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Abstract Estimating temporal variance in animal demographic parameters is of par-
ticular importance in population biology. We implement the Schall’s algorithm for
incorporating temporal random effects in survival models using recovery data. Our
frequentist approach is based on a formulation of band-recovery models with random
effects as generalized linear mixed models and a linearization of the link function con-
ditional on the random effects. A simulation study shows that our procedure provides
unbiased and precise estimates. The method is then implemented on two case studies
using recovery data on fish and birds.
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1 Introduction

Studying animal demography often involves dealing with a non-exhaustive monitor-
ing of populations. For free-ranging animal populations, methods were developed to
estimate demographic parameters while accounting for imperfect detection of animals
(Lebreton et al. 1992). The applications and developments of these so-called capture–
recapture (for alive individuals) and band-recovery models (for dead individuals) have
increased exponentially over the last twenty years, and the analysis of data on marked
animals has become an important field of biometry (Pollock 2000).

Of particular interest is survival, as it is a key quantity in management of species
exploited via fishing or hunting to understand their population dynamics, establish
quotas and forecast the effects of harvesting strategies on their demography (Williams
et al. 2002). There is also a need to assess the potential interactions of anthropogenic
pressure with environmental conditions on survival by considering factors such as
time and weather covariates (Pollock 2002; Grosbois et al. 2008).

In this context, survival probabilities are increasingly seen as realizations of a ran-
dom process rather than fixed constants (Barry et al. 2003; Burnham and White 2002).
This enables one to account for unobserved environmental factors (Barry et al. 2003),
model association among demographic parameters (Link and Barker 2005), assess
nonlinear effects of covariates (Gimenez et al. 2006) or dependence in time-dependent
survival parameters (Johnson and Hoeting 2003). Omitting random effects can lead to
overestimation of the significance of climatic covariates on survival (Grosbois et al.
2008) and overoptimistic prediction intervals on future population behavior (Barry et
al. 2003).

Bayesian methods have been proposed to estimate survival in models with random
effects, but despite their flexibility, the use of Markov chain Monte Carlo (MCMC)
simulation methods is often time-consuming and their implementation and manipula-
tion may be difficult for non-statisticians (Gimenez 2008). Random effects have been
considered in a frequentist framework (e.g., Burnham and White 2002). However,
estimation via maximum likelihood remains difficult to perform since to evaluate the
likelihood, one needs to integrate over the (possibly highly) multidimensional distri-
bution of random effects, and this exercise has to be repeated for each iteration of
an optimization algorithm. Ecological data being collected over several years there-
fore resulting in long time series, these calculations are slow if not computationally
infeasible when temporal random effects need to be included.

To circumvent this issue, we propose an alternative method for incorporating tempo-
ral random effects in animal survival models using recovery data, based on the Shall’s
algorithm (Schall 1991). The novelty of our approach is twofold. First, we introduce a
generalized linear mixed model (GLMM) formulation of mixed band-recovery models
for the analysis of data on dead animals. The GLM formulation was first proposed by
Cooper et al. (1998) but did not include random effects. Second, we implement the
Shall’s algorithm (Schall 1991) for incorporating temporal random effects in animal
survival models using recovery data. The estimation of random effects and temporal
variance is based on a linearization of the GLMM conditional on the random effects,
made possible by the use of the Schall’s algorithm. The advantages of our method
include the possibility to estimate fixed and random effects in a frequentist frame-
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work, which is usually faster and more accessible to biologists than the Bayesian
framework.

To evaluate the performance of our proposal, we conduct a simulation study and
compute bias and precision (mean square error). The method is then implemented on
two case studies using recovery data on fish and birds.

2 Theory

2.1 Band-recovery models

For K sampling occasions (generally hunting or fishing seasons), N1, . . . , NK indi-
viduals are banded (tagged or ringed) and released back into the population (Brownie
et al. 1985). The number of bands Yi j recovered in time period j from dead animals
originally banded in time period i is then recorded. Expected numbers of band recov-
eries E(Yi j ) = μi j can be written as functions of two probabilities: S the survival
probability and f the probability that a banded animal, alive when a given cohort
is banded, will be harvested and its band reported during the next time period. For
example, under a model with band recovery probability f constant over time and sur-
vival probability time-dependent S j , j = 1, . . . , K − 1, we have μi j = f for j = i

and μi j = f
∏ j−1

l=i
Sl for j > i . Maximum likelihood estimators are traditionally

obtained under the assumption of multinomial sampling for each cohort (Brownie et
al. 1985). Alternatively, a product-Poisson sampling assumption can be invoked as
a product-multinomial distribution can be approximated by a product-Poisson dis-
tribution when fixed sample size N → +∞ (Sandland and Cormack 1984). This
equivalence allows band-recovery models to be formulated within the general frame-
work of GLMs (Cooper et al. 1998). Conditional on Ni , the yi j ’s are considered as
realizations of independent random variables Yi j . These variables are Poisson distrib-
uted with parameter μi j > 0. Using the log link function, we have:

log(E(Y)) = log(μ) = log(N) + Xβ (1)

where μ is a vector of expected band recovery probabilities, N a vector of offsets
made of the cohort sizes, X is an incidence matrix and β a vector of the model
parameters on the log scale. X has one row for each recovery cell and one col-
umn for each element of the parameters vector β. The columns of X define the
model being fitted with each entry of X giving the number of times the corre-
sponding element of β occurs within the corresponding recovery cell expectation.
For example, consider a band recovery dataset involving three years of releases and
recoveries. To estimate the parameters of a model with constant recovery and sur-
vival probabilities, one needs μ = (log( f ), log( f ) + log(S1), log( f ) + log(S1) +
log(S2), log( f ), log( f ) + log(S2), log( f ))′, N = (N1, N1, N1, N2, N2, N3)

′,β =
(β f , βS)′ where βS = log(S1) = log(S2) and

X =
(

1 1 1 1 1 1
0 1 2 0 1 0

)′
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where the prime means transpose. As in standard GLM analyses, maximum likeli-
hood estimates of the β’s are obtained via iteratively weighted least squares (IWLS;
McCullagh and Nelder 1989).

2.2 Incorporation of time-varying random effects on survival

We introduce random effects on survival in band-recovery models via the usual for-
mulation:

log(E(Y)) = log(μ) = log(N) + Xβ + Uξ (2)

where ξ is the vector of random effects with ξ ∼ N (0, D) and D = σ 2IK−1 (with IK−1
the identity matrix with K − 1 rows and columns) and its associated incidence matrix
U. U has one row for each recovery cell and one column per recovery occasion. Each
entry of U gives the survival probability to which a random effect applies. Note that the
probability of μi i recovery cells does not involve survival, hence the corresponding
row in U is made of 0’s. For example, coming back to the previous example with three
years of releases and recoveries, one would use ξ = (ξ1, ξ2)

′ and

U =
(

0 1 1 0 0 0
0 0 1 0 1 0

)′
.

The Poisson assumption now holds conditional on the random effects, so that we
have E(Y|ξ) = var(Y|ξ) = μi j . Parameter estimation in GLMMs is made difficult
as random effects are not directly observed. Because the distribution of Y is known
conditionally on ξ , the likelihood is obtained via integration over the multivariate
distribution of the random effects. Its calculation is difficult unless simple situations
are considered (e.g., Gimenez and Choquet 2010). Here, we adopted the Schall method
(Schall 1991) based on a linearization of the model conditional on the random effects
to estimate β and ξ using the Henderson’s equations for mixed models (Henderson et
al. 1959).

Schall’s estimation approach is an iterative procedure considering at each step the
GLMM conditional on the random effects. A working variable is introduced as in IWLS
for GLM, then the Henderson’s mixed model equations are solved for the associated
linear mixed model. The key is that, at each step, this iterative procedure introduces a
linearization of the model with current parameter values. This leads to the following
iterative algorithm for the estimation of fixed effects and variance components in a
GLMM (t denotes the iteration step):

• Step 1 : Denoting μξ the conditional mean, and given the linear predictor η[t] =
g(μ[t]/N ) = Xβ[t] + Uξ [t] with g being the log function here and N the offset,
we define the working variable z[t] as in the IWLS estimation procedure for GLM
by linearizing the link function:

z[t] = η[t] + (y − μ
[t]
ξ )g′(μ[t]

ξ )

= η[t] + (y − μ
[t]
ξ )/μ

[t]
ξ .

(3)
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• Step 2 : Consider the linearized model M [t] for z[t]:

M [t] : z[t] = Xβ[t] + Uξ [t] + ε[t]

with residual variance matrix W [t] defined as:

W [t] = var(ε[t]|ξ)

= var
((

Y − μ
[t]
ξ

)
g′ (μ

[t]
ξ

)
|ξ

)

= diag

{
var

(
Yi j |ξ

)
g′ (μ

[t]
ξ,i j

)2
}

i=1,...,K−1, j=i,...,K−1

= diag
{

1/
(

Niμ
[t]
ξ,i j

)}
.

• Step 3 : Solve the Henderson’s mixed model equations associated with M [t] now
considered as a linear mixed model:

(
X ′W [t]−1 X X ′W [t]−1U
U ′W [t]−1 X U ′W [t]−1U + D[t]−1

) (
β

ξ

)
=

(
X ′W [t]−1z[t]
U ′W [t]−1z[t]

)

to obtain β[t+1] and ξ [t+1] the solutions of the system.
• Step 4 : Use the value ξ [t+1] obtained at the previous step to calculate σ 2[t+1]

(Searle et al. 1992) using either restricted maximum likelihood for estimation or
maximum likelihood for model selection.
(a) The restricted maximum likelihood approach gives:

σ 2[t+1] = ξ
′[t+1]ξ [t+1]

q − trace
(
C [t]) /σ 2[t]

with C the matrix formed using the last q rows and columns of the inverse of
the matrix of the Henderson system where q is the number of random effects
(q = K − 1 here).

(b) The maximum likelihood approach gives:

σ 2[t+1] = ξ
′[t+1]ξ [t+1]

q − trace(C∗[t])/σ 2[t]

with C∗ the inverse of the matrix formed using the last q rows and columns of
the matrix of the Henderson system.

This value of σ 2[t+1] is then used to calculate z[t+1], W [t+1] and D[t+1].
All steps are repeated until convergence, i.e. |σ 2[t+1]−σ 2[t]| < ε and |β[t+1]−β[t]| <

ε where ε = 10−5 here. We therefore obtained best linear unbiased estimator for β and
best linear unbiased predictor for ξ . Using the final linearized model at convergence of
the Schall’s estimation algorithm, standard errors can be obtained using the variance–
covariance matrix of the estimators of a linear mixed model (Searle et al. 1992).
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3 Simulation study

To provide empirical support for our approach, we conducted a simulation study.
We considered a model with random effects on survival log(S j ) = βS + ε j with
ε j ∼ N (0, σ 2) for j = 1, . . . , K − 1. We used βS = −0.92 so that mean survival
was 0.4 while recovery probability was set constant and equal to 0.3.

We compared two levels of temporal variance on survival (on a log scale), low with
σ 2 = 0.01 and high with σ 2 = 0.1. For each of the two levels of temporal variation,
we simulated 250 recovery datasets using 10 different numbers of recovery occasions,
from K = 20 up to K = 40, and 10 different numbers of individuals banded each
time, from N = 250 up to 1000. In total, we considered 100 scenarios for each value
of σ 2. To each dataset, we fitted the random-effect band-recovery model using Schall’s
approach and computed parameter bias and mean square error (MSE). For the sake of
comparison, we also fitted the same band-recovery model without random effects.

For low temporal variance (σ 2 = 0.01), bias in Schall’s estimates was negligible
and MSE was uniformally low for all parameters (Fig. 1).

For high temporal variance (σ 2 = 0.1), bias was also negligible and MSE decreased
as the number of released individuals increased (Fig. 2).

Overall, the performance of Schall’s approach was acceptable. Noteworthy, the
computation of Schall’s estimates was very fast, almost instantaneous.
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Fig. 1 Bias (top panels) and mean square error (MSE, bottom panels) for mean survival probability exp(βS)

(left column), variance of the random effect (middle column) and recovery probability (right column) as a
function of the number of recovery occasions (Y-axis, K) and the number of released individuals (X-axis,
R); low temporal variance σ 2 = 0.01
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Fig. 2 Bias (top panels) and mean square error (MSE, bottom panels) for mean survival probability exp(βS)

(left column), variance of the random effect (middle column) and recovery probability (right column) as a
function of the number of recovery occasions (Y-axis, K) and the number of released individuals (X-axis,
R); high temporal variance σ 2 = 0.1

Last but not least, we assessed the effect of ignoring temporal variation by fitting a
model without random effects. As expected, when temporal variance was low, para-
meter estimates were little affected meaning that bias and precision were comparable
to estimates obtained from the model with random effects (Fig. 3). In contrast, when
temporal variance was high, the bias in the survival probability estimate was non neg-
ligible, almost 10 times as big as the bias from the model with random effect (Fig. 4),
hence confirming previous results about the risks of ignoring extra-residual temporal
variation (Barry et al. 2003).

4 Applications

We applied the approach to data from two studies on fish and birds. We first considered
a geographically closed population of trout in which adults were tagged during fall
spawning, and subsequently reported killed by fisherman, from 1960 to 1969 (Youngs
and Robson 1975). The total number of fish tagged was 7,770, with a yearly range of
between 360 and 1,048. The total number of recoveries was 865. Second, we analyzed
data on adult male mallards based on summer banding, and subsequent recoveries by
hunters, from 1955 to 1996 (Franklin et al. 2002). The total number of birds ringed
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Fig. 3 Bias (left column) and mean square error (MSE, right column) for mean survival probability exp(βS)

(bottom panels) and recovery probability (top panels) as a function of the number of recovery occasions
(Y-axis, K) and the number of released individuals (X-axis, R); low temporal variance σ 2 = 0.01

was 42,015, with a yearly minimum of 268 and a yearly maximum of 2,279. The total
number of recoveries was 7,647.

Raw data and R codes to fit the model are provided in Supplementary material.
The results of fitting a model with constant recovery probability and a yearly random
effect on survival are provided in Table 1. Recovery probability was 7 % for mallards
and 6 % for trout. Survival was 64 % for mallards, a figure very similar to that found
by Franklin et al. (2002) for waterfowls using shrinkage estimators for random-effect
recovery models (Burnham and White 2002). Survival was 51 % for trout, which was
comparable to the results obtained by Youngs and Robson (1975) in their seminal
paper on tag-recovery models.

For both mallards and trout, we found relatively low temporal variation, as previ-
ously reported for the mallards by Franklin et al. (2002). A question of paramount
importance for biologists is whether temporal variation is significant. This question
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Fig. 4 Bias (left column) and mean square error (MSE, right column) for mean survival probability exp(βS)

(bottom panels) and recovery probability (top panels) as a function of the number of recovery occasions
(Y-axis, K) and the number of released individuals (X-axis, R); high temporal variance σ 2 = 0.1

Table 1 Parameter estimates for the random-effect band-recovery model applied to the mallard and trout
datasets

Mallard (K = 42) Trout (K = 10)

f 0.068 (0.001) 0.057 (0.002)

S 0.640 (0.032) 0.511 (0.016)

σ 2 0.014 (0.002) 0.078 (0.031)

Schall’s estimates (with standard errors) are given for recovery probability f , mean survival probability S
and temporal variance σ 2

can be addressed using a model selection approach by comparing the models with and
without the time random effect. To discriminate among models, we defined a modified
Akaike information criterion following Lavergne et al. (2008) using the Gaussian log
likelihood corresponding to the linear mixed model for the final working data, say
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z[ f ], as AIC = n log(2π) + log(|�̂|) + (z[ f ] − X β̂)′�̂−1(z[ f ] − X β̂) + 2p where n is
the number of recovery cells, p is the number of parameters plus one for the random
effect and �̂ = Ŵ + U D̂U ′ where σ 2 is estimated using maximum likelihood (Step
4b of the Schall’s algorithm in Sect. 2.2).

When applied to the trout dataset, we found that a model with time treated as a fixed
effect on survival was better supported by the data (AIC = 124.6) than a model with
a yearly random effect (AIC = 131.2) or survival constant over time (AIC = 142.6). In
the mallard analysis, we found that the model with random effect on survival was best
supported by the data (AIC = 4,523.2) when compared to a model with time as a fixed
effect (AIC = 4,551) or no time variation on survival (AIC = 4,566.6).

From a biological point of view, even though temporal variance was statistically
significant using the AIC in the mallards, its value was ecologically-speaking rather
low. This result is in agreement with the hypothesis of canalization (Gaillard and
Yoccoz 2003) that predicts little impact of environmental variation on adult survival
of long-lived species. In contrast, we found a fixed temporal effect on survival of
trout that might be related to environmental forcing (Grosbois et al. 2008) and would
deserve further investigation.

5 Discussion

Estimating temporal variance in demographic rates is of particular relevance to popula-
tion biology as it relates to important questions in ecology, evolution and conservation
biology. Furthermore, models without random effects can overestimate the significance
of covariates on demographic rates (Barry et al. 2003) as residual occasion-to-occasion
variation is not accounted for.

We provide a frequentist alternative to the Bayesian approach using the Schall’s
algorithm to include random effects and carry out inference in survival models using
recovery data. The frequentist framework being familiar to all biologists, we expect
this approach will be easily adopted by them. Our method performed well in terms
of estimation as bias on parameter estimates was negligible, and mean square error
showed that the error surrounding these estimates was low. Because models were fit-
ted quasi-instantaneously, our approach provides a relevant alternative to the Bayesian
approach implemented with MCMC simulations methods (Barry et al. 2003), which
can prove time-consuming especially when the number of recovery occasions is
high as in the mallard example. We acknowledge, however, that recent develop-
ments in the Bayesian field, e.g. the integrated nested laplace approximation (Rue
et al. 2009), might compete well with the Schall’s algorithm. Another appealing
feature of our method is its easy implementation in program R, which is famil-
iar to most population ecologists, using the codes provided in the Supplementary
material.

Incorporating covariates measured at the occasion level, like a linear trend over
time or climatic conditions, may be useful to make biological sense of the temporal
variation in survival, and can easily be incorporated through the X matrix in Eq. 1.
Having a random effect in addition to the covariate allows modeling residual variation
that is not explained by the covariate alone and formally testing for the significance
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of the covariate (Grosbois et al. 2008). Last but not least, allowing for random vari-
ation in the survival rates is a natural way to accomodate overdispersion (Barry et al.
2003), a phenomenon that often occurs in data on marked indidivuals (Lebreton et al.
1992).

Throughout this paper, we have considered random effects on the survival proba-
bilities. However, it might be useful to also include them on the recovery probabilities
to conveniently account for temporal variation in the nuisance parameter. As warned
by Barry et al. (2003) however, we recommend caution when using random effects
on both the survival and recovery probabilities because large correlations between
estimates of these parameters may occur, which makes it difficult to disentangle the
relative effect of temporal variation.

This work has wider applications than just to band-recovery models. Indeed, pend-
ing that the model can be expressed as a GLM, the log-linear modelling framework can
be used to estimate abundance and time trend in population size as estimated in closed
population models or survival based on live recaptures for which the date of death is
unknown contrary to recovery data (Cormack 1989; Rivest and Levesque 2001).
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