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A. Overview
In this supplementary, we provide implementation de-

tails in Sec. B, including the detailed architecture of atten-
tion block, and model training objective. We also conduct
more ablation studies to exploit better applying strategy of
the proposed RAIN method (Sec. C). More comparison re-
sults on real composite images are presented in Sec. D. Fi-
nally, we discuss the failure case in Sec. E

B. Implementation Details
B.1. Attention Block

Attention block has been proven to bring noticeable im-
provements to the simple U-Net architecutre [1, 2]. Fol-
lowing the prior work, we add three attention blocks in the
decoder part for baseline network (the structure of generator
is presented in Section 3 of the main paper). The detailed
structure of attention block is presented in Fig. 1.

Specifically, in each attention block, we take the con-
catenation of the encoder feature and the decoder feature
Fin ∈ RC×H×W as the input of the block. To fuse the con-
catenated features, we use an 1×1 convolutional layer and
a Sigmoid activation function σ to acquire coefficients map,
which is denoted as W ∈ RC×H×W . Then we acquired
the modulated feature Fout by multiplying the concatenated
features by the map in element-wise manner:

Fout =W ◦ Fin, (1)

where ◦ denotes the element-wise multiplication.

B.2. Improving Image Composites

In this paper, we define the composite image as Ic, the
foreground mask as M . The harmonization model is de-
noted by G, and the harmonized image by Î = G(Ic,M).
Our aim is to optimize the model G to make Î close to the
ground truth image I by a reconstruction loss:

Lrec(G, I, Ic,M) = ‖G(Ic,M)− I‖1. (2)
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Figure 1. Illustration of the adopted attention block.

Due to the widespread applications of adversarial train-
ing in many computer vision tasks, we also adopt adversar-
ial training method and follow the training strategy in [1, 2].
The adversarial loss can be written as follows:

Ladv(D, I, Î) = EI [max(0, 1−D(I))]

+ EÎ [max(0, 1 +D(Î))],
(3)

and

Ladv(G, Ic,M) =− EIc [D(G(Ic,M))], (4)

where D tries to distinguish between natural-realistic im-
ages I and harmonized samples Î , whileG aims to generate
samples that look similar to the real observations. Introduc-
ing adversarial loss can, in theory, learn the model G that
generate images as realistic as the real [3, 4].

Besides the global discriminator, we also adopt the set-
ting of domain verification loss [1], which has been proved
to bring modest improvements for image harmonization.
Specifically, we construct real and fake samples by group-
ing image pairs of (I ◦M, I ◦ (1 −M)) and (Î ◦M, Î ◦
(1 − M)), respectively. To perform domain-oriented op-
timization, we first utilize a domain encoder ED to obtain
the feature representations of the foreground image and the
background image. We denote the feature representations
as lf and lb, respectively. Equally, l̂f and l̂b are extracted
from harmonized image Î by the same domain encoder. To
acquire domain verification loss, following [1], we use one
more domain discriminator Dv which incorporate the do-
main encoder ED and measure the similarity of lf and lb
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Type Method
Index of feature normalization layer

1 2 3 4 5 6 7 8 9 10 11 12 13 14

I

Baseline + RAIN-Decoder-1 IN IN IN IN IN IN IN IN IN IN IN IN IN R
Baseline + RAIN-Decoder-2 IN IN IN IN IN IN IN IN IN IN IN IN R R
Baseline + RAIN-Decoder-3 IN IN IN IN IN IN IN IN IN IN IN R R R
Baseline + RAIN-Decoder-4 IN IN IN IN IN IN IN IN IN IN R R R R
Baseline + RAIN-Decoder IN IN IN IN IN IN IN R R R R R R R
Baseline + RAIN-Encoder R R R R R R R IN IN IN IN IN IN IN

II

Baseline + RAIN-1 R IN IN IN IN IN IN IN IN IN IN IN IN R
Baseline + RAIN-2 R R IN IN IN IN IN IN IN IN IN IN R R
Baseline + RAIN-3 R R R IN IN IN IN IN IN IN IN R R R
Baseline + RAIN-4 R R R R IN IN IN IN IN IN R R R R
Baseline + RAIN-5 R R R R R IN IN IN IN R R R R R
Baseline + RAIN-6 R R R R R R IN IN R R R R R R

III
Baseline + RAIN-Inner-3 IN IN IN IN R R R R R R IN IN IN IN
Baseline + RAIN-Inner-4 IN IN IN R R R R R R R R IN IN IN
Baseline + RAIN-Inner-5 IN IN R R R R R R R R R R IN IN

Table 1. Designing choices of RAIN. IN: Instance Normalization, R: RAIN.

by:
Dv(I,M) = lf · lb, (5)

where · means the inner product of two vectors.
Afterward, we measure the domain verification loss as

follows:

Lv(Dv, I, Î,M) = EI [max(0, 1−Dv(I,M))]

+ EÎ [max(0, 1 +Dv(Î ,M))],
(6)

Lv(G, Ic,M) = −EIc [Dv(G(Ic,M),M)]. (7)

By using domain verification loss, the discriminator is en-
couraged to distinguish similar domain features for positive
foreground-background pairs from negative foreground-
background pairs.

In our experiments, D and Dv share the same struc-
ture as [1], and we apply the well-know spectral normaliza-
tion [6] for two discriminators to stabilize training proce-
dure. The domain encoder utilizes Partial Convolutions [5]
to extract domain code for regions with irregular shape,
avoiding information leakage from unmasked regions.

Our full objective is:

L(D,Dv, I, Î,M) = λ1Ladv(D, I, Î)+λ2Lv(Dv, I, Î,M),
(8)

L(G, I, Ic,M) = λ1Ladv(G, Ic,M) + λ2Lv(G, Ic,M)

+ λ3Lrec(G, I, Ic,M),

(9)

where λ1 = λ2 = 1, and λ3 = 100.

C. More ablation studies
In this section, we conduct more experiments to validate

the efficacy of our method. Theoretically, our RAIN mod-
ule can be applied in any layers of the basic network. In
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Figure 2. Convergence curves of methods in Type I. We only add
RAIN layers to the decoder or encoder. Better viewed in color
with zoom in.

this section, we train our baseline with different designing
strategies of applying our RAIN module.

As presented in Table 1, we exploit better implemen-
tations of RAIN module by designing three main types of
structures of the basic network: I) we gradually replace IN
with RAIN in the decoder or encoder; II) we add RAIN
modules to the outermost layers of the network; III) we add
RAIN modules to the innermost layers of the network. We
conduct these experiments with fixed random seed for bet-
ter reproduction. The convergence results are presented in
Fig. 2 and 3.

From Fig. 2, it is obvious that more RAIN layers in
the decoder brings more stable training process and better
convergence performance. When we only add one RAIN
layer at the last normalization layer of the network, i.e.,
Baseline+RAIN-Decoder-1, we attain the least PSNR re-
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Figure 3. Convergence curves on PSNR metric. (a) Type II: we add RAIN modules to the outermost layers of the network; (b) Type III:
we add RAIN modules to the innermost layers of the network. Better viewed in color with zoom in.

sults (purple curve). As we add more RAIN layers to the
decoder, we obtain noticeable improvements. Another in-
teresting conclusion is that adding more RAIN layers to the
decoder brings no benifits when we have already added four
RAIN layers in the decoder(green curve and red curve).
This may be ascribed to the reasons that when the fea-
ture size is small enough, e.g., 4×4 or 8×8, our RAIN
module will equal to IN. Therefore, equal performances
of Baseline+RAIN-Decoder and Baseline+RAIN-Decoder-
4 are observed in our experiments.

In Fig. 3, we visualize the convergence curves of
methods within type II and III. It is clear that using
symmetric normalization method for the network bene-
fits the model optimizing process and leads to better con-
vergent performance. Specifically, from subfigure 3(a),
Baseline+RAIN-5 and Baseline+RAIN-6 outperform other
methods, while Baseline+RAIN-1 performs slightly better
than the Baseline+RAIN-2/3/4.

In the right figure of Fig. 3, we visualize the con-
vergent curves of those methods with RAIN modules
inserted in the middle part of the network. It can
be observed that Baseline+RAIN-Inner-5 is much bet-
ter than Baseline+RAIN-Inner-3 but much worse than
Baseline+RAIN-5. To analyze the observation, note that
the visual style defined in this work is close to image visual
properties, including illumination, color temperature, satu-
ration, hue, and texture, etc. In other words, visual proper-
ties in image harmonization task are more related to low-
level feature representations learnd by convolutional net-
work in the first few layers of the encoder and the last few
layers in the decoder. Therefore, adding the same amount
of RAIN layers to the middle layers of the baseline network
is less competitive than that to the outermost layers.
Adding RAIN to previous work. We first re-implemented
DIH in PyTorch and pretrain the whole model for the first
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Figure 4. Convergence curves of DIH [7] and DIH+RAIN on
PSNR metric.

400 epochs. Then we freeze the segmentation branch and
optimize the encoder and harmonization branch for another
600 epochs. To add RAIN to DIH, we replace BN with IN
in the encoder, and BN with RAIN in the harmonization
decoder. Note that we only predict the foreground objects
like RainNet does. In Fig. 4, we present the performance
curve of DIH and its variant. It can be easily conclude that
RAIN module stabilizes the optimizing process and brings
significant improvements to existing network.

D. Results on real composite images

In this section, we present the sample results of real com-
posite image used in [7] and [1] and compare our method
to other competing methods in Fig. 5, 6 and 7. As can
be found, our method chieves better visual consistency be-
tween the foreground and the background images and out-
performs other methods in most cases.
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Figure 5. Example results on real composite images.. We present real composite images, foreground mask, three state-of-the-art methods,
and the proposed model. The samples are taken from the testing dataset of [7]. Our method achieves better harmonized visual results than
competing methods.
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Figure 6. Example results on real composite images.. We present real composite images, foreground mask, three state-of-the-art methods,
and the proposed model. The samples are taken from the testing dataset of [7]. Our method achieves better harmonized visual results than
competing methods.
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Figure 7. Example results on real composite images.. We present real composite images, foreground mask, three state-of-the-art methods,
and the proposed model. The samples are taken from the testing dataset of [7]. Our method achieves better harmonized visual results than
competing methods.
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E. Failure case

As has been refered in the main submission, the pro-
posed RainNet fails to deal with the case of images with
a blurred background with a sharp foreground object. Fig-
ure 8 shows an example. As can be found in Fig. 8, S2AM
performs better than the proposed RainNet and other meth-
ods. However, these methods also fail to produce consistent
boundary, introducing observable visual artifacts and dete-
riorating the visual quality. Our future work should focus
on this issue.

Input DIH DoveNet

RainNet Ground TruthAMS

Figure 8. Failure case.. The proposed RainNet fails to harmo-
nize the composite image with sharp foreground object and dim or
blurry background image.
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