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A. Implementation Details
The reflectance and illumination are disentangled by

encoder-decoder networks, while lighting and guiding are
regressed using simple encoder networks. The reflectance
encoder-decoder network uses 4-layer ResBlocks and 2-
layer guiding blocks, and the illumination encoder-decoder
network adopts 4-layer lighting ResBlocks and 2-layer
guiding blocks. The final activation function is tanh for
reflectance, illumination, and guiding, while no activation
but average pooling with fully-connected layer for light-
ing. Reflectance and illumination encoder-decoder outputs
are normalized to [0, 1] to recover Ĥ. We train our model
using Adam optimizer [5] with parameters of β1 = 0.5,
β2 = 0.999 and learning rate α = 0.0001. We resize input
images as 256×256 for training and testing, and our model
produces harmonized images with the same size. Light la-
tent code is set as an 8-dimentional vector and inharmony-
free feature maps are 32 × 32 × 256 volume. We empiri-
cally set λRH = 0.1, λIS = 0.01, λIH = 0.1 and λIF = 1
in our experiments. Our model does not use the occluded
background information for training and testing.

We report the implementation details of our autoencoder-
based architecture for intrinsic image harmonization in Ta-
bles A (reflectance intrinsic image harmonization), B (illu-
mination intrinsic image harmonization), C (light learning),
and D (inharmony-free learning). We use standard encoder
networks for both light and inharmony-free learning, and
encoder-decoder networks for reflectance and illumination
intrinsic image harmonization. Symbols of the operators are
defined as follows:

• Conv(cin, cout, k, s, p): convolution with cin input
channels, cout output channels, kernel size k, stride s,
and padding p.
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• Linear(fin, fout): linear transformation with fin input
features and fout output features.

• ResBlock(cin, cout, k, s, p): residual block [4] with
cin input channels, cout output channels, kernel size k,
stride s, and padding p.

• GuidingBlock(cin, cout, k, s, p): our guiding block
with cin input channels, cout output channels, kernel
size k, stride s, and padding p.

• LightingResBlock(cin, cout, k, s, p): our lighting
residual block with cin input channels, cout output
channels, kernel size k, stride s, and padding p.

• Upsample(s): nearest-neighbor upsampling with a
scale factor of s.

• IN(n): instance normalization [8] with n dimensions.

• LN(n): layer normalization [1] with n dimensions.

• LReLU(α): Leaky ReLU [6] with a negative slope of
α.

B. Patch Covariance

We compute patch covariance for modeling patch rela-
tions by:

K(pfg,pbg) =
1

C − 1

C∑
i=1

(pfgi − p
fg
µ )(pbgi − p

bg
µ )T , (1)

where p ∈ RHW×C ; C, H and W represent the number
of channels, height and width, respectively; pfg and pbg

denote the transformed foreground and background feature
maps (from RC×H×W ); and pµ ∈ RHW×1 is the mean,
computed across channel dimension independently for each
spatial location.



Encoder Output size

Conv(3, 64, 7, 1, 3) + IN(64) + LReLU(0.2) 256
Conv(64, 128, 4, 2, 1) + IN(128) + LReLU(0.2) 128
Conv(128, 256, 4, 2, 1) + IN(256) + LReLU(0.2) 64

Bottleneck Output size

ResBlock(256, 256, 3, 1, 1) ×4 64
GuidingBlock(256, 256, 3, 1, 1) ×2 64

Decoder Output size

Upsample(2) 128
Conv(256, 128, 3, 1, 1) + LN(128) + LReLU(0.2) 128
Upsample(2) 256
Conv(128, 64, 3, 1, 1) + LN(64) + LReLU(0.2) 256
Conv(64, 3, 7, 1, 3) + Tanh→ output 256

Table A. Network architecture for reflectance intrinsic image har-
monization.

Encoder Output size

Conv(3, 64, 7, 1, 3) + IN(64) + LReLU(0.2) 256
Conv(64, 128, 4, 2, 1) + IN(128) + LReLU(0.2) 128
Conv(128, 256, 4, 2, 1) + IN(256) + LReLU(0.2) 64

Bottleneck Output size

LightingResBlock(256, 256, 3, 1, 1) ×4 64
GuidingBlock(256, 256, 3, 1, 1) ×2 64

Decoder Output size

Upsample(2) 128
Conv(256, 128, 3, 1, 1) + LN(128) + LReLU(0.2) 128
Upsample(2) 256
Conv(128, 64, 3, 1, 1) + LN(64) + LReLU(0.2) 256
Conv(64, 3, 7, 1, 3) + Tanh→ output 256

Table B. Network architecture for illumination intrinsic image har-
monization.

Encoder Output size

Conv(3, 64, 7, 1, 3) + LReLU(0.2) 256
Conv(64, 128, 4, 2, 1) + LReLU(0.2) 128
Conv(128, 256, 4, 2, 1) + LReLU(0.2) 64
AdaptiveAvgPool2d(1) 1

MLP Output size

Linear(256, 8)→ output 1

Table C. Network architecture for light learning.

Encoder Output size

Conv(3, 32, 7, 1, 3) + LReLU(0.2) 256
Conv(32, 64, 4, 2, 1) + LReLU(0.2) 128
Conv(64, 128, 4, 2, 1) + LReLU(0.2) 64
Conv(128, 256, 4, 2, 1) + LReLU(0.2) 32
Conv(128, 256, 3, 1, 1) + Tanh→ output 32

Table D. Network architecture for inharmony-free learning.

C. Evaluation Metrics
In addition to MSE and SSIM [9], we also report fore-

ground MSE (fMSE) and foreground SSIM (fSSIM) to
measure how well the foreground is harmonized. MSE and
SSIM essentially evaluate harmonization performance over
all pixels across the dataset (dataset-level), while fMSE and
fSSIM measure the harmonization over each single image
(with different sizes of foreground) averaging on the dataset
(image-level). We argue that image-level fMSE and fSSIM
are more suitable to evaluate the harmonization generaliza-
tion ability since many pixels (background) are unchanged
and the sizes of foreground are different in terms of each
image. Given the real image H and the harmonized image
Ĥ, we provide the details of these four metrics as follows.

C.1. MSE vs. fMSE

We compute MSE by:
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∥∥∥Ĥ(n)
k −H

(n)
k

∥∥∥
2
, (2)

whereK is the pixel number of image (k is the pixel index),
N is the image number of dataset (n is the image index),
and 3 means three RGB channels of image.

And we compute our fMSE by:

fMSE(Ĥ,H) =
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where K(n)
fg is the foreground pixel number of n-th image,

and M denotes the foreground mask.
Refer to Table 1 in the paper, it is worth mentioning that

our method is superior to DoveNet in fMSE, but inferior to
DoveNet in MSE on Hday2night, mainly because that MSE
evaluates harmonization performance at the dataset level
while fMSE reflects harmonization ability at the image level
which is more valuable and generalized, for instance, one
method may obtain lower MSE yet higher fMSE because
it harmonizes some images with big foreground very better
while harmonizes some images with small foreground very
worse, indicating unstable performance.

C.2. SSIM vs. fSSIM

We compute SSIM by:
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where J is the window number of image (j is the window
index),N is the image number of dataset (n is the image in-
dex), and SSSIM is the structural similarity function referring
to [9].
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where J (n)
fg and J

(n)
bg are the foreground and background

window number of n-th image respectively, M denotes the
foreground mask, and � indicates element-wise product.

Refer to Table 1 in the paper, surprisingly, composite im-
ages have highest SSIM scores representing best structural
similarity to real images, suggesting that, (1) the inharmony
of composite images is not caused by structure or semantics,
so that the illumination may play an important role, and (2)
all listed methods may destroy image structure during har-
monization, among which our method is least destructive
yet makes most harmonious. Noting that, in terms of fS-
SIM, our method performs best against all other methods
as well as composite images, also because that SSIM eval-
uates at dataset level while fSSIM evaluates at image level
(similar to MSE vs. fMSE), thus yielding inconsistent trend
changes due to different size of foreground for each image.

D. Additional Quantitative Results of iHar-
mony4+HVIDIT

We report the quantitative comparison results of image
harmonization models retrained by merging our HVIDIT
into iHarmony4 [2] in Table E.

E. Additional Qualitative Results

We show additional qualitative comparison results of im-
age harmonization in Figures A and B. And we show har-
monized results with normal masks and inverted masks in
Figures C and D. We also show light latent representation
results by changing light latent code in Figure E, and vi-
sual results transferring the light from one source image to
another target image in Figure F.

F. Results on Real Composite Images

We finally show all visual comparison results of differ-
ent methods to harmonize 99 real composite images in Fig-
ures G–Q.
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Dataset Metric Composite Retinex-Net [10] DIH [7] S2AM [3] DoveNet [2] Ours Ours Ours Ours(base) (base+lighting) (base+guiding)

HCOCO

PSNR↑ 33.94 33.09 33.58 34.92 35.75 36.01 37.08 36.82 36.96
MSE↓ 69.37 69.11 55.84 37.32 36.05 29.77 23.42 27.92 22.03

fMSE↓ 996.59 988.08 803.19 568.14 547.78 483.75 420.19 470.37 410.21
SSIM↑ 0.9853 0.9544 0.9460 0.9451 0.9550 0.9751 0.9762 0.9756 0.9811

fSSIM↑ 0.8257 0.8249 0.8225 0.8454 0.8482 0.8388 0.8592 0.8402 0.8621

HAdobe5k

PSNR↑ 28.16 27.34 31.53 32.67 33.84 34.16 35.02 34.95 35.06
MSE↓ 345.54 337.33 101.04 64.28 57.15 49.82 41.17 46.11 40.15

fMSE↓ 2051.61 2006.31 605.36 473.09 376.42 346.37 251.16 304.12 248.13
SSIM↑ 0.9483 0.8859 0.8721 0.8900 0.8853 0.9354 0.9390 0.9368 0.9362

fSSIM↑ 0.7294 0.7240 0.7766 0.8059 0.8144 0.8071 0.8377 0.8042 0.8384

HFlickr

PSNR↑ 28.32 28.03 28.99 30.46 30.54 30.72 31.17 30.89 31.23
MSE↓ 264.35 265.63 167.90 116.11 125.74 125.11 100.76 109.02 97.69

fMSE↓ 1574.37 1565.72 1103.85 757.69 813.34 795.95 708.86 753.19 700.51
SSIM↑ 0.9618 0.9299 0.9130 0.9179 0.9281 0.9491 0.9592 0.9507 0.9604

fSSIM↑ 0.8031 0.7986 0.7981 0.8242 0.8247 0.8032 0.8287 0.8089 0.8299

Hday2night

PSNR↑ 34.01 33.16 33.91 34.66 34.43 34.25 35.05 34.87 35.76
MSE↓ 109.65 110.25 75.51 51.11 57.17 90.14 55.58 80.13 51.16

fMSE↓ 1409.98 1405.23 1002.55 848.48 1001.27 1301.06 841.33 1052.11 776.41
SSIM↑ 0.9606 0.8995 0.8862 0.8908 0.8972 0.9293 0.9428 0.9309 0.9382

fSSIM↑ 0.6353 0.6321 0.6433 0.6467 0.6414 0.6010 0.6481 0.6053 0.6529

HVIDIT

PSNR↑ 38.53 36.32 36.62 36.24 36.80 40.55 40.31 40.29 41.55
MSE↓ 53.12 53.01 45.55 45.82 35.36 33.16 22.51 25.57 20.16

fMSE↓ 1604.41 1603.21 1207.03 1230.92 1186.19 934.63 861.09 925.01 800.92
SSIM↑ 0.9921 0.9321 0.9310 0.9206 0.9585 0.9900 0.9912 0.9908 0.9914

fSSIM↑ 0.7612 0.7161 0.7512 0.7401 0.7440 0.7136 0.7635 0.7560 0.7686

All

PSNR↑ 31.92 31.08 32.65 33.86 34.68 35.09 35.97 35.78 35.99
MSE↓ 167.39 165.09 80.37 53.88 51.88 46.76 37.17 42.48 35.61

fMSE↓ 1386.12 1381.32 800.73 594.90 541.74 512.05 411.74 470.30 390.03
SSIM↑ 0.9723 0.9308 0.9202 0.9248 0.9318 0.9611 0.9640 0.9620 0.9660

fSSIM↑ 0.7904 0.7881 0.8009 0.8242 0.8349 0.8167 0.8532 0.8313 0.8727
Note: we retrain the models on iHarmony4+HVIDIT to obtain the results for comparison.

Table E. Quantitative comparison on iHarmony4+HVIDIT. The ↑ indicates the higher the better, and ↓ indicates the lower the better. The
best results are denoted in boldface. We compute fMSE and fSSIM at image level for better harmonization reflection.
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Figure A. Additional qualitative comparison results of image harmonization. Red boxes in composite images mark foreground.
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Figure B. Additional qualitative comparison results of image harmonization. Red boxes in composite images mark foreground.
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Figure C. Additional qualitative comparison results of image harmonization with normal masks and inverted masks. Red boxes in composite
images mark foreground.
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Figure D. Additional qualitative comparison results of image harmonization with normal masks and inverted masks. Red boxes in com-
posite images mark foreground.



Figure E. Additional qualitative light latent representation results by changing light latent code.

Figure F. Additional qualitative results transferring the light from one source image to another target image.



Figure G. Visual comparison results on real composite images. Red boxes in composite images mark foreground.



Figure H. Visual comparison results on real composite images. Red boxes in composite images mark foreground.



Figure I. Visual comparison results on real composite images. Red boxes in composite images mark foreground.



Figure J. Visual comparison results on real composite images. Red boxes in composite images mark foreground.



Figure K. Visual comparison results on real composite images. Red boxes in composite images mark foreground.



Figure L. Visual comparison results on real composite images. Red boxes in composite images mark foreground.



Figure M. Visual comparison results on real composite images. Red boxes in composite images mark foreground.



Figure N. Visual comparison results on real composite images. Red boxes in composite images mark foreground.



Figure O. Visual comparison results on real composite images. Red boxes in composite images mark foreground.



Figure P. Visual comparison results on real composite images. Red boxes in composite images mark foreground.



Figure Q. Visual comparison results on real composite images. Red boxes in composite images mark foreground.


