
R-UNIMP: SOLUTION FOR KDDCUP 2021 MAG240M-LSC

A PREPRINT

Yunsheng Shi
Team PGL

Baidu Inc., Shenzhen
China

shiyunsheng01@baidu.com

Zhengjie Huang
Team PGL

Baidu Inc., Shenzhen
China

huangzhengjie@baidu.com

Weibin Li
Team PGL

Baidu Inc., Shenzhen
China

liweibin02@baidu.com

Weiyue Su
Team PGL

Baidu Inc., Shenzhen
China

suweiyue@baidu.com

Shikun Feng
Team PGL

Baidu Inc., Shenzhen
China

fengshikun01@baidu.com

ABSTRACT

The MAG240M-LSC track on KDD Cup 2021 invites participants to deploy a graph neural network
for node-level prediction over a large-scale citation network. MAG240M-LSC is a heterogeneous
academic graph extracted from the Microsoft Academic Graph (MAG) with multiple relations
between papers, authors, and institutions. Participants are required to predict the topics correspond-
ing to the publication. In this competition, we adopt the recent advanced technique UniMP Shi
et al. [2020] which proposes to incorporate feature and label propagation at both training and in-
ference time, making significant improvements across several node classification tasks. And we
modify it into an R-UniMP version for a heterogeneous graph with "R" stands for "Relational".
Besides, we provide a detailed recall of our key strategies and valuable findings during the en-
tire competition. Our best single models can reach 73.71% in the official validation split. For
final submission, we train our models with 5-Fold settings. And we make a bagging search for
ensemble selections over our local 5-Fold splits. The final submission is bagged over 30 mod-
els’ predictions. And it achieves 75.49% in the final test set. The source code is available at
https://github.com/PaddlePaddle/PGL/tree/main/examples/kddcup2021/MAG240M/r_unimp.

1 Introduction

To empower the machine learning (ML) development on large-scale graph data, Hu et al. [2021] holds OGB Large-Scale
Challenge (OGB-LSC) at KDD Cup 2021 which contains three large-scale real-world datasets corresponding to three
common graph challenges: node prediction, link prediction, and graph prediction. MAG240M-LSC is one of the tasks
asking participants to predict labels for nodes. MAG240M-LSC is extracted from Microsoft Academic Graph (MAG)
Wang et al. [2020] which contains 244,160,499 nodes and 1,728,364,232 edges, the largest dataset among OGB-LSC.
Nodes in MAG240M-LSC represent papers, authors, and institutes. And we have three types of edges: paper-cite-paper,
author-write-paper, author-affiliated-institute. Among the 121M paper nodes, there are about 1.4M nodes are from
ARXIV annotated with 153 ARXIV subject areas. Features for paper nodes are extracted by powerful pre-trained
language model RoBERTA Liu et al. [2019] with concatenated title and abstract of the titles as inputs. The task is to
predict the primary subject areas of the given ARXIV papers as an ordinary multi-class classification problem. The
metric is classification accuracy.

https://github.com/PaddlePaddle/PGL/tree/main/examples/kddcup2021/MAG240M/r_unimp
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2 Methods

2.1 R-GAT

Recent advanced approaches for node classification are mainly based on graph neural networks. Hu et al. [2021]
provides early investigation on several classical methods including GCN, GAT, R-GCN, R-GAT. We simply follow the
best baseline model R-GAT from them. And we make some modifications for further improvements.

2.1.1 Relation-wise Neighborhood Sampling

The original implementation of R-GAT takes all neighbors as a homogeneous graph during neighborhood sampling.
However, they perform relation-wise GAT aggregation ignoring the sampling bias. After a full investigation of the
neighborhood distribution, we find that the homogeneous sampling methods cannot guarantee that each relation has at
least one neighborhood. For the reason that it recursively samples 25 neighbors in the first layer and 15 neighbors in the
second layer, but there are more paper-cites-paper relations than author-writes-paper as shown in Table 1. Therefore, we
perform relation-wise sampling with different amounts of sampled neighbor for each relation correspond to each layer.

Table 1: Statistic Relation

NodeType Relation Avg. Relation Num. Max Relation Num. Sample Num. 1st Layer Sample Num. 2nd Layer

Paper Paper 21.31 242655 25 15
Author 3.17 6760 10 10

Author Paper 3.15 4724 - 10
Institute 0.36 78 - 5

Institute Author 1733.70 395249 - -

2.1.2 Relation-wise BatchNorm

Besides, normalization has been proved to be an effective technique for deep residual graph neural networks Li et al.
[2019]. The original implementation of R-GAT simply plugs in BatchNorm modules after feature aggregation between
different relations. And all the nodes share the same statistics of running mean and deviation. However, paper nodes are
the majority in each training batch causing inaccurate statistics for author and institute nodes. To address this issue, as
shown in Figure 1, we place BatchNorm layer just after neighborhood aggregation. And we prevent parameters and
statistics sharing between node and edge types.

GAT
Paper2Paper

GAT
Author2Paper

Paper2Paper
BatchNorm

Author2Paper
BatchNorm

GAT
Paper2Author

Paper2Author
BatchNorm

GAT
Institue2Author

Institue2Author
BatchNorm

Paper

Author
GAT

Author2Institute

Author2Institute
BatchNorm

Institute

Attention Sum Attention Sum

Paper

Author

Institute

Attention Sum

Figure 1: R-GAT with Relation-Wise BatchNorm and Relation-Wise Attention
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2.1.3 Relation-wise Attention

Moreover, edge relations might have various contributions on different nodes. Therefore, in replace of feature summation
between relations, we design a weighted attention sum layer for relation-wise feature aggregation as shown in Figure 1.
The formulation of Relation-wise Attention is following:
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, (1)

where Hp,Ha,Hi denote feature for paper, author and institute nodes. And Hp2p,Ha2p,Hp2a,Ha2i,Hi2a are
aggregated representation from different relations. Each node hidden is computed with attention weighted sum between
residual connection and neighbors. The attention weight are computed as follows:

αp, αp2p, αa2p = softmax(WHk
p,WHk+1

p2p ,WHk+1
a2p )

αa, αp2a, αi2a = softmax(WHk
a,WHk+1

p2a ,WHk+1
i2a )

αi, αa2i = softmax(WHk
i ,WHk+1

a2i ).

(2)

2.2 Masked Label Prediction

Shi et al. [2020] proposes a model UniMP that combines label propagation and feature propagation in both the
training and inference stage. And it points out that the utilization of observed labels in the training set can make huge
improvements for predictions. Since labels might be ambiguous in node classification. For example, a paper can hold
several different topics, which might be confusing for GNN models. The most direct evidence is that the accuracy of
the training set can hardly achieve high accuracy. Therefore, we adopt the idea in UniMP and perform Masked Label
Prediction as described in Shi et al. [2020]. At training time, we add label embeddings on all paper nodes that have
observed labels except the target ones.

Random Label Input. Besides, we find that adding random labels on all paper nodes during training can make our
model more robust in prediction. We guess that random label noises force our model to make predictions depending
more on node feature but not labels, since the un-labeled nodes in validation connected to less labeled nodes than the
one in the training set.

2.3 Post-Smoothing

After training our models and making predictions, there are still tricks for further improvements. Correct and Smooth
(C&S) Huang et al. [2020] finds that simple post-processing steps via modifications to standard label propagation
techniques can boost the performance. In our work, we find that after training with label information with UniMP
techniques. Simple C&S post-processing step can have little impact on the prediction. However, we find that if we are
performing smoothing on a constructed paper-paper graph with a higher homophily ratio, we can achieve 0.05%-0.1%
improvements. Therefore, we investigate validation accuracy by simple voting strategies on the different paper graph as
follows:

Table 2: Voting Accuracy with Different Graph Construction

Graph Validation Accuracy By Voting Coverage on Validation Nodes
Paper Cites Paper (Bidirected) 41.69% 91.17%
Paper more than 2 Coauthor 54.59% 88.28%

Top50 Coauthor Paper 60.99% 94.54%
Coauthor Jaccard > 0.5 48.46% 77.16%

In Table 2, we find that simple voting on coauthor graph can achieve a higher prediction accuracy which brings hope for
post-processing. Our smoothing strategy can be formulated as follows:

Yk = (1− α)AYk−1 + αY0 (3)

Y0 = [y1,y2, · · · ,yn] =

{
one-hot ground truth, if nodei in training set

softmax prediction, if nodei not in training set
(4)
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where α controls the importance between self and neighbors’ prediction, k stands for the number of iterations. Unlike
the C&S implement, we evaluate the validation accuracy after each iteration and perform early stopping on k and α.
After a few steps (3 or 4) of post-smoothing with α = 0.8, the prediction can reach a convergence. And surprisingly,
Coauthor Jaccard Graph outperform all the others. The details can be found in the experiments.

2.4 Year of Publication as Position Embedding

We simply perform voting strategies on validation nodes by their neighborhoods according to the published time. An
important insight from Table 3 is that papers published in similar years have a closer relationship (validation nodes are
all papers published in 2019). To ensure our model can capture the relationship between the years of publications, we
adopt the position embedding from Vaswani et al. [2017] and simply sum it together with the node features.

Table 3: Voting Accuracy from Different Years

Paper Published Years Voting Accuracy on Validation Coverage
2018 28.68% 63.63%
2017 20.68% 62.93%
2016 16.09% 60.26%

< 2016 18.72% 85.63%

2.5 Network Embeddings

There are difficulties for training deep graph neural networks such as exponential growth for both execution time
and memory. Therefore, to utilize the structure information between nodes, we train network embeddings on these
heterogeneous networks. Metapath2vec Dong et al. [2017] is one of the classical representation learning algorithms
on heterogeneous networks. The metapath2vec model formalizes meta-path-based random walks to construct the
heterogeneous neighborhood of a node and then trains a heterogeneous skip-gram model to perform node embeddings.
We adopt the implementation from PGL1 and train the network embeddings which are then concatenated besides the
provided 768 semantic features.

2.6 Ensemble Settings

2.6.1 5-Fold Ensemble

As mentioned in Section 2.4, publications have similar topics with recent papers and the dataset split by years, which
makes that the validation data more significant. To make full use of the validation data, we randomly split the validation
data into 5-parts. For each fold, we take one of five for validation on both the training and post-smoothing stage. For
each hyper-parameter setting, we train five models for the folds, then make a prediction on the test set and apply bagging
for the results.

2.6.2 Bagging Beam Search for Final Predictions

Each hyper-parameter setting contributes 5 validation predictions on each fold and one bagging prediction on test
data. To make the final prediction, we have a beam search strategy that greedily adds one prediction from different
hyper-parameter settings to achieve higher validation accuracy, which can be regarded as weighted bagging.

3 Experiments

3.1 Implementation Details

All our implementation can be found at https://github.com/PaddlePaddle/PGL/tree/main/examples/kddcup2021/MAG240M/r_unimp.
The code is implemented with Paddle Graph Learning (PGL) which is a graph neural network framework based
on message passing paradigms. We train each of our models with four 32GB Tesla V100-SXM2 and 500GB CPU
memories, using 24 hours. Since the graph data and the feature need a large amount of memory, we use PGL’s shared
memory graph to load the graph structure and node features. To speed up the training process, we use a multiprocessing
dataloader for neighborhood sampling.

1metapath2vec can be found at https://github.com/PaddlePaddle/PGL/tree/static_stable/examples/metapath2vec
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3.2 Best Single Model

Table 4 shows the process of the entire optimization of our models. During the exploration of model architectures,
we keep the almost similar hyper-parameter settings for each architecture upgrade. And we haven’t make extensive
searching on hyper-parameters. Under our dedicated architecture design and the efforts from mentioned components in
Section 2, the upgraded model lift to 73.66 % from 70.20%.

Table 4: The Birth of Best Single Model

No. Model Official Valiation
0 R-GAT (PyTorch) 70.02 %
1 R-GAT (Ours) 70.20 %
2 1 + Masked Label Prediction 70.90 %
3 1 + Metapath2vec 70.77 %
4 2 + 3 + Relation-wise BatchNorm & Sampling 71.67 %
5 4 + Years of Publication as Position Embedding 72.73 %
6 5 + Random Label Inputs 73.22 %
7 6 + Relation-wise Attention 73.50 %
8 7 + Hyper Parameter Tuning 73.66 %
9 8 + Post-Smoothing on Paper Cites Paper (Bidirectioned) 73.68 %
10 8 + Post-Smoothing on Paper More Than 2 Coauthor 73.70 %
11 8 + Post-Smoothing on Top50 Coauthor Paper 73.50 %
12 8 + Post-Smoothing on Coauthor Jaccard > 0.5 73.71 %

3.3 Ensemble Models

Finally, we train our models with 6 different hyper parameters. The major difference and the 5-Fold performance are
shown in Table 5. Besides, we find that concatenation the node representation from all layers for final prediction can
achieve further improvement. However, we don’t have enough time to run ablation on official validation split. Our final
ensemble prediction are obtained by 30 models with validation accuracy as 77.73%. And each contribution ratio to the
final prediction is shown in Table 5.

Table 5: 5-Fold Validation Performance and Model Ensemble

Models Settings Metapath2vec Settings 5-Fold Validation Acc. Ensemble Ratio
Last layer for prediction 4 epochs, 7 window size, 128 dim 76.97% 5%

- Post-Smoothing 77.12% 10%
Last layer for prediction 10 epochs, 3 window size, 128 dim 77.07% 5%

-Post-Smoothing 77.19% 15%
Last Layer for prediction 5 epochs, 3 window size, 64 dim 77.03% 5%

- Post-Smoothing 77.17% 5%
Concat. all layers for prediction 4 epochs, 7 window size, 128 dim 77.20% 5%

- Post-Smoothing 77.35% 15%
Concat. all layers for prediction 10 epochs, 3 window size, 128 dim 77.11% 5%

- Post-Smoothing 77.26 % 15%
Concat. all layers for prediction 5 epochs, 3 window size, 64 dim 77.15% 5%

- Post-Smoothing 77.29% 20%

Ensemble Models 77.73%
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