HSI. Since the groundtruth image is missing, noise
level is estimated in band-by-band manner by multiple re-
gression theory-based approach [1] as suggested in [6]. We
plot the mean value of square-root of mode 1/W 2, i.e.√
β/(α+ 1), of each band and the estimated noise level by

[1] in Fig. 2. It is easy to see that most bands of Urban are
relatively clean while a few bands are severely damaged.
Fig. 2 shows the ability of our HWnet for revealing noise
insights.

4. More details on Loss Objective of The Pro-
posed Method

We train the parameters θ in HWnet Cθ by optimizing
over objective function:

min
θ
KL[q(X,W 2|Y )||p(X,W 2||Y )]. (56)

As we have aforementioned, this objective function con-
tains three parts. The third part L3 is equivalent to the mean
square error(MSE) loss between the algorithm output X(N)

and groundtruth HSIXgt. MSE loss can also be straightfor-
wardly used to train Cθ

min
θ
||X(N) −Xgt||2F . (57)

To compare the above two loss objectives, we conduct an
additional experiment of training Cθ by minimizing MSE
loss (57). The training settings are similar except that in-
stead of outputing α, β, the HWnet Cθ directly outputs
weight W 2.

Tab. 7 shows the quantitative comparison results of HW-
LRMF, HW-NAILRMA, HW-NGmeet and HW-LLRT with
pre-trained Cθ that is trained under the above two loss ob-
jectives, respectively. It is observed that for i.i.d Gaussian
noise, results of MSE loss are slightly better than KL diver-
gence loss for all comparing methods. For HW-NGmeet,
denoising result of MSE loss is significantly better than that
of KL divergence loss under noise case 7, whereas on the
contrary is under noise case 2 and 3. In summary, the over-
all performance of KL divergence loss is better and more
stable than MSE loss.

0 50 100 150 200
Band

0

0.1

0.2

0.3

0.4

0.5

Figure 2: Comparison between the calculated mean value of√
β/(α+ 1) of each band by the proposed method and the

estimated noise level by multiple regression theory-based
approach [1] on HYDICE Urban HSI.

5. Combination of HWnet and Blind Denoising
Networks

Like FFDnet [10] and CBDnet [5], we concatenate the
estimated 1/W with noisy image as input to blind denois-
ing networks. HSI-DeNet and DSSnet are set as the base-
line networks. We denote the corresponding modified net-
works as HSI-DeNet+ and DSSnet+. DSSnet is a 3D con-
volutional neural network and we simply double the input
channel to construct DSSnet+. Besides, we apply parame-
ter sharing strategy for both networks. HSI-DeNet is a 2D
convolutional neural network. Since each band of 1/W is
mainly related to the corresponding band of noisy image,
we add an additional 3D conv layer before the first 2D conv
layer of the HSI-DeNet. Specifically, the 3D conv layer
takes 1/W and noisy image as input, the output feature
map is then concatenated again with noisy image as input to
HSI-DeNet with double input channel number. We follow
the training settings similarly in their original paper. Cases
2,3 and 4 types of noise are added to clean patches to create
paired training patches.

Tab. 8 shows the comparison results on ICVL dataset. It
can be easily seen that with additional input 1/W , the mod-
ified networks outperforms the original networks both for
noise cases that appear in training dataset and that do not
appear, which reveals the ability of extracting noise infor-
mation of our HWnet.
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Table 5: Quantitative comparison of transfer experiments on CAVE dataset. The best results are in bold.

Case Index NAILRMA HW-
NAILRMA NGmeet HW-

NGmeet LLRT HW-LLRT ablation
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SSIM 0.6798 0.7299 0.7650 0.7965 0.7027 0.7136 0.7026

Table 6: Quantitative comparison of transfer experiments on PaviaU. The best results are in bold.
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5
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SSIM 0.7158 0.8057 0.7666 0.7951 0.7800 0.7903 0.7800

6
PSNR 30.60 32.19 29.34 32.23 32.03 32.82 32.03
SSIM 0.8687 0.9188 0.7884 0.9105 0.9001 0.9077 0.9001

7
PSNR 24.99 27.52 26.20 27.72 26.21 27.00 26.21
SSIM 0.6953 0.8056 0.7570 0.7780 0.7717 0.7919 0.7717
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Table 7: Quantitative comparison of MSE loss (57) and KL divergence loss (56). The best results are in bold.

Case Index
HW-LRMF HW-NAILRMA HW-NGmeet HW-LLRT

MSE KL MSE KL MSE KL MSE KL

1
PSNR 35.04 34.93 36.63 36.52 40.02 39.98 39.55 39.48
SSIM 0.9407 0.9431 0.9678 0.9680 0.9797 0.9798 0.9771 0.9769

2
PSNR 29.48 32.52 33.68 34.96 34.29 37.18 38.66 38.82
SSIM 0.8094 0.8946 0.8618 0.9287 0.9198 0.9424 0.9620 0.9626

3
PSNR 30.60 33.67 34.24 34.47 34.77 38.35 38.42 39.24
SSIM 0.8850 0.9295 0.9277 0.9508 0.9435 0.9708 0.9700 0.9734

4
PSNR 30.34 31.80 32.93 33.83 34.56 34.95 35.79 35.92
SSIM 0.9060 0.9258 0.9463 0.9555 0.9556 0.9571 0.9601 0.9612

5
PSNR 30.71 31.59 29.42 29.07 30.49 30.81 30.82 30.84
SSIM 0.8830 0.8960 0.8724 0.8578 0.8688 0.9000 0.8812 0.8814

6
PSNR 29.37 31.26 30.21 31.62 31.43 31.73 29.34 29.56
SSIM 0.8984 0.9324 0.9304 0.9513 0.9272 0.9284 0.8879 0.8899

7
PSNR 27.77 28.34 28.33 28.13 28.86 27.57 26.63 26.89
SSIM 0.8687 0.8838 0.8957 0.8913 0.8785 0.8630 0.8110 0.8206

(a) Original
(PSNR,SSIM)

(b) Noisy
(18.97,0.6166)

(c) SVD
(26.84,0.8210)

(d) LRMR
(24.98, 0.8053)

(e) LRTA
(19.15,0.6201)

(f) PARAFAC
(30.31,0.9261)

(g) NMoG
(29.77,0.8966)

(h) TDL
(20.49, 0.6664)

(i) HW-LRMF
(33.20,0.9152)

Figure 3: Visual comparison results at the 15th band of image paints in CAVE dataset. The noisy HSI is corrupted by
spatial-spectral variant Gaussian noise.

Table 8: PSNR values of denoising results of supervised de-
noising networks on ICVL dataset. ’+’ means the modified
network which takes both noisy image and 1/W as input.

Case
HSI-

DeNet
HSI-

DeNet+
DSSnet DSSnet+

1 36.06 36.42 40.51 40.59
2 34.40 34.93 40.55 40.60
3 35.52 35.84 42.28 42.32
4 33.89 34.38 40.43 40.46
5 26.60 27.14 32.56 32.88
6 31.44 32.24 39.47 39.71
7 27.00 27.17 32.88 33.22
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(a) Original
(PSNR,SSIM)

(b) NAILRMA
(17.72,0.5127)

(c) NGmeet
(18.54,0.6975)

(d) LLRT
(20.20, 0.7537)

(e) Noisy
(9.0284,0.0710)

(f) HW-NAILRMA
(24.99,0.8057)

(g) HW-NGmeet
(29.66,0.9286)

(h) HW-LLRT
(20.36,0.7574)

Figure 4: Transfer experiments: visual denoising results at the 3rd band of image pompoms in CAVE dataset. The noisy HSI
is corrupted by Gaussian and impulse noise.

(a) Original
(PSNR,SSIM)

(b) NAILRMA
(31.97,0.8760)

(c) NGmeet
(33.58,0.8876)

(d) LLRT
(33.40, 0.9135)

(e) Noisy
(15.14,0.1823)

(f) HW-NAILRMA
(36.53,0.9564)

(g) HW-NGmeet
(36.47,0.9512)

(h) HW-LLRT
(35.48,0.9325)

Figure 5: Transfer experiments: visual denoising results at the 39th band of PaviaU. The noisy HSI is corrupted by spatial-
spectral variant Gaussian noise.
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(a) Original (b) NAILRMA (c) NGmeet (d) LLRT

(e) HW-NAILRMA (f) HW-NGmeet (g) HW-LLRT

Figure 6: Transfer experiments: real noisy HSI denoising results at the 204th band of HYDICE Urban.

10


