
Supplementary Material - FFB6D: A Full Flow Bidirectional Fusion Network for
6D Pose Estimation

Yisheng He1 Haibin Huang3 Haoqiang Fan2 Qifeng Chen1 Jian Sun2

1Hong Kong University of Science and Technology 2 Megvii Technology 3Kuaishou Technology

A. Details of the Network Architecture

Figure 1 shows the detailed architecture of the proposed
FFB6D. We applied ImageNet [3] pre-trained ResNet34 [4]
and PSPNet [21] as encoder and decoder of the input RGB
image. Meanwhile, a RandLA-Net [7] is applied for point
cloud representation learning. On each encoding and de-
coding layer of the two networks, point-to-pixel and pixel-
to-point fusion modules are added for information commu-
nication. Finally, the extracted dense appearance and ge-
ometry features are concatenated and fed into the semantic
segmentation, center point voting, and 3D keypoints voting
modules for pose estimation. Details of each part are as
follows:

Network Input. The input of the convolution neural net-
work (CNN) branch is a full scene image with a size of
H×W×3, where H is the height of the RGB image, W the
width, and 3 the three channels of color information (RGB).
For the point cloud learning branch, the input is a randomly
subsampled point cloud from the scene depth image, with
a size of N × Cin, where N set to 12288 is the number
of sampled points, and Cin the input coordinate, color and
normal information of each point (x-y-z-R-G-B-nx-ny-nz).

Encoding Layers. We utilize ResNet34 [4] as the en-
coder of RGB images, which consists of five convolution
layers to reduce the size of feature maps and increase the
number of feature channels. The Pyramid Pooling Modules
(PPM) from PSPNet [21] is also applied in the last encoding
layer. Meanwhile, in the point cloud network branch, after
being processed by a fully connected layer, the point fea-
tures are fed into four encoding layers of RandLA-Net [7]
for feature encoding, each of which consists of a local fea-
ture aggregation module and a random sampling operation
designed in the work [7].

Decoding Layers. In the decoding stage, three up-
sampling modules and a final convolution layer from PSP-
Net are used for appearance feature decoding. Meanwhile,
in the point cloud network branch, four decoding layers
from RandLA-Net are utilized as point cloud features de-
coders, which consists of the random sampling operations
and local feature aggregation modules designed in [7].

Bidirectional Fusion Modules. On each encoding and
decoding stage, point-to-pixel and pixel-to-point fusion
modules (Section 3.2) are added for bidirectional informa-
tion communication. For each pixel-to-point fusion mod-
ule, we set Kr2p = 16 and aggregate 16 nearest pixel
of appearance features through a max-pooling and a sin-
gle layer shared MLP, MLP [cr, cp], where cr denotes the
channel size of RGB features and cp the channel size of cor-
responding point features. The aggregated pixels of appear-
ance features are then concatenated with the corresponding
point features and map by a shared MLP, MLP [2 ∗ cp, cp]
to generate each fused point feature. Meanwhile, we set
Kp2r = 1 and get the fused appearance features similarly
in each point-to-pixel fusion module.

Prediction Headers. Three headers are added after the
extracted dense RGBD features to predict the semantic la-
bel, center point offset as wel as the 3D keytpoints offsets
of each point. These headers consists of shared MLPs, de-
noted as MLP [cr+cp, c1, c2, ..., ck], where cr and cp repre-
sent the channel size of extracted appearance and geometry
features respectively, and ci the output channel size of the
i-th layer in the MLP. Specifically, the semantic segmenta-
tion module consists of MLP [cr + cp, 128, 128, 128, ncls],
the center offset learning module comprises MLP [cr +
cp, 128, 128, 128, 3], and the 3D keypoints offset module is
composed of MLP [cr + cp, 128, 128, 128, nkps ∗ 3], where
ncls denotes number of object classes and nkps means the
number of keypoints of each object.

Pose Estimation Modules. Given the predicted seman-
tic label and center point offset of each point in the scene, a
MeanShift [2] clustering algorithm is applied to distinguish
different object instances with the same semantic. Then, for
each instance, each point within it votes for its 3D keypoint
with the MeanShift [2] algorithm. Finally, a least-squares
fitting algorithm is applied to recover the object pose pa-
rameters according to the detected 3D keypoints.



(H//4, W//4, 64)

Input RGB Image 
(H, W, 3)

Input Point Cloud
(N, Cin)

(H//8,W//8,1024)

(H//8, W//8, 512)

(H//8, W//8, 128)

(H, W, 64)

(H//4, W//4, 256)

(H//2, W//2, 64)

(N//4, 64)

(N//256, 512)

(N//64, 256)

(N//16, 128)

(N//4, 64)

(N//64, 256)

(N//16, 128)

P2RF R2PF
ConvL LFA & RS

P2RF R2PF
ConvL LFA & RS

P2RF R2PF
ConvL & PPM LFA & RS

P2RF R2PF
PUP US & MLP

P2RF R2PF
PUP US & MLP

P2RF R2PF
PUP US & MLP

(H//4, W//4, 64) (N, 8)

P2RF R2PF
ConvL LFA & RS

(H, W, 64) (N, 64)

ConvL FC

US & MLPConv2D

Gathering & Concatenation

(N, 128)

3D Keypoint OffsetsCenter Point OffsetsSemantic Labels

Voting & Clustering

Instance Semantic Segmentation

Voting & Clustering

Per-Object 3D Keypoints

Least-Squares Fitting

6D Pose Parameters

MLPs MLPs MLPs

Figure 1: The detailed architecture of our FFB6D. For the convolution neural network (CNN) branch on the RGB image,
we utilize ResNet34 [4] and PSPNet [21] as encoder and decoder. ConvL: Convolution Layers of ResNet34, PPM: Pyramid
Pooling Modules of PSPNet, PUP: PSPNet Up-sampling, Conv2D: 2D convolution layer. For the point cloud network
(PCN) branch on the point cloud, we apply RandLA-Net [7] for feature extraction. FC: Fully Connected layer, LFA: Local
Feature Aggregation, RS: Random Sampling, MLP: shared Multi-Layer Perceptron, US: Up-sampling. In the flow of the two
networks, point-to-pixel fusion modules, P2RF, and pixel-to-point fusion modules, R2PF consists of max pooling and shared
MLPs are added. The extracted features from the two networks are then concatenated and fed into the following semantic
segmentation, center point voting and 3D keypoints voting modules [5] composed by shared MLPs. A clustering algorithm
is then applied to distinguish different instances with the same semantic labels and points on the same instance vote for their
target keypoints. With detected 3D keypoints, a least-squares fitting algorithm is applied to recover the pose parameters.



RGB RGB-D
PoseCNN
DeepIM
[18, 10]

PVNet[15] CDPN[11] DPOD[20] Point-
Fusion[19]

Dense-
Fusion[17]

G2L-
Net[1]

PVN3D[5] Our
FFB6D

ape 77.0 43.6 64.4 87.7 70.4 92.3 96.8 97.3 98.4
benchvise 97.5 99.9 97.8 98.5 80.7 93.2 96.1 99.7 100.0
camera 93.5 86.9 91.7 96.1 60.8 94.4 98.2 99.6 99.9
can 96.5 95.5 95.9 99.7 61.1 93.1 98.0 99.5 99.8
cat 82.1 79.3 83.8 94.7 79.1 96.5 99.2 99.8 99.9
driller 95.0 96.4 96.2 98.8 47.3 87.0 99.8 99.3 100.0
duck 77.7 52.6 66.8 86.3 63.0 92.3 97.7 98.2 98.4
eggbox 97.1 99.2 99.7 99.9 99.9 99.8 100.0 99.8 100.0
glue 99.4 95.7 99.6 96.8 99.3 100.0 100.0 100.0 100.0
holepuncher 52.8 82.0 85.8 86.9 71.8 92.1 99.0 99.9 99.8
iron 98.3 98.9 97.9 100.0 83.2 97.0 99.3 99.7 99.9
lamp 97.5 99.3 97.9 96.8 62.3 95.3 99.5 99.8 99.9
phone 87.7 92.4 90.8 94.7 78.8 92.8 98.9 99.5 99.7
MEAN 88.6 86.3 89.9 95.2 73.7 94.3 98.7 99.4 99.7

Table 1: Quantitative evaluation on the LineMOD dataset. The ADD-0.1d [6] metric is reported and symmetric objects are
in bold.

Method PoseCNN
[18]

Oberweger
[13]

Hu et al.
[9]

Pix2Pose
[14]

PVNet
[15]

DPOD
[20]

Hu et
al.[8]

HybridPose
[16]

PVN3D
[5]

Our
FFB6D

ape 9.6 12.1 17.6 22.0 15.8 - 19.2 20.9 33.9 47.2
can 45.2 39.9 53.9 44.7 63.3 - 65.1 75.3 88.6 85.2
cat 0.9 8.2 3.3 22.7 16.7 - 18.9 24.9 39.1 45.7
driller 41.4 45.2 62.4 44.7 65.7 - 69.0 70.2 78.4 81.4
duck 19.6 17.2 19.2 15.0 25.2 - 25.3 27.9 41.9 53.9
eggbox 22.0 22.1 25.9 25.2 50.2 - 52.0 52.4 80.9 70.2
glue 38.5 35.8 39.6 32.4 49.6 - 51.4 53.8 68.1 60.1
holepuncher 22.1 36.0 21.3 49.5 39.7 - 45.6 54.2 74.7 85.9
MEAN 24.9 27.0 27.0 32.0 40.8 47.3 43.3 47.5 63.2 66.2

Table 2: Quantitative evaluation on the Occlusion-LineMOD dataset. The ADD-0.1d [6] metric is reported and symmetric
objects are in bold.

B. Implementation: Different Representation
Learning Frameworks

In this section, we demonstrate the implementation de-
tails of different representation learning frameworks in Ta-
ble 4. To implement CNN-R⊕D, we lift each pixel in
the depth image to its corresponding 3D point to get the
XYZ map as well as the normal map. We then concate-
nate them with the RGB map and feed it into a ResNet34-
PSPNet encoding-decoding network for feature extraction
of each point (pixel). For PCN-R⊕D, we append RGB val-
ues of each point to its 3D coordinate as well as its nor-
mal vector and then utilize the RandLA-Net for representa-
tion learning. The CNN-R+CNN-D utilizes two ResNet34-
PSPNet networks for feature extraction from the RGB im-
age and the XYZ and normal maps respectively. Bidirec-
tional fusion modules (Section 3.2) are added to each en-
coding and decoding layer. For PCN-R+PCN-D, we lever-
age one RandLA-Net to extract features from the RGB
value of each point and another one for representation learn-
ing of the 3D coordinate and the normal vector of each
point. In the network flow, bidirectional fusion modules
are added to each layer for information communication
as well. To implement CNN-R+3DC-D, we replace the

RandLA-Net with a 3D convolution neural network. In the
encoding stages, the voxel size decreases from 323 to 43

(323 → 163 → 83 → 43) and the feature dimensions in-
creases from 32 to 256 (32 → 64 → 128 → 256). In the
decoding stage, the voxel size increases and feature dimen-
sions decrease inversely. Finally, the geometry feature of
each point is obtained within a trilinear interpolation man-
ner, as in PVCNN[12], which is then concatenated with the
appearance feature from CNN.

C. More Results

C.1. Quantitative result on the LineMOD dataset.

More results of 6D pose estimation on the LineMOD
dataset are shown in Table 1.

C.2. Quantitative result on the Occlusion-
LineMOD dataset.

We report more results on the Occlusion-LineMOD
dataset in Table 2. We follow the state-of-the-art to train our
model on the LineMOD dataset and only use this dataset for
testing.



Figure 2: Qualitative results of 6D pose on the YCB-Video dataset. Objects in bounding boxes show the pose that we
outperform the state-of-the-art significantly. Object vertexes in the object coordinate system are transformed by the ground
truth or predicted pose to the camera coordinate system and then projected to the image by the camera intrinsic matrix.
Compared to PVN3D [5] with the DenseFusion [17] architecture, our FFB6D is more robust towards occlusion and objects
with similar appearance or reflective surfaces, which are quite challenging for either isolated CNN or point cloud network
feature extraction.

C.3. Visualization on predicted pose on the YCB-
Video Dataset.

We provide some qualitative results on the YCB-Video
dataset in Figure 2.

References
[1] Wei Chen, Xi Jia, Hyung Jin Chang, Jinming Duan, and Ales

Leonardis. G2l-net: Global to local network for real-time 6d
pose estimation with embedding vector features. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4233–4242, 2020. 3

[2] Dorin Comaniciu and Peter Meer. Mean shift: A robust ap-
proach toward feature space analysis. IEEE Transactions
on Pattern Analysis & Machine Intelligence, (5):603–619,
2002. 1

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 2

[5] Yisheng He, Wei Sun, Haibin Huang, Jianran Liu, Haoqiang
Fan, and Jian Sun. Pvn3d: A deep point-wise 3d keypoints
voting network for 6dof pose estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11632–11641, 2020. 2, 3, 4

[6] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Ste-
fan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab.
Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In Asian
conference on computer vision, pages 548–562. Springer,
2012. 3

[7] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan
Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.
Randla-net: Efficient semantic segmentation of large-scale
point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11108–
11117, 2020. 1, 2

[8] Yinlin Hu, Pascal Fua, Wei Wang, and Mathieu Salzmann.
Single-stage 6d object pose estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2930–2939, 2020. 3

[9] Yinlin Hu, Joachim Hugonot, Pascal Fua, and Mathieu Salz-
mann. Segmentation-driven 6d object pose estimation. In
Proceedings of the IEEE Conference on Computer Vision



and Pattern Recognition, pages 3385–3394, 2019. 3
[10] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox.

Deepim: Deep iterative matching for 6d pose estimation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 683–698, 2018. 3

[11] Zhigang Li, Gu Wang, and Xiangyang Ji. Cdpn:
Coordinates-based disentangled pose network for real-time
rgb-based 6-dof object pose estimation. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 7678–7687, 2019. 3

[12] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-
voxel cnn for efficient 3d deep learning. In Advances in Neu-
ral Information Processing Systems, pages 965–975, 2019.
3

[13] Markus Oberweger, Mahdi Rad, and Vincent Lepetit. Mak-
ing deep heatmaps robust to partial occlusions for 3d object
pose estimation. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 119–134, 2018. 3

[14] Kiru Park, Timothy Patten, and Markus Vincze. Pix2pose:
Pixel-wise coordinate regression of objects for 6d pose esti-
mation. arXiv preprint arXiv:1908.07433, 2019. 3

[15] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hu-
jun Bao. Pvnet: Pixel-wise voting network for 6dof pose esti-
mation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4561–4570, 2019. 3

[16] Chen Song, Jiaru Song, and Qixing Huang. Hybridpose: 6d
object pose estimation under hybrid representations. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 431–440, 2020. 3

[17] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martı́n-Martı́n,
Cewu Lu, Li Fei-Fei, and Silvio Savarese. Densefusion: 6d
object pose estimation by iterative dense fusion. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3343–3352, 2019. 3, 4

[18] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network for
6d object pose estimation in cluttered scenes. arXiv preprint
arXiv:1711.00199, 2017. 3

[19] Danfei Xu, Dragomir Anguelov, and Ashesh Jain. Pointfu-
sion: Deep sensor fusion for 3d bounding box estimation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 244–253, 2018. 3

[20] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. Dpod:
6d pose object detector and refiner. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1941–1950, 2019. 3

[21] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017. 1, 2


