
TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly

Representations

Jiahao Pang Duanshun Li∗ Dong Tian

InterDigital, Princeton, NJ, USA

jiahao.pang@interdigital.com, duanshun@ualberta.ca, dong.tian@interdigital.com

Abstract

Topology matters. Despite the recent success of point

cloud processing with geometric deep learning, it remains

arduous to capture the complex topologies of point cloud

data with a learning model. Given a point cloud dataset con-

taining objects with various genera, or scenes with multiple

objects, we propose an autoencoder, TearingNet, which tack-

les the challenging task of representing the point clouds us-

ing a fixed-length descriptor. Unlike existing works directly

deforming predefined primitives of genus zero (e.g., a 2D

square patch) to an object-level point cloud, our TearingNet

is characterized by a proposed Tearing network module and

a Folding network module interacting with each other itera-

tively. Particularly, the Tearing network module learns the

point cloud topology explicitly. By breaking the edges of a

primitive graph, it tears the graph into patches or with holes

to emulate the topology of a target point cloud, leading to

faithful reconstructions. Experimentation shows the superi-

ority of our proposal in terms of reconstructing point clouds

as well as generating more topology-friendly representations

than benchmarks.

1. Introduction

Based on a point cloud sampled from the surface of an

object (or a scene), humans are able to perceive its under-

lying shape. Via properly capturing the topology behind

the point set, human understanding is robust to variations

in scales and viewpoints. Intuitively, topology reflects how

the points are put together to form an object. Moreover,

topology is an intrinsic property of Riemannian manifolds

that are usually used to model 3D shapes in geometric learn-

ing [2, 23]. Hence, it is important to seek topology-aware

representations for point clouds in machine learning.

As an unsupervised learning architecture, autoencoder

(AE) [25] is popularly investigated to learn latent represen-

tations with unlabeled point clouds. It tries to approximate

∗Work done while the author was an intern at InterDigital.

(a) Input (b) 2D primitive
Folding
−−−−→ (c) 3D point cloud

(i
i)

A
ft

er
T

ea
ri

n
g

←
−
−
−
−

(i
)
B

ef
o

re
(i

v
)
A

ft
er

T
ea

ri
n
g

←
−
−
−
−

(i
ii

)
B

ef
o

re

Figure 1. TearingNet for point cloud reconstruction. By Tearing

and Folding, we achieve high-quality reconstructions (c-ii) and

(c-iv). Edges of the primitive graphs are also drawn in (b) and (c).

an identity function that is non-trivially constrained by out-

putting a compact representation from its encoder network.

The decoder network attempts to reconstruct the point cloud

from the compact representation. The compact representa-

tion typically takes the shape of a fixed-length codeword

which characterizes geometric properties of point clouds.

Therefore, it not only preserves the ability for reconstruc-

tion [6] but is also valuable for high-level tasks such as

classification [40, 42, 11].

With ample topological structures in the real world, un-

fortunately, it is non-trivial to produce topology-friendly

representations that count for object point clouds with holes

(i.e., varying genera) or scene point clouds with a varying

7453



number of objects (i.e., varying zeroth Betti number [33]).

For example, to represent a multi-object scene, a descriptor

not only needs to delineate the shapes of individual objects

but also the spatial relationship between them. In fact, ex-

isting works, including LatentGAN [1], FoldingNet [40],

AtlasNet [14], 3D Point Capsule Network [42] and Graph-

TER [11], all target to reconstruct point clouds with simple

topologies, e.g., object point clouds. Some other works,

such as AtlasNetV2 [8] and DeepSDF [27], even train class-

specific networks to alleviate the effects of ample topologies

across classes.

To tackle this challenge, we propose a new autoen-

coder for point cloud, entitled TearingNet. Similar to

FoldingNet [40], AtlasNet [14] and 3D Point Capsule Net-

work [42], etc., we reconstruct point clouds by deforming

genus zero 2D primitives (e.g., a regular 2D patch). Dif-

ferently, we novelly tear the primitive with holes or into

several parts to match its topology to the target point clouds,

e.g., Figure 1b-ii and Figure 1b-iv. Our architecture cou-

ples a proposed Tearing network and a Folding network,

letting them interact with each other. Especially, by run-

ning through a trial folding in the first place, our proposal

enables the Tearing network to tear a graph defining on the

2D primitive, letting it count for the empty space in object

holes and boundaries. The torn primitive graph, with de-

sired topology similar to the target point cloud, is fed to the

Folding network again. In this way, the Tearing network and

the Folding network run alternatively to decode an accurate

reconstruction.

We verified that the TearingNet generates topology-

friendly representations. The superiority of the obtained

representations is demonstrated in different down-stream

tasks, including shape reconstruction, object counting, and

object detection. We also examine why the learned represen-

tations are topology-aware by analyzing the feature space.

The contributions of our work can be summarized below:

(i) We propose a novel autoencoder—TearingNet—to gen-

erate topology-friendly representations for complex 3D

point clouds. Our TearingNet includes a Folding net-

work (F-Net) and a Tearing network (T-Net) “talking”

to each other by a feedback loop, which gradually im-

proves the reconstructions.

(ii) Our TearingNet endeavors to explicitly learn the target

point cloud topology. By tearing a local graph built

upon the 2D primitive, we update its topology to match

with the ground-truth point cloud. With the notion of

graph tearing, our proposal is generalized as a Graph-

Conditioned AutoEncoder (GCAE) which discovers

and utilizes topology iteratively.

(iii) We unroll the proposed TearingNet then apply its pro-

duced representations to several tasks that are sensitive

to topology, e.g., reconstruction, and object counting,

which verify our superiority. We further analyze the

structure of the feature space to understand how the

topology-friendliness is achieved.

Our paper is organized as follows. Section 2 reviews

related work. In Section 3, we present the methodology of

the TearingNet under the notion of graph tearing. Section 4

unrolls the TearingNet architecture then illustrates its individ-

ual components. Experimentation is presented in Section 5

and conclusions are provided in Section 6.

2. Related Work

Recently, geometric deep learning has shown great poten-

tial in various point cloud applications [15]. Compared to

deep learning on regularly structured data such as image and

video, point cloud learning is, however, more challenging as

the points are unorganized and irregularly sampled over the

object/scene surface.

Non-native learning of point cloud: Conventionally,

point clouds are preprocessed, e.g., either voxelized [24, 19]

or projected into multiview images [34], so as to carry over

deep learning frameworks justified in the image domain.

After format conversion, for example, the conventional con-

volutional neural network (CNN) could be applied on 3D

voxels or 2D pixels [7, 31]. Obviously, voxelization exhibits

a tradeoff between accuracy and data volume; while mul-

tiview projection is a balance between accuracy/occlusion

and data volume. Such compromises occur even before

the data is fed into deep neural networks. Octree-like ap-

proaches [36] demonstrate limited adaptivity on such trade-

offs. Fortunately, emerging techniques for native learning on

point clouds relieve the frustration from the front.

Point cloud encoders: In [29], Qi et al.propose Point-

Net, which directly operates on input points and generates a

latent codeword depicting the object shape. The latent code

is point permutation invariant through a pooling operation.

Once equipped with object-level or part-level labels, Point-

Net could serve for supervised tasks like classification or

segmentation. Qi et al. [29] also show that, PointNet is a

universal approximator of any set functions. In other words,

it is highly flexible network whose behavior heavily depends

on the overall network design. PointNet++ [30] recursively

applies PointNet in a hierarchical manner so as to capture

local structures and enhance the ability to recognize fine-

grained patterns. With similar motivations, PointCNN [22]

utilizes a hierarchical convolution and Dynamic Graph CNN

(DGCNN) [37] employs an edge-convolution over graphs.

In brief, advanced feature extractors for point clouds often

exploit local topology information.

Point cloud decoders: As opposed to the advanced fea-

ture extractors, designs of current point cloud generators,

e.g., the generator in a Generative Adversarial Network

(GAN) [13] and the decoder in an autoencoder (AE) [25],

appear to be more preliminary without taking the advantage

7454



of topology. For example, topology is never counted by

the fully-connected decoder of LatentGAN [1]. Exploit-

ing the fact that point clouds are sampled from 2D sur-

faces/manifolds, the pioneering works FoldingNet [40] and

AtlasNet [14] propose to fold/deform 2D primitives to re-

construct 3D point clouds. They for the first time embed

topology explicitly with 2D patches, such as square patches,

of genus zero in their decoders.

FoldingNet adopts a PointNet-like [29] encoder to pro-

duce latent representations. Like the PointNet encoder, Fold-

ingNet decoder is a point-wise network shared among points.

Given a predefined 2D primitive (e.g., 2D square patch or a

sphere), the FoldingNet decoder takes a 2D coordinate from

the primitive and latent codeword as input, then maps the

2D point to a 3D coordinate. The set of 3D points mapped

by the FoldingNet decoder constitute the reconstructed point

cloud. Unfortunately, by a direct mapping from the regular

2D samples to 3D points, FoldingNet fails to represent point

clouds with complex topologies even if the network is scaled

up [40]. AtlasNet [14] and AtlasNetV2 [8] naively dupli-

cate primitive-decoder pairs to comply with different shapes;

while 3D Point Capsule Network [42] learns multiple latent

capsules to describe individual object parts. However, these

approaches do not scale well for point clouds with complex

topologies (Section 5.3). In [5], a fully-connected graph is

advanced as a companion to the FoldingNet decoder aiming

to approximate point cloud topology by a graph. Its main

weakness is in the misaligned topology from graphs to point

clouds as it allows connections between distant point pairs.

Recent works, such as DeepSDF [27] and DISN [39],

propose to use signed distance functions (SDF) as implicit

representations of 3D shapes. However, learning of such

representations requires additional knowledge of object sur-

face that is difficult to acquire in practice. For instance,

the widely used LiDAR sensors only provide sparse and

incomplete point clouds [12].

Motivated by the limitations in the related work, we pro-

pose an autoencoder—TearingNet. Intuitively, our proposal

“tears” the 2D primitive into pieces or with holes so as to

align its topology to the target 3D point clouds. It effectively

drives the latent representation to be aware of the topology of

the point clouds. To the best of our knowledge, TearingNet

is the first autoencoder that is able to use a fixed-length latent

representation to reconstruct multi-object point clouds.

3. Topology Update with the TearingNet

3.1. Overview

A block diagram of the TearingNet is shown in Figure 2.

The Encoder network (referred to as E-Net, “E” in Figure 2)

first generates a latent representation c from an input 3D

point cloud. It is then passed to the TearingNet decoder,

which consists of two sub-networks. On top of the Fold-

T

F

E ⊕+
+

Decoder

Figure 2. Block diagram of the TearingNet/GCAE, featured by

the interaction between the F-Net and the T-Net. “E”, “F”, “T”

represent the E-Net, F-Net and T-Net, respectively.

ingNet [40] decoder, referred to as Folding network (F-Net)

hereinafter, a novel Tearing network (T-Net) is proposed to

couple with the F-Net by a feedback loop. Given a codeword

c, the TearingNet decoder runs the F-Net and the T-Net (“F”

and “T” in Figure 2) iteratively. In a nutshell, the F-Net

takes as input a certain topology (represented by Û) and

“embeds” it to a 3D point cloud X̂, then the T-Net considers

X̂ to “correct” the topology with a feedback connection.

For an input 3D point cloud X = {xi}
n
i=1 composed of n

points xi = (xi, yi, zi), the encoder first generates a vector

c ∈ R
d. As an auxiliary input, a 2D point set U = {ui}

m
i=1

samples m points ui = (ui, vi) on a 2D region. Similar

to FoldingNet [40], it contains regularly sampled 2D-grid

locations in the square region [−1, 1]× [−1, 1] (the points in

Figure 1b-i and Figure 1b-iii). This point set U brings in a

primitive shape for reconstruction, which embodies a genus

zero topology. For convenience, the 2D point set is also

referred to as 2D grid in the sequel. With the 2D grid Û (or

U at the first iteration), the Folding network maps each of its

2D point ûi to a 3D coordinate x̂i, aiming at reconstructing a

3D point cloud X̂ following the topology of Û. The Tearing

network especially takes X̂ and modifies each 2D point

in Û individually, leading to a new 2D grid representing

an updated topology (e.g., Figure 1b-ii and Figure 1b-iv).

Hence, the Folding network and the Tearing network interact

with each other for high-quality reconstructions.

3.2. Tearing as Breaking Graph Edges

With the Tearing network that “stretches” the 2D grid, the

overall TearingNet still admits a continuous mapping from

the 2D space to 3D. It appears to be conflict with the notion

of tearing, which implies introducing discontinuities. We fill

this gap by viewing tearing as collectively breaking graph

edges that connect neighboring points on the 2D grid.

2D grid as a local graph: The 2D grid U in our work

(as well as FoldingNet [40] and AtlasNet [14]) essentially

approximates a simple Riemannian manifold—a genus zero

square patch, denoted as M—with m points regularly sam-

pled on it. From [18, 35], etc., to represent/approximate a

Riemannian manifold (in the continuous domain) with its

sampled points (in the discrete domain) means to construct

a local graph connecting the nearby points. In other words,

7455



the set U implies a primitive graph (denoted as G) associated

with the manifold M. This graph G, according to [18], have

m vertices, with each represents one point in U. For any two

points ui and uj from U, the graph weight between them is

given by a truncated Gaussian kernel:

wij =





exp

(
−
‖ui − uj‖

2
2

2ǫ2

)
if ‖ui − uj‖2 ≤ r,

0 otherwise,
(1)

where ǫ > 0 is a parameter controlling the sensitivity of the

graph weight, and r > 0 is a threshold. Hence, the primitive

graph G is an r-neighborhood graph, i.e., there is no edge

between two points with a distance greater than r.

Graph tearing: Suppose the 2D grid U has N2 points

with a dimension N × N . According to [17, 18], as r in

Eq. (1) becomes smaller and N becomes larger (i.e., 2D grid

U sampling M gets denser), the graph G better approximates

M. Given a certain dimension N , we also let r be small,

which takes a value just equal to or slightly larger than 2/N—

the horizontal/vertical spacing of neighboring points.1 Then

from Eq. (1), each point ui has four edges connecting to its

neighbors—the top, left, bottom, and right points—on the

2D grid U. Hence, before feeding to the Tearing network, G
defaults back to a simple 2D grid graph, e.g., Figure 1b-i.

Running the Tearing network updates the 2D grid U as

well as the graph. Particularly, a 2D point ui is moved to

another location ûi. Thus, for any two neighboring points

in the 2D grid that are pulled apart by the Tearing network,

the graph edge between them is naturally broken, resulting

in an updated graph (denoted at Ĝ). In our proposal, the

breakings of all the edges collectively achieve tearing in the

graph domain and update the underlying topology:

(i) When localized edges within the 2D grid are removed

by the Tearing network, a gap/seam is introduced to

the graph topology. This is to reconstruct a target point

cloud with holes (i.e., its genus number g > 0), see

Figure 1c-ii.

(ii) When all the edges connecting two groups of points

in the 2D grid are removed by the Tearing network,

the graph is torn apart into disconnected sub-graphs.

This benefits the reconstruction when the two groups

correspond to two distinct objects. Hence, a point cloud

with multiple objects (i.e., its zeroth Betti number b0 >
1) is reconstructed, see Figure 1c-iv.

Note that in practice, both of these two cases may happen on

the same point cloud.

Torn graph as a free mesh: The torn graph Ĝ—as a side

output—naturally represents a mesh over the reconstructed

point cloud. In fact, each elementary square on the 2D grid

1An even smaller r results in the trivial case which no graph edges exist.

(a) Induced mesh (b) TearingNet (c) FoldingNet

Figure 3. The torn graphs induce 3D meshes (a) and bring better

resampled point clouds (b) than that of the FoldingNet (c). Each

row in this figure is associated to an example in Figure 1.

corresponds to a quadrilateral face of the 3D mesh, where

a face is pruned if it has any edges removed by the Tearing

network. Then the remaining faces together constitute a 3D

mesh. See Figure 3a for an example.

The torn graph also enables us to resample the input 3D

point cloud by resampling 2D points in manifold M while

avoiding the “ghost” 3D points between different objects or

within object holes. This is achieved by removing outliers

sampled on the pruned faces (Figure 3b). In contrast, it is

inevitable for the simple FoldingNet to introduce undesired

points in the resampled point cloud (Figure 3c).

3.3. Graph­Conditioned AutoEncoder

The insights of graph tearing motivate us to generalize the

architecture of Figure 2 and call it a Graph-Conditioned Au-

toEncoder (GCAE), which we believe useful for processing

data where topology matters, e.g., image, video, or any graph

signals. It promotes an explicit way to discover and utilize

topology within an autoencoder. Particularly, it is equipped

with a graph Ĝ whose topology evolves by iterating F-Net

and T-Net. F-Net embeds the graph to a reconstruction;

while T-Net attempts to decodes a graph (in a residual form)

from a reconstruction, which may tear a graph into patches

or with holes to achieve desired reconstructions.

4. The TearingNet Architecture

In this section, we unroll the TearingNet (Figure 2) then

elaborate on its components, especially the Tearing network.

4.1. Unrolling the TearingNet

As a concrete example, Figure 4 shows an unrolled ver-

sion of the TearingNet where a T-Net is wedged into two

iterations of F-Net. We adopt the PointNet architecture [29]

as our encoder due to its flexibility (as discussed in Sec-

tion 2): it has the potential to generate topology-friendly

representations given it is trained properly. With the latent

code c (a 512-dimension vector in our work) and the initial

7456



Folding Tearing FoldingEncoder
Graph 

Filtering

Shared

Decoder

⊕

…
…

Figure 4. Block diagram of an unrolled TearingNet which has a T-Net wedged in-between two iterations of F-Net.

point set U(0) (the regular 2D grid) as inputs, the TearingNet

decoder (in Figure 4) runs F-Net, T-Net and F-Net sequen-

tially. Specifically, an input point u
(0)
i ∈ U(0) is mapped to

a 3D point x
(2)
i :

x
(1)
i = F

(
u
(0)
i ; c

)

→ u
(1)
i = T

(
u
(0)
i ,x

(1)
i ; c

)
+ u

(0)
i

→ x
(2)
i = F

(
u
(1)
i ; c

)
,

(2)

where F and T denote the point-wise networks of F-Net and

the T-Net, respectively. We see that, the F-Net first endeavors

a trial folding to produce a preliminary 3D point cloud X(1).

The T-Net takes X(1) and generates the 2D point set U(1).

It is then supplied to the second iteration of F-Net for an

improved 3D point cloud X(2).

With the updated 2D point set U(1) and the second Fold-

ing network output X(2), one may optionally append a graph

filtering module at the end to further enhance the reconstruc-

tion. Note that all reconstructions X(·) contain m points, the

same as that of the 2D pointsets U(·). By iterating the F-Net

twice (as Figure 4), the TearingNet achieves a good tradeoff

between computation and reconstruction quality. Hence, we

focus on this configuration for experimentation.

4.2. The Tearing Network

As a core ingredient, the Tearing network (or T-Net) is

introduced to explicitly learn the topology by tearing the

primitive graph, which boosts the reconstruction accuracy,

and ultimately enhances the representability of the codeword.

In our design, the Tearing network learns point-wise modi-

fications to the 2D point set U(0) and computes U(1) with

a residual connection [16], see Figure 4. The 2D points are

then moved around like flocks depending on the topology

chart they belong to.

Similar to PointNet [29] and the Folding network [40], the

Tearing network consists of shared point-wise MLP layers.

Its architecture, as well as its model scale, are similar to that

of the Folding network. Given the 2D coordinate u
(0)
i ∈ R

2,

it is first concatenated with the associated 3D coordinate

x
(1)
i ∈ R

3 as well as the codeword c ∈ R
512, to form a 517-

dimensional vector. This vector is then fed to the point-wise

network T with two stages of MLP layers, and produces a

translation vector on the 2D plane. The detailed architecture

of the Tearing network is provided in the supplementary

material.

To demonstrate the effectiveness of the Tearing network,

we train the whole TearingNet to over-fit the Torus dataset in-

troduced in [5] which contains 300 torus-shape point clouds

with genus number ranging from 1 to 3. Figure 1c-i and

Figure 1c-ii show a genus-3 torus before and after the T-Net

respectively, where we see that the 2D grid is “torn” with

holes to accommodate the topology of the input torus.

4.3. Graph Filtering for Enhancement

Equipped with the torn graph, we propose an optional

graph filter appended at the end of the TearingNet (see

Figure 4) to improve the reconstruction point cloud [5].

We first compute the unnormalized graph Laplacian ma-

trix L ∈ R
m×m of the graph Ĝ. Then we run the following

graph filter [32] to obtain the final output X(3):

X(3) = (I− λL) ·X(2) (3)

where the point clouds X(·) are viewed as m× 3 matrices

and the filtering parameter λ = 0.5.

For better filtering, we incorporate the second folding

output X(2) when computing the edge weights—we let

pi =

[
u
(1)
i

T
x
(2)
i

T
]T

, and compute ‖pi − pj‖
2
2 instead

of ‖ui − uj‖
2
2 in Eq. (1). Additionally, rather than thresh-

olding with distance r, we equivalently remove an edge if

its weight is too smaller (i.e., less than 10−12). We see that

our graph filter is a lightweight and differentiable signal

processing module for enhancement with little overhead.

Thus, it is included in the end-to-end training of the unrolled

TearingNet.

7457



5. Experimentation

In this section, the training of the TearingNet, alongside

with other experimental settings, are first introduced. We

then perform the evaluation on three tasks: reconstruction,

object counting, and object detection.

5.1. Training of the TearingNet

Instead of training the entire TearingNet directly, we first

pre-train the Encoder network (E-Net) and the Folding net-

work (F-Net). They are trained together under the Fold-

ingNet [40] autoencoder architecture without the Tearing

network. After that, we load the pre-trained E-Net and F-Net

then train the overall TearingNet autoencoder as shown in

Figure 4. This step specifically lets the Tearing network learn

to tear the 2D grid/primitive graph and update the topology.

In this step, a smaller learning rate is adopted. Details of the

training strategy are provided in the supplementary material.

Similar to [6, 40], we train the overall TearingNet (and

other methods) with the augmented Chamfer distance. Given

an original and a reconstructed point clouds being X and X̂,

respectively, the augmented Chamfer distance is written as:

d
X,X̂

=max




1

n

∑

x∈X

min
x̂∈X̂

‖x− x̂‖2 ,
1

m

∑

x̂∈X̂

min
x∈X

‖x− x̂‖2



 .

(4)
Eq. (4) essentially gives the Hausdorff distance between two

point clouds [3]. As analyzed in [6], it is more robust to ill

cases compared to the original Chamfer distance [10].

5.2. Experimental Setup

Datasets: We verify our work with both single- and multi-

object point cloud datasets, with a focus on the latter ones.

Particularly, we adopt ShapeNet [4] and Torus [5] datasets to

experiment with the single-object scenarios; while we collect

objects from off-the-shelf point cloud datasets to synthesize

multi-object point cloud datasets. To assemble a point cloud

with k objects, a K ×K square-shaped “playground” with

K2 grids is defined to host objects. Then randomly picked

k ≤ K2 objects are normalized and randomly placed on the

grids of the playground.

We first generate multi-object datasets with objects from

KITTI 3D Object Detection [12]. In total, 10165 objects

from KITTI with labels Pedestrian, Cyclist, Car,

Van and Truck are “cropped” using annotated bounding

boxes.

Four datasets are created with playground dimensions

K ∈ {3, 4, 5, 6}, and the resulting KITTI multi-object

datasets are called KIMO-K respectively. Each KIMO-K
dataset is composed of K × 10000 and K × 2000 point

clouds for training and testing, where each point cloud has

up to K2 objects. All generated point clouds have 2048
points, and each object in a point cloud occupies roughly the

same number of points. The KIMO-K datasets are challeng-

ing, since they are composed of real LiDAR scans that are

sparse and incomplete (e.g., ground-truths of the “K” rows

in Table 1). For better visualization, we similarly gener-

ate datasets that we call CAD model multi-object (CAMO)

which are composed of point clouds sampled from CAD

models in ModelNet40 [38] and ShapeNet [4]. More details

are discussed in the supplementary material.

Implementation details: The 2D grid U is defined to be

45 × 45, and the codeword c to be 512-dimension. Adam

optimizer [20] is applied for training with a batch size 32.

The constant ǫ in (1) is set to be 0.02. We pre-train E-Net and

F-Net for 640 epochs with a learning rate of 2× 10−4, then

train TearingNet end-to-end for another 480 epochs with a

smaller learning rate 10−6. Isolated points with no edges

are removed from the reconstructions. Our experiments are

implemented with the PyTorch framework [28].

Benchmarks: We compare the TearingNet with sev-

eral methods: (i) LatentGAN [1] composed of the fully-

connected layers, which exploits a much larger model than

ours; (ii) AtlasNet [14] with 3 patches which has the same

model size as ours; (iii) FoldingNet [40], and its extension,

(iv) Cascaded F-Net, with two FoldingNets cascaded as

F2(F1(u; c); c). Its model size is similar to ours. Note that

besides (i), the other methods all reconstruct point clouds

via deforming 2D primitive(s).

We also consider several variants of the TearingNet for

shape reconstruction: i) TearingNetTF: instead of having a

trial folding first, this configuration runs a T-Net directly for

topology update without considering X(1); ii) TearingNetGF

which excludes the graph filtering at the end; iii) TearingNet3
which augments the TearingNet by iterating three times, i.e.,

as F→T→F→T→F . It is trained via loading the weights

from a pre-trained TearingNet followed by a finetuning.

5.3. Performance Comparison

Reconstruction: We first evaluate the reconstruction

quality of the proposed TearingNet. Table 1 visualizes some

reconstructed point clouds from several datasets. Compared

to the TearingNet, FoldingNet leaves more “ghost” points

outside object surfaces, while AtlasNet results in unbalanced

point distributions. In contrast, TearingNet produces point

clouds that look clean and orderly, with appearances close

to the inputs. The 2D-grids (last column of Table 1) are

torn apart to accommodate the corresponding 3D topologies.

It demonstrates how object topologies are discovered and

utilized via the TearingNet architecture.

We report the augmented Chamfer Distance (referred

to as CD) and the Earth Mover’s Distance (EMD) [10] of

the competing methods in Table 2. For both metrics, a

smaller number indicates more accurate reconstruction. In

general, our TearingNet and TearingNet3 outperform the

benchmarks, which is even more obvious in terms of EMD.

7458



Table 1. Visual comparisons of point cloud reconstructions. Points are colored according to their indices. S: ShapeNet; T: Torus; C: CAMO-5;

K: KIMO-5. Objects in the red boxes are zoomed in and shown in the blue boxes.
Ground-truth AtlasNet FoldingNet TearingNet Torn Grid

S

T

C

K

Table 2. Evaluation of 3D point cloud reconstruction, in terms of both CD and EMD.
Metrics CD (×10−2) EMD

Datasets ShapeNet Torus KI.-3 KI.-4 KI.-5 KI.-6 ShapeNet Torus KI.-3 KI.-4 KI.-5 KI.-6

LatentGAN 2.85 2.45 7.10 11.64 17.18 19.21 0.218 0.202 1.982 3.231 3.773 4.721

AtlasNet 2.72 2.41 4.50 6.76 9.59 11.63 0.163 0.146 1.333 2.811 3.173 4.440

FoldingNet 2.75 1.90 4.72 6.57 9.01 11.06 0.372 0.191 1.748 2.864 3.056 4.569

Cascaded F-Net 2.69 1.95 4.77 6.67 9.13 10.94 0.207 0.196 1.533 2.381 2.944 4.189

TearingNetTF 2.59 1.84 5.05 6.58 8.55 10.86 0.206 0.163 1.055 1.787 2.565 3.476

TearingNetGF 2.56 1.74 4.92 6.45 8.29 10.29 0.172 0.170 0.958 1.441 1.879 2.648

TearingNet (Ours) 2.54 1.72 4.78 6.43 8.29 10.23 0.174 0.156 0.940 1.438 1.872 2.614

TearingNet3 (Ours) 2.53 1.73 4.74 6.42 8.24 10.15 0.169 0.143 0.941 1.361 1.867 2.315

As the topology complexity grows from KIMO-3 to KIMO-6,

our method outperforms the competitors more significantly.

By comparing our TearingNet to TearingNetTF, we see the ef-

fectiveness of inserting a Folding network before the Tearing

network. That is because, with the first trial folding result,

the Tearing network can better capture the discrepancy be-

tween a genus zero topology and the ground-truth topology

via back-propagation. From Table 2, we also see that, begin

with the TearingNetGF, by first incorporating the graph filter

(TearingNet), then further iterating the T-Net and the F-Net

(TearingNet3), reconstruction qualities continues to improve.

We observe similar results on the CAMO datasets.

We also experimented with recent methods Atlas-

NetV2 [8] and 3D Point Capsule Network [42] and observe

good performance on single-object datasets. On ShapeNet,

AtlasNetV2 has even achieved a lowest CD of 2.48× 10−2.

However, both methods fail to converge on our multi-object

datasets. We conjecture that is because both of them are over-

optimized for single-object cases, e.g., AtlasNetV2 specifi-

cally learns the elementary structure of objects. Hence, the

diversified scene configurations in our multi-object datasets

“confuse” these two methods.

Object counting: In a multi-object scene, adding objects

yields a more complex topology. From the multi-object

examples in Table 1, we see that the number of torn patches

in a 2D-grid approximately equals the number of objects in a

scene. It implies that the latent codewords from TearingNet

are aware of the geometric topology. To further affirm their

representativeness of topologies, we next try to “count” the

object number directly from the codewords. In practice,

7459



Table 3. Evaluation of object counting and object detection.

Tasks Methods
Datasets

KI.-3 KI.-4 KI.-5 KI.-6

Counting

(MAE,×10−1)

LatentGAN 0.671 8.439 14.079 14.523

AtlasNet 0.125 2.908 6.727 8.569

FoldingNet 0.204 3.031 6.340 8.527

Cascaded F-Net 0.270 3.207 7.104 9.792

TearingNetTF 0.127 2.207 5.716 8.346

TearingNetGF 0.123 1.805 5.105 8.044

TearingNet (Ours) 0.123 1.721 5.079 8.026

TearingNet3 (Ours) 0.121 1.740 5.050 7.992

Detection

(Accuracy, %)

LatentGAN 93.53 63.78 65.65 78.80

AtlasNet 88.84 73.79 73.58 83.53

FoldingNet 92.71 80.12 77.10 82.92

Cascaded F-Net 89.78 76.36 76.84 82.63

TearingNetTF 93.33 82.83 78.43 83.74

TearingNetGF 93.44 83.42 79.70 84.55

TearingNet (Ours) 93.42 83.42 79.74 84.55

TearingNet3 (Ours) 93.46 83.44 79.72 86.52

counting is a critical task in applications such as traffic jam

detection and crowd analysis [21, 26].

In this task, the TearingNet and other benchmarks trained

from the reconstruction experiment are carried over. We

again use the challenging KIMO datasets to experiment with

this use case. As a preparation, we feed the test dataset to

the PointNet encoder to collect codewords. Next, we employ

4-fold cross-validation to train/test an SVM classifier: code-

words are equally divided into 4 folds, then only one of the

four is used to train the SVM together with their count labels

while the other three are reserved for counting test. SVM is

selected for the test as it would not modify the feature space

learned by autoencoders. Consequently, this setting overall

requires a small number of labels, because our feature (code-

word) learning is achieved in an unsupervised manner, while

the counting task is learned in a weakly supervised manner.

The counting performance is measured by mean abso-

lute error (MAE) between the predicted counting and the

ground-truth counting [41]. As shown in the upper-half of

Table 3, TearingNet and TearingNet3 consistently produce

the smallest MAEs. For example, on KIMO-4, TearingNet

brings down MAE by more than 40% comparing to Fold-

ingNet/AtlasNet, showing its strong capability in represent-

ing scene topologies.

We further inspect the feature space learned by the Tear-

ingNet to understand how it is linked to the topology. We

first collect the TearingNet codewords of the KIMO-3 dataset

and visualize them using t-SNE, as shown in Figure 5a. Here

the points are colored based on their corresponding counting

labels. Note that for the 3× 3 playground in KIMO-3, there

are 9 and 36 combinations when placing 1 and 2 objects,

respectively. Correspondingly, 9 and 36 clusters could be

observed in the t-SNE figure. And as there is only 1 possible

combination to arrange 9 objects, all points representing 9

objects aggregate to a single cluster.

Finally, the appearance of the t-SNE diagram exhibits

a tree structure. When inspecting one cluster of a larger

counting (e.g., 9, 8, etc.), it is always surrounded by several

smaller counting clusters (e.g., 8, 7, etc.). This observation

(a) t-SNE visualization (b) dk vs. object count k

Figure 5. Analyzing the feature space of the TearingNet.

is actually due to a recursive encapsulation from counting

1 to 9 where counting 9 stays at the center. If we compute

an average Euclidean distance dk from all codewords of

counting k to the mean codeword of counting 9, we observe

that dk approximately linearly increases as object counting k
decreases (see Figure 5b, where the distances are normalized

to [0, 1], the error bars are also shown). It implies that the

codewords distribute in a layered manner with respect to

counting (i.e., topology) and they are topology-aware.

Object detection: Having revealed the superiority of our

proposal in point reconstruction and topology understand-

ing, we finally devised a last experiment to demonstrate

such superiority in low/mid-level tasks can be transferred

to high-level understanding tasks. Specially, we consider

the pedestrian detection task which is critical under an au-

tonomous driving scenario [9]. Similar to object counting,

we train binary SVM classifiers and evaluate their perfor-

mance using a 4-fold cross-validation strategy. Again, one

fold is applied for training and the rest for testing. Detection

accuracy is collected in the bottom-half of Table 3. Note that

KIMO-3 is the easiest dataset as it contains the least combi-

nation possibilities, and thus the simple LatentGAN already

provides good accuracy. Compared to the other benchmarks,

both TearingNet and TearingNet3 perform comparable on

KIMO-3 and significantly better on KIMO-4, -5, and -6.

Moreover, for KIMO-4, TearingNet surpasses AtlasNet and

FoldingNet by about 10% and 3%, respectively.

6. Conclusion

We consider the problem of representing and reconstruct-

ing point clouds of ample topologies with an autoencoder,

given the latent representations in the form of a fixed-length

vector. To tackle this task, we propose a TearingNet architec-

ture which iteratively discovers and utilizes topology with a

Tearing network and a Folding network, respectively. The su-

perior capability of our proposal is demonstrated in terms of

shape reconstruction and producing topology-friendly repre-

sentations for point clouds. Essentially, the Tearing network

reparameterizes the surface defined by the Folding network

according to a learned topology. For future research, we plan

to apply the TearingNet for scene point clouds with natu-

ral object placement. We are also interested in applying its

generalization—the GCAE—to other data modalities where

topology matters, such as images and videos.

7460



References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative

models for 3D point clouds. In International Conference on

Machine Learning, pages 40–49, 2018. 2, 3, 6

[2] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and

Michael Bronstein. Learning shape correspondence with

anisotropic convolutional neural networks. In Adv. Neural

Inform. Process. Syst., pages 3189–3197, 2016. 1

[3] Sofien Bouaziz, Andrea Tagliasacchi, Hao Li, and Mark Pauly.

Modern techniques and applications for real-time non-rigid

registration. In SIGGRAPH ASIA 2016 Courses, pages 1–25.

Association for Computing Machinery, 2016. 6

[4] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. ShapeNet:

An information-rich 3D model repository. arXiv preprint

arXiv:1512.03012, 2015. 6

[5] Siheng Chen, Chaojing Duan, Yaoqing Yang, Duanshun Li,

Chen Feng, and Dong Tian. Deep unsupervised learning of

3D point clouds via graph topology inference and filtering.

IEEE Trans. Image Process., 2019. 3, 5, 6

[6] Siheng Chen, Baoan Liu, Chen Feng, Carlos Vallespi-

Gonzalez, and Carl Wellington. 3D point cloud processing

and learning for autonomous driving. IEEE Signal Processing

Magazine, 2020. 1, 6

[7] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin

Chen, and Silvio Savarese. 3D-R2N2: A unified approach for

single and multi-view 3D object reconstruction. In Eur. Conf.

Comput. Vis., pages 628–644. Springer, 2016. 2

[8] Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir

Kim, Bryan Russell, and Mathieu Aubry. Learning elemen-

tary structures for 3D shape generation and matching. In Adv.

Neural Inform. Process. Syst., pages 7433–7443, 2019. 2, 3,

7

[9] Piotr Dollár, Christian Wojek, Bernt Schiele, and Pietro Per-

ona. Pedestrian detection: A benchmark. In CVPR, pages

304–311, 2009. 8

[10] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set

generation network for 3D object reconstruction from a single

image. In IEEE Conf. Comput. Vis. Pattern Recog., pages

605–613, 2017. 6

[11] Xiang Gao, Wei Hu, and Guo-Jun Qi. GraphTER: Unsuper-

vised learning of graph transformation equivariant representa-

tions via auto-encoding node-wise transformations. In IEEE

Conf. Comput. Vis. Pattern Recog., June 2020. 1, 2

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? The KITTI vision benchmark

suite. In IEEE Conf. Comput. Vis. Pattern Recog., pages

3354–3361, 2012. 3, 6

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Adv. Neural

Inform. Process. Syst., pages 2672–2680, 2014. 2

[14] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C

Russell, and Mathieu Aubry. A papier-mâché approach to

learning 3D surface generation. In IEEE Conf. Comput. Vis.

Pattern Recog., pages 216–224, 2018. 2, 3, 6

[15] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu,

and Mohammed Bennamoun. Deep learning for 3D point

clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell.,

2020. 2

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE Conf.

Comput. Vis. Pattern Recog., pages 770–778, 2016. 5

[17] Matthias Hein. Uniform convergence of adaptive graph-based

regularization. In International Conference on Computational

Learning Theory, pages 50–64. Springer, 2006. 4

[18] Matthias Hein, Jean-Yves Audibert, and Ulrike von Luxburg.

Graph Laplacians and their convergence on random neigh-

borhood graphs. Journal of Machine Learning Research,

8(Jun):1325–1368, 2007. 3, 4

[19] Anastasia Ioannidou, Elisavet Chatzilari, Spiros Nikolopou-

los, and Ioannis Kompatsiaris. Deep learning advances in

computer vision with 3D data: A survey. ACM Computing

Surveys (CSUR), 50(2):1–38, 2017. 2

[20] Diederick P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In Int. Conf. Learn. Represent., 2015.

6

[21] Victor Lempitsky and Andrew Zisserman. Learning to count

objects in images. In Adv. Neural Inform. Process. Syst.,

pages 1324–1332, 2010. 8

[22] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and

Baoquan Chen. PointCNN: Convolution on X-transformed

points. In Adv. Neural Inform. Process. Syst., pages 820–830,

2018. 2

[23] Jonathan Masci, Davide Boscaini, Michael Bronstein, and

Pierre Vandergheynst. Geodesic convolutional neural net-

works on Riemannian manifolds. In IEEE International Con-

ference on Computer Vision Workshops, pages 37–45, 2015.

1

[24] D. Maturana and S. Scherer. VoxNet: A 3D convolutional

neural network for real-time object recognition. In IEEE/RSJ

International Conference on Intelligent Robots and Systems,

pages 922–928, 2015. 2

[25] Andrew Ng et al. Sparse autoencoder. CS294A Lecture Notes,

72(2011):1–19, 2011. 1, 2

[26] Daniel Onoro-Rubio and Roberto J López-Sastre. Towards

perspective-free object counting with deep learning. In Eur.

Conf. Comput. Vis., pages 615–629, 2016. 8

[27] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-

combe, and Steven Lovegrove. DeepSDF: Learning contin-

uous signed distance functions for shape representation. In

IEEE Conf. Comput. Vis. Pattern Recog., pages 165–174,

2019. 2, 3

[28] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in PyTorch. In Advances in Neural Information

Processing Systems Workshop, 2017. 6

[29] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

PointNet: Deep learning on point sets for 3D classification

and segmentation. In IEEE Conf. Comput. Vis. Pattern Recog.,

pages 652–660, 2017. 2, 3, 4, 5

7461



[30] Charles R. Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

Net++: Deep hierarchical feature learning on point sets in a

metric space. In Advances in Neural Information Processing

Systems, pages 5099–5108, 2017. 2

[31] Riccardo Roveri, Lukas Rahmann, Cengiz Oztireli, and

Markus Gross. A network architecture for point cloud classi-

fication via automatic depth images generation. In IEEE Conf.

Comput. Vis. Pattern Recog., pages 4176–4184, 2018. 2

[32] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio

Ortega, and Pierre Vandergheynst. The emerging field of

signal processing on graphs: Extending high-dimensional

data analysis to networks and other irregular domains. IEEE

Signal Processing Magazine, 30(3):83–98, 2013. 5

[33] Edwin H Spanier. Algebraic topology. Springer Science &

Business Media, 1989. 2

[34] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-

view convolutional neural networks for 3D shape recognition.

In Int. Conf. Comput. Vis., pages 945–953, 2015. 2

[35] Daniel Ting, Ling Huang, and Michael Jordan. An analysis

of the convergence of graph Laplacians. In International

Conference on Machine Learning, page 1079–1086, 2010. 3

[36] Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong.

Adaptive O-CNN: A patch-based deep representation of 3D

shapes. ACM Trans. Graph., 37(6):1–11, 2018. 2

[37] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph CNN for learning on point clouds. ACM Trans. Graph.,

38(5):1–12, 2019. 2

[38] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D

ShapeNets: A deep representation for volumetric shapes. In

IEEE Conf. Comput. Vis. Pattern Recog., pages 1912–1920,

2015. 6

[39] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech,

and Ulrich Neumann. DISN: Deep implicit surface network

for high-quality single-view 3D reconstruction. In Adv. Neural

Inform. Process. Syst., pages 492–502, 2019. 3

[40] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-

ingNet: Point cloud auto-encoder via deep grid deformation.

In IEEE Conf. Comput. Vis. Pattern Recog., pages 206–215,

2018. 1, 2, 3, 5, 6

[41] Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang

Yang. Cross-scene crowd counting via deep convolutional

neural networks. In IEEE Conf. Comput. Vis. Pattern Recog.,

pages 833–841, 2015. 8

[42] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico

Tombari. 3D point capsule networks. In IEEE Conf. Comput.

Vis. Pattern Recog., pages 1009–1018, 2019. 1, 2, 3, 7

7462


