
Understanding the Effects of Dataset Characteristics
on Offline Reinforcement Learning

Kajetan Schweighofer § ∗ Markus Hofmarcher § Marius-Constantin Dinu § ,‡

Philipp Renz § Angela Bitto-Nemling § Vihang Patil § Sepp Hochreiter § ,†
§ELLIS Unit Linz and LIT AI Lab,

Institute for Machine Learning,
Johannes Kepler University Linz, Austria

‡Dynatrace Research
† Institute of Advanced Research in Artificial Intelligence (IARAI)

Abstract

In real world, affecting the environment by a weak policy can be expensive or very
risky, therefore hampers real world applications of reinforcement learning. Offline
Reinforcement Learning (RL) can learn policies from a given dataset without inter-
acting with the environment. However, the dataset is the only source of information
for an Offline RL algorithm and determines the performance of the learned policy.
We still lack studies on how dataset characteristics influence different Offline RL
algorithms. Therefore, we conducted a comprehensive empirical analysis of how
dataset characteristics effect the performance of Offline RL algorithms for discrete
action environments. A dataset is characterized by two metrics: (1) the Trajectory
Quality (TQ) measured by the average dataset return and (2) the State-Action
Coverage (SACo) measured by the number of unique state-action pairs. We found
that variants of the off-policy Deep Q-Network family require datasets with high
SACo to perform well. Algorithms that constrain the learned policy towards the
given dataset perform well for datasets with high TQ or SACo. For datasets with
high TQ, Behavior Cloning outperforms or performs similarly to the best Offline
RL algorithms.

1 Introduction

Central problems in Reinforcement Learning (RL) are credit assignment [2, 16, 27, 31] and efficiently
exploring the environment [22]. Exploration in some problems can be costly because of high
exploration or measurement costs, violating physical constraints, damaging the physical agent, costs
of interaction with human experts, etc. [9]. In other cases exploration is risky, such as the risk of
an accident for self-driving cars, the risk to crash the production machines if optimizing production
processes, or the risk to loose money if applying RL in trading or pricing. In such cases, Offline
Reinforcement Learning (RL), also referred to as Batch RL [21], offers to learn policies from
pre-collected or logged dataset, without interacting with the environment [1, 12, 13, 20]. Offline
Reinforcement Learning also avoids the need to build simulators, which are required for many tasks
to train agents safely using Online RL [9]. Many such Offline RL datasets already exist for various
real world problems [5, 8, 36]. Offline RL shares numerous traits with supervised deep learning,
including, but not limited to leveraging large datasets. It has to face similar challenges such as
generalization to unseen data, as stored samples may not cover the entire state-action space. In Offline
RL, the generalization problem takes the form of distribution shift [30] during inference.

∗Contact us at: kajetan.schweighofer@jku.at and patil@ml.jku.at

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2021

Figure 1: Trajectory Quality vs. State-Action Coverage of a given dataset. Datasets that are given as
a set of trajectories are represented by graphs. Each graph represents all dataset trajectories, which
start at the bottom root state and terminate at top leaf states. Edges represent actions. Green nodes
are states with zero reward. Purple nodes are terminal states with low reward and yellow nodes are
terminal states with high reward. Datasets are placed in this plot via the Trajectory Quality and
State-Action Coverage. The performance of an Offline RL algorithm depends on the location of a
dataset in this plot.

Multiple Offline RL algorithms [1, 12, 13, 15, 20, 34] have been proposed to address these problems
and have shown good results. Well known off-policy algorithms such as Deep Q-Networks [23] can
readily be used in Offline RL, by filling its replay-buffer with a pre-collected dataset. In practice,
those algorithms often fail or lag far behind the performance they attain when trained in an Online
RL setting. The reduced performance is attributed to the extrapolation errors for unseen state-action
pairs and the distribution shift between the fixed given dataset and the states visited by the learned
policy [12, 15]. Several algorithmic improvements tackle those problems, including policy constraints
[12, 13, 34], regularization of learned action-values [20], and off-policy algorithms with more robust
action-value estimates [1].

While unified datasets have been released [14, 11] for appropriate comparisons of Offline RL
algorithms, we lack a proper understanding how the dataset characteristics influence the performance
of different algorithms [29]. In this work, we therefore study this influence through the generation of
datasets with different characteristics and compare the performance of Offline RL algorithms on these
datasets. The characteristics of datasets depend on both the environment and the policy that generated
them. To characterize datasets across environments and generating policies, we use two metrics: (1)
the Trajectory Quality (TQ) measured by the average dataset return and (2) the State-Action Coverage
(SACo) measured by the number of unique state-action pairs.

A dataset has high TQ, if its trajectories attain high rewards on average. A dataset has high SACo, if
its trajectories cover a large proportion of all state-action pairs. Fig. 1 depicts datasets via these two
metrics.

We conducted experiments on six different environments from three different environment suites
[4, 6, 35], to create datasets with different characteristics (see Sec. 3.1). We executed 5,500 RL
learning trials, which included a selection of algorithms [1, 7, 13, 15, 20, 23, 28, 34]. Then we
analyzed their performance on datasets with different TQ and SACo. Variants of the off-policy
Deep-Q-Network family [23, 1, 7] require datasets with high SACo to perform well. Algorithms
that constrain the learned policy towards the given dataset perform well for datasets with high TQ
or SACo. For datasets with high TQ, Behavior Cloning [28] gives better or equivalent performance
compared to Offline RL algorithms.

2 Datasets for Offline Reinforcement Learning

We define our problem setting as a finite Markov decision process (MDP) to be a 5-tuple of
(S,A,R, p, γ) of finite sets S with states s (random variable St at time t), A with actions a (ran-
dom variable At), R with rewards r (random variable Rt+1), state-reward transition dynamics
p(St+1 = s′, Rt+1 = r | St = s,At = a), and γ ∈ [0, 1) as a discount factor. The agent selects

2

actions a ∼ π(St = s) based on the policy π which depends on the current state s. Our objective
is to find the policy π which maximizes the expected return Gt =

∑T
k=0 γ

kRt+k+1. In Offline RL,
we assume that a dataset D of trajectories is provided. A single trajectory consists of a sequence of
(s, a, r, s′) tuples.

The dataset plays an important role in Offline RL. Access to diverse and sufficiently large datasets
have been assumed in Offline RL literature [1, 13]. In most real world problems, dataset generation
is not controlled by the practitioner. Some datasets could have more high return trajectories and may
not cover the entire state-action space. While some may cover the entire state-action space but may
contain less high return trajectories. Fig. 1 illustrates variants of this behavior. The characteristics
of the dataset depends on data generation. As a result, algorithms behave differently for datasets
generated in a different manner on the same problem.

Most publications use different dataset generation schemes for testing their Offline RL algorithms.
[1] test on a dataset which consists of all training samples seen during training of a DQN agent. [12]
generate data using a trained policy with an exploration factor and claim that this is close to a real
world setting. [13] evaluate on multiple datasets which include a dataset comprising all training
samples of a learning agent and data generated using a trained policy. [15] uses the RL Unplugged
dataset [14] which comprises different datasets with different data generating regimes. Conservative
Q-Learning [20] uses three datasets generated using a random, expert and a mixture of expert and
random policy, generated from multiple different policies. [20] claim that data generated by multiple
different policies fits a real world setting better, which conflicts with the claim made in [12]. Thus,
there is an ambiguity in the Offline RL literature on what may be the correct data generation scheme
to test Offline RL algorithms.

The performance of Conservative Q-Learning improved by changing dataset characteristics by modi-
fying the dataset generation [20]. Similarly, in [15] data of high State-Action Coverage improved the
performance of Offline RL algorithms have been compared to Behavior Cloning [28] with different
dataset characteristics. These examples show that changing the dataset characteristics heavily influ-
ences the performance of Offline RL algorithms. But, this connection between dataset characteristics
and the performance of Offline RL algorithms has not been explored in depth. Therefore, we conduct
an experimental study on different dataset generation schemes used in Offline RL literature and
investigate how the characteristics of a dataset affect the performance of Offline RL algorithms.

3 Study Design

In the next few sub-sections we outline the design of our study. To generate datasets with different
characteristics, we introduce different dataset generation schemes (see 3.1). These generation schemes
are related to existing schemes. Furthermore, we introduce measures for TQ and SACo (see Sec. 3.2)
to assess the characteristics of different datasets. We describe the environments, algorithms, and the
training parameters in detail.

3.1 Dataset Generation

We generate data in five different settings: 1) random, 2) expert, 3) mixed 4) noisy and 5) replay.
For each of the datasets we have collected a predefined number of samples by interacting with the
according environments (see Sec. 3.3). The number of samples in a dataset is determined by the
number of environment interactions that are necessary to obtain expert policies through an Online RL
algorithm. The baseline Online RL algorithm is Deep-Q-Network [23], which serves as an expert to
create and collect samples under the different dataset characteristics as described below. Details on
how the online policy was trained are given in the appendix (see Sec. A.4.2).

• Random Dataset. This dataset is generated using a fixed policy which selects random
actions. Such a dataset was used for evaluation in [20]. It serves as a naive baseline on data
collection.

• Expert Dataset. We trained an online policy until convergence and generated all samples
with this final expert policy, without exploration. Such a dataset is used in [11, 15, 20].

3

• Mixed Dataset. The mixed dataset is generated using a mixture of the random dataset
(20%) and the expert dataset (80%). This is similar to [11, 15] where they refer to such a
dataset as medium-expert.

• Noisy Dataset. The noisy dataset is generated with an expert policy that selects the actions
ε-greedy with ε = 0.2. Creating a dataset from a fixed noisy policy is similar to the dataset
creation process in [12, 13, 20, 15].

• Replay Dataset. This dataset is a collection of all samples generated by the online policy
during training, thus multiple policies generated the data. This was used in [1, 13].

3.2 Evaluation Metrics

A dataset generating policy induces a state visitation distribution on the state space [32]. As a result,
different generating policies result in different coverage of the state-action space. The coverage of the
state-action space affects the performance of Offline RL algorithms [15]. To measure and compare
quality and coverage properties of different datasets we use two metrics, the Trajectory Quality (TQ)
and State-Action Coverage (SACo). Similar concepts have been introduced in [24], although no
quantitative measures or further studies have been provided.

We define TQ as the average return of trajectories contained in the datasets compared to the maximal
possible return. We define SACo as the ratio of the number of unique state-action pairs within each
dataset and the number of all state-action pairs. To measure TQ and SACo, both the maximum
achievable return and the entire state-action space is required. To acquire these information is
infeasible for many environments, therefore we define relative measures that relate the TQ and SACo
of each dataset to the online policy used to generate those datasets.

Relative Trajectory Quality (TQ). The relative TQ of a given dataset D is the normalized dataset
return gDnorm defined by

gDnorm =
gD − gmin

gmax − gmin
, (1)

where gD is the average return of the dataset.

The minimum return gmin is given as: gmin = minimum(gonline, grandom), where gonline is the maximum
return achieved by the policy trained in an online fashion and grandom is the average return of the
random policy. The maximum return gmax is: gmax = maximum(gonline, grandom). This is similar to
the normalization done in [1] and is necessary as policies can perform worse than a random policy.
Sec. A.6 (appendix) lists returns for each dataset and online policy.

Relative State-Action Coverage (SACo). The relative SACo uDnorm of a dataset is defined as the
ratio of unique state-action pairs in a dataset uD and the unique state-action pairs of a reference
dataset. We use the replay dataset ureplay as reference, since it was collected throughout training of
the online policy and has a diverse set of state-actions pairs. Thus uDnorm is,

uDnorm =
uD
ureplay

. (2)

Counting unique state-action pairs of large datasets is often infeasible due to time and memory
restrictions. Therefore, we used HyperLogLog [10] as a probabilistic counting method to determine
the number of unique state-action pairs for each dataset. This ensures that the same evaluation
procedure can be applied to large-scale benchmarks, such as the Arcade Learning Environment [3]
(see Sec. A.5 in the appendix for details). The number of unique state-action pairs uD and ureplay for
the environments we consider are listed in Sec. A.6 in the appendix.

Different datasets could have the same relative SACo, even if these datasets consist of completely
different trajectories. For example, a dataset with the same SACo as another dataset can have
trajectories with much higher returns than trajectories from the second dataset. Therefore, SACo
should be contrasted with other dataset metrics such as TQ.

4

Random Mixed Replay Noisy Expert
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

Tr
aj

ec
to

ry
 Q

ua
lit

y

Random Mixed Replay Noisy Expert
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

St
at

e-
Ac

tio
n

Co
ve

ra
ge

Dataset

Figure 2: Relative TQ and Relative SACo over each dataset across dataset creation seeds and
environments. The horizontal grey line (left) indicates the maximum return from an online policy.
Replay dataset provides a good balance between TQ and SACo, which explains the good performance
of most Offline RL algorithms using Replay dataset relative to other datasets.

3.3 Other Study Design Choices

We conduct the study on six different environments, from multiple suites. These are two classic control
environments from the OpenAI gym suite [4], two MiniGrid [6] and two MinAtar environments
[35]. For the first two suites, 105 samples were collected for every dataset, whereas 2 · 106 samples
were collected for the MinAtar environments. Over all environments (six), different data generation
schemes (five) and seeds (five), we generated a total number of 150 datasets.

We train nine different algorithms popular in the Offline RL literature including Behavior Cloning
[28] and variants of Deep Q-Networks (DQN), Quantile-Regression DQN (QRDQN) [7] and Random
Ensemble Mixture (REM) [1]. Furthermore, Behavior Value Estimation (BVE) [15] and Monte-Carlo
Estimation (MCE) are used. Finally, three widely popular Offline RL algorithms, Batch-Constrained
Q-learning (BCQ) [13], Conservative Q-learning (CQL) [19] and Critic Regularized Regression
(CRR) [34] are considered. Details on specific implementations are given in the appendix in Sec. A.3.

The considered algorithms, were executed on each of the 150 datasets for five different seeds. Details
on online and offline training are given in Sec. A.4. Experiments on MinAtar were only conducted for
BC, DQN, BCQ and CQL due to computational constraints and are included in the results presented
in Fig. 3. We study the performance of the policies trained using Offline algorithms relative to the
trained online policy. The performance of the final policy p is given as follows:

p =
goffline − gmin

gmax − gmin
. (3)

Policies are evaluated in the environment after fixed intervals during offline training (see Sec. A.4).
goffline is the highest return of the policy during training averaged over training seeds. gmin and gmax
are defined in Sec. 3.2. This results in all environments having similar range for performance score.

4 Analysis

We aim to analyse our experiments through the lens of dataset characteristics. Fig. 2 shows the relative
TQ and the relative SACo of the gathered datasets, across dataset creation seeds and environments.
Random and mixed datasets exhibit low relative TQ, while expert data has the highest TQ on average.
On the other hand, expert data has low relative SACo on average, whereas random and mixed datasets
are very diverse. The Replay dataset provides a good balance between TQ and SACo. Fig. A.1 in the
appendix visualizes how generating the dataset influences the covered state-action space.

In Fig. 3, we plot the TQ and SACo of all generated datasets. Fig. 3 also shows the performance of
each algorithm denoted by the color, on all generated datasets. These results indicate, that algorithms
of the DQN family (DQN, QRDQN, REM) rely on high relative SACo to find a good policy. On the
other end, BC works well only if datasets have high relative TQ, which is expected as its purpose is

5

0.0

0.2

0.4

0.6

0.8

1.0
BC BVE MCE

0.0

0.2

0.4

0.6

0.8

1.0
DQN QRDQN REM

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0
BCQ

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

CQL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

CRR
0

20

40

60

80

100

120

Pe
rfo

rm
an

ce
 in

 %
 o

f O
nl

in
e

Po
lic

y

Relative State Action Coverage of Dataset

Re
la

tiv
e

Tr
aj

ec
to

ry
Q

ua
lit

y
of

 D
at

as
et

Figure 3: Each point is one of the 150 datasets and tested on each algorithm. We look at the Trajectory
Quality (TQ) and State-Action Coverage (SACo) of each dataset, the color signifies the performance
of an algorithm relative to the online policy. We see: a) BC improves as TQ increases b) DQN
variants (middle row) require high SACo to do well c) Algorithms which constrain the policy towards
data generating policy (bottom row) perform well across if datasets exhibit high TQ or SACo or both

to imitate behavior observed in the dataset. BVE and MCE were found to be very sensitive to the
specific environment and dataset setting, favoring those with high relative SACo. BCQ, CQL and
CRR enforce explicit or implicit constraints on the learned policy towards the behavioral policy and
outperform algorithms of the DQN family, especially in those datasets with low relative SACo and
high relative TQ. BCQ, CQL and CRR perform well if datasets exhibit high TQ or SACo or moderate
values of TQ and SACo.

All the scores for all environments and algorithms over datasets are given in Sec. A.7. The scores
in Sec. A.7 indicate that given a dataset from an expert, BC gives better or equivalent performance
compared to Offline RL algorithms, despite not using any reward signal. When the data is not from
an expert, Offline RL still performs well, while BC fails. The Replay dataset has relatively high
TQ and SACo. Offline RL algorithms perform the best using the Replay dataset, compared to other
datasets. Thus, it seems that there is more value in using Offline RL when data comes from multiple
policies, which is the case in the Replay dataset.

Limitations. This work studies only the effects of the dataset for discrete action environments. The
same comprehensive study has to be carried out on recently developed Offline RL algorithms for
continuous control.

6

Conclusions. We conducted a comprehensive study of various Offline RL algorithms to understand
the effect of dataset characteristics on their performance. Our study provides a blueprint for evaluating
and understanding Offline RL algorithms in the future.

Acknowledgements. The ELLIS Unit Linz, the LIT AI Lab, the Institute for Machine Learning, are
supported by the Federal State Upper Austria. IARAI is supported by Here Technologies. We thank
the projects AI-MOTION (LIT-2018-6-YOU-212), DeepToxGen (LIT-2017-3-YOU-003), AI-SNN
(LIT-2018-6-YOU-214), DeepFlood (LIT-2019-8-YOU-213), Medical Cognitive Computing Center
(MC3), INCONTROL-RL (FFG-881064), PRIMAL (FFG-873979), S3AI (FFG-872172), DL for
GranularFlow (FFG-871302), AIRI FG 9-N (FWF-36284, FWF-36235), ELISE (H2020-ICT-2019-3
ID: 951847), AIDD (MSCA-ITN-2020 ID: 956832). We thank Janssen Pharmaceutica (MaDeSMart,
HBC.2018.2287), Audi.JKU Deep Learning Center, TGW LOGISTICS GROUP GMBH, Silicon
Austria Labs (SAL), FILL Gesellschaft mbH, Anyline GmbH, Google, ZF Friedrichshafen AG,
Robert Bosch GmbH, UCB Biopharma SRL, Merck Healthcare KGaA, Verbund AG, Software
Competence Center Hagenberg GmbH, TÜV Austria, and the NVIDIA Corporation.

References
[1] R. Agarwal, D. Schuurmans, and M. Norouzi. An optimistic perspective on offline reinforcement

learning. arXiv, 2020.
[2] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and S. Hochreiter.

RUDDER: return decomposition for delayed rewards. In Advances in Neural Information
Processing Systems 32, pages 13566–13577, 2019.

[3] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

[4] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. ArXiv, 2016.

[5] Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott E.
Reed, Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerík, Oleg Sushkov, David
Barker, Jonathan Scholz, Misha Denil, Nando de Freitas, and Ziyu Wang. A framework for data-
driven robotics. CoRR, abs/1909.12200, 2019. URL http://arxiv.org/abs/1909.12200.

[6] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environ-
ment for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

[7] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos. Distributional reinforcement learning
with quantile regression. arXiv, 2017.

[8] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning,
2020.

[9] Gabriel Dulac-Arnold, Daniel J. Mankowitz, and Todd Hester. Challenges of real-world
reinforcement learning. CoRR, abs/1904.12901, 2019. URL http://arxiv.org/abs/1904.
12901.

[10] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The analysis of a near-
optimal cardinality estimation algorithm. In in aofa ’07: proceedings of the 2007 international
conference on analysis of algorithms, 2007.

[11] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv, 2021.

[12] S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau. Benchmarking batch deep reinforcement
learning algorithms. arXiv, 2019.

[13] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. arXiv, 2019.

[14] C. Gulcehre, Z. Wang, A. Novikov, T. Le Paine, S. G. Colmenarejo, K. Zolna, R. Agarwal,
J. Merel, D. Mankowitz, C. Paduraru, G. Dulac-Arnold, J. Li, M. Norouzi, M. Hoffman,
O. Nachum, G. Tucker, N. Heess, and N. de Freitas. Rl unplugged: Benchmarks for offline
reinforcement learning. arXiv, 2020.

7

http://arxiv.org/abs/1909.12200
https://github.com/maximecb/gym-minigrid
http://arxiv.org/abs/1904.12901
http://arxiv.org/abs/1904.12901

[15] C. Gulcehre, S. Gómez Colmenarejo, Z. Wang, J. Sygnowski, T. Paine, K. Zolna, Y. Chen,
M. Hoffman, R. Pascanu, and N. de Freitas. Regularized behavior value estimation. arXiv,
2021.

[16] M. Holzleitner, L. Gruber, J. A. Arjona-Medina, J. Brandstetter, and S. Hochreiter. Convergence
proof for actor-critic methods applied to PPO and RUDDER. arXiv, 2020.

[17] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9
(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[18] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks, 2017.

[19] A. Kumar, J. Fu, G. Tucker, and S. Levine. Stabilizing off-policy q-learning via bootstrapping
error reduction. arXiv, 2019.

[20] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement
learning. arXiv, 2020.

[21] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch Reinforcement Learning, pages
45–73. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-27645-3. doi:
10.1007/978-3-642-27645-3_2. URL https://doi.org/10.1007/978-3-642-27645-3_
2.

[22] R. McFarlane. A survey of exploration strategies in reinforcement learning. 2003.
[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Ried-

miller. Playing Atari with deep reinforcement learning. ArXiv, 2013.
[24] L. Monier, J. Kmec, A. Laterre, T. Pierrot, V. Courgeau, O. Sigaud, and K. Beguir. Offline

reinforcement learning hands-on. CoRR, abs/2011.14379, 2020.
[25] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming

with cuda. ACM Queue, (2):40–53, 4 2008.
[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[27] V. P. Patil, M. Hofmarcher, M.-C. Dinu, M. Dorfer, P. M. Blies, J. Brandstetter, J. A. Arjona-
Medina, and S. Hochreiter. Align-rudder: Learning from few demonstrations by reward
redistribution. CoRR, abs/2009.14108, 2020.

[28] D. A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural Comput., 3(1):88–97, 1991. ISSN 0899-7667.

[29] M. A. Riedmiller, J. T. Springenberg, R. Hafner, and N. Heess. Collect & infer - a fresh look at
data-efficient reinforcement learning. CoRR, abs/2108.10273, 2021.

[30] S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9 of
Proceedings of Machine Learning Research, pages 661–668, 2010.

[31] R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, University
of Massachusetts, Dept. of Comp. and Inf. Sci., 1984.

[32] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 2 edition, 2018.

[33] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley,
CA, 2009. ISBN 1441412697.

[34] Z. Wang, A. Novikov, K. Zolna, J. T. Springenberg, S. Reed, B. Shahriari, N. Siegel, J. Merel,
C. Gulcehre, N. Heess, and N. de Freitas. Critic regularized regression. arXiv, 2020.

[35] Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments, 2019.

[36] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht
Madhavan, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask
learning, 2020.

8

https://doi.org/10.1007/978-3-642-27645-3_2
https://doi.org/10.1007/978-3-642-27645-3_2

A Appendix

Contents of the appendix

A.1 Introduction to the Appendix . 10

A.2 Environments . 10

A.3 Algorithms . 10

A.4 Implementation Details . 11

A.4.1 Network Architectures . 11

A.4.2 Online Training . 11

A.4.3 Offline Training . 12

A.4.4 Hardware and Software Specifications . 12

A.5 Counting Unique State-Action Pairs . 13

A.6 Calculating Relative TQ and SACo . 13

A.7 Performance of Offline Algorithms . 16

A.8 Illustration of State-Action Coverage on MountainCar 18

A.8.1 Performance per Dataset Generation Scheme 19

List of figures

1 Trajectory Quality vs. State-Action Coverage of a given dataset. Datasets that are
given as a set of trajectories are represented by graphs. Each graph represents all
dataset trajectories, which start at the bottom root state and terminate at top leaf states.
Edges represent actions. Green nodes are states with zero reward. Purple nodes
are terminal states with low reward and yellow nodes are terminal states with high
reward. Datasets are placed in this plot via the Trajectory Quality and State-Action
Coverage. The performance of an Offline RL algorithm depends on the location of a
dataset in this plot. 2

2 Relative TQ and Relative SACo over each dataset across dataset creation seeds and
environments. The horizontal grey line (left) indicates the maximum return from an
online policy. Replay dataset provides a good balance between TQ and SACo, which
explains the good performance of most Offline RL algorithms using Replay dataset
relative to other datasets. 5

3 Each point is one of the 150 datasets and tested on each algorithm. We look at the
Trajectory Quality (TQ) and State-Action Coverage (SACo) of each dataset, the color
signifies the performance of an algorithm relative to the online policy. We see: a) BC
improves as TQ increases b) DQN variants (middle row) require high SACo to do
well c) Algorithms which constrain the policy towards data generating policy (bottom
row) perform well across if datasets exhibit high TQ or SACo or both 6

A.1 State-action space for different datasets created from the environment
MountainCar-v0 under different dataset schemes for five independent runs. 10% of
the datasets were sub-sampled for plotting. 18

A.2 Performance of algorithms compared to the online policy used to create the datasets,
with respect to the relative TQ and SACo of the dataset. Points denote the different
datasets, where BC, DQN, BCQ and CQL additionally include results on MinAtar
environments. Relative TQ, SACo and performance are averaged over results for
each of the five dataset creation seeds. 19

9

A.1 Introduction to the Appendix

This is the appendix to the paper "Understanding Dataset Generation for Offline RL". It provides
more detailed information on the utilized environments, algorithms and gives more details on training
of the online and offline policies.

A.2 Environments

While the dynamics of the introduced environments are rather different and range from motion
equations to predefined game rules, they share common traits. This includes the dimension of the
state dim(s), the number of eligible actions |A|, the maximum episode length Tmax as well as the
minimum and maximum expected return Gmin, Gmax of an episode. Furthermore, the discount
factor γ is fixed for every environment regardless of the specific experiment executed on it and is
thus listed with the other parameters in Tab. A.1.

Two environments contained in the MinAtar suite, Breakout and SpaceInvaders, do not have an
explicit maximum episode length, as the episode termination is assured through the game rules.
Breakout terminates either if the ball is hitting the ground or two rows of bricks were destroyed,
which results in the maximum of 60 reward. An optimal agent could attain infinite reward for
SpaceInvaders, as the aliens always reset if they are eliminated entirely by the player and there is a
speed limit that aliens can maximally attain. Nevertheless, returns much higher than 200− 300 are
very unlikely due to stochasticity in the environment dynamics that is introduced through sticky
actions with a probability of 0.1 for all MinAtar environments.

Environment dim(s) |A| Tmax Gmin Gmax γ
CartPole-v1 4 2 500 9∗ 500 0.95
MountainCar-v0 2 3 200 −200 −90∗ 0.99
MiniGrid-LavaGapS7-v0 98 3 196 0 0.945∗ 0.95
MiniGrid-Dynamic-Obstacles-8x8-v0 98 3 256 −1 0.935∗ 0.95
Breakout-MinAtar-v0 100 3 - 0 60 0.99
SpaceInvaders-MinAtar-v0 100 4 - 0 ∞ 0.99

Table A.1: Environment specific characteristics and parameters. ∗Minimum or maximum expected
returns depend on the starting state.

Action-spaces for MiniGrid and MinAtar are reduced to the number of eligible actions and state
representations simplified. Specifically, the third layer in the state representation of MiniGrid
environments was removed as it contained no information for the chosen environments. The state
representation of MinAtar environments was collapsed into one layer, where the respective entries
have been set to the index of the layer, divided by the total number of layers. The resulting two-
dimensional state representations are flattened for MiniGrid as well as for MinAtar environments.

A.3 Algorithms

We conducted evaluation of the different dataset compositions using nine different algorithms
applicable in an Offline RL setting. The selection covers recent advances in the field, as well as
off-policy methods not specifically designed for Offline RL that are often utilized for comparison.

Behavioral cloning (BC) [28] serves as a baseline algorithm, as it mimics the behavioral policy used
to create the dataset. Consequently, its performance is expected to be strongly correlated with the TQ
of the dataset.

Behavior Value Estimation (BVE) [15] is utilized without the ranking regularization that it was
proposed to be coupled with. This way, extrapolation errors are circumvented during training as the
action-value of the behavioral policy is evaluated. Policy improvement only happens during inference,
when the action is selected greedy on the learned action-values. BVE uses SARSA updates where the
next state and action are sampled from the dataset, utilizing temporal difference updates to evaluate
the policy.
As a comparison, Monte-Carlo Estimation (MCE) evaluates the behavioral policy that created the

10

dataset from the observed returns. Again, actions are selected greedy on the action-values obtained
from Monte-Carlo estimates.

Deep Q-Network (DQN) [23] is used to obtain the online policy, but can be applied in the Offline
RL setting as well, as it is an off-policy algorithm. The dataset serves as a replay buffer in this case,
which remains constant throughout training. As it is not originally designed for the Offline RL setting,
there are no countermeasures to the erroneous extrapolation of action-values during training nor
during inference.
Quantile-Regression DQN (QRDQN) [7] approximates a set of K quantiles of the action-value
distribution instead of a point estimate during training. During inference, the action is selected greedy
through the mean values of the action-value distribution.
Random Ensemble Mixture (REM) [1] utilizes an ensemble of J action-value approximations to
attain a more robust estimate. During training, the influence of each approximation on the overall
loss is weighted through a randomly sampled categorical distribution. Selecting an action is done
greedy on the average of the action-value estimates.

Batch-Constrained Deep Q-learning (BCQ) [12] for discrete action-spaces is based on DQN, but
uses a BC policy on the dataset to constrain eligible actions during training and inference. A relative
threshold τ is utilized for this constraint, where eligible actions must attain at least τ times the
probability of the most probable action under the BC policy.
Conservative Q-learning (CQL) [20] introduces a regularization term to policy evaluation. The
general framework might be applied to any off-policy algorithm that approximates action-values,
therefore we based it on DQN as used for the online policy. Furthermore, the particular regularizer
has to be chosen, where we used the KL-divergence against a uniform prior distribution, referred
to as CQL(H) by the authors. The influence of the regularizing term is controlled by a temperature
parameter α.
Critic Regularized Regression (CRR) [34] aims to ameliorate the problem that the performance of
BC suffers from low-quality data, by filtering actions based on action-value estimates. Two filters
which can be combined with several advantage functions were proposed by the authors, where the
combination referred to as binary max was utilized in this study. Furthermore, DQN is used instead
of a distributional action-value estimator for obtaining the m action-value samples in the advantage
estimate.

A.4 Implementation Details

A.4.1 Network Architectures

The state input space is as defined in Tab. A.1, followed by 3 linear layers with a hidden size of
256. The number of output actions for the final linear layer is defined by the number of eligible
actions for action-value networks. For QRDQN and REM, the number of actions times the number
of quantiles or estimators respectively is used as output size. All except the last linear layer use the
SELU activation function [18] with proper initialization of weights, whereas the final one applies a
linear activation. Behavioral cloning networks use the softmax activation in the last layer to output a
proper probability distribution, but are otherwise identical to the action-value networks.

A.4.2 Online Training

For every environment, a single online policy is obtained through training with DQN. This policy
is the one used to generate the datasets under the different settings described in Sec. 3.1. All
hyperparameters are listed in Tab. A.2.

Initially, as many samples as the batch size are collected by a random policy to pre-populate the
experience replay buffer. Rather than training for a fixed amount of episodes, the number of policy-
environment interactions is used as training steps. Consequently, the number of training steps is
independent from the agents intermediate performance and comparable across environments. The
policy is updated in every of those steps, after a single interaction with the environment where tuples
(s, a, r, s′) are collected and stored in the buffer. After the buffer has reached the maximum size,
the oldest tuple is discarded for every new one. Action selection during environment interactions
to collect samples starts out with an initial ε that linearly decays over a period of steps towards the
minimal ε, which remains fixed throughout the rest of the training procedure. Training batches are
sampled randomly from the experience replay buffer. The Adam optimizer was used for all algorithms

11

and the target network parameters θ′ is updated to match the parameters θ of the current action-value
estimator every 100 training steps.

The policy is evaluated periodically after a certain number of training steps, depending on the used
environment. It interacts greedy based on the current value estimate with the environment for 10
episodes, averaging over the returns to estimate its performance.

Hyperparameter Value
Algorithm DQN
Learning rate 0.0001
Batch size 32
Optimizer Adam
Loss Huber with λ = 1
Initial ε 1.0
Linear ε decay period 1 000 steps
Minimal ε 0.01
Target update frequency 100 steps
Training steps 100 000 (2 000 000)
Network update frequency 1 step
Experience-Replay Buffer size 50 000 (500 000)
Evaluation frequency 200 (4 000) steps

Table A.2: Online training hyperparameters, values in parenthesis apply for MinAtar environments.

A.4.3 Offline Training

If not stated otherwise, the hyperparameters for offline training are identical to the ones used during
online training, stated in Tab. A.2. All others which differ in an Offline RL setting are listed in
Tab. A.3. Furthermore, parameters specific to the used algorithms are stated as well, relying on the
parameters provided by the original authors.

Five times as many training steps as in the online case are used for training, which is common
in Offline RL since one is interested in asymptotic performance on the fixed dataset. Algorithms
are evaluated after a certain number of training steps through 10 interaction episodes with the
environment, as it is done during the online training. Resulting returns for each of those evaluation
steps are averaged over five independent runs, given an algorithm and a dataset. The maximum of
this returns is then compared to the online policy through equation 3 to obtain the performance of the
algorithm on a specific dataset.

Algorithm Hyperparameter Value
All Evaluation frequency 1 000 (20 000) steps
All Training steps 500 000 (10 000 000)
All Batch size 128
QRDQN Number of quantiles K 50
REM Number of estimators J 200
BCQ Threshold τ 0.3
CQL Temperature parameter α 0.1
CRR samples for advantage estimate m 4

Table A.3: Offline training hyperparameters, values in parenthesis apply for MinAtar environments.

A.4.4 Hardware and Software Specifications

Throughout the experiments, PyTorch 1.8 [26] with CUDA toolkit 11 [25] on Python 3.8 [33] was
used. Plots are created using Matplotlib 3.4 [17].

We used a mixture of 27 GPUs, including GTX 1080 Ti, TITAN X, and TITAN V. Runs for
Classic Control and MiniGrid environments took 96 hours in total, the executed runs for MinAtar
environments took around 10 days.

12

A.5 Counting Unique State-Action Pairs

Due to time and memory restrictions, we evaluated several methods to enable counting on large
benchmark datasets. We compared a simple list based approach to store all state-action pairs, a
Hash-Table and the probabilistic counting method HyperLogLog [10]. We used the HyperLogLog
approach, because it approximates the probability of obtaining certain properties in hashes created
from the state-action pairs. HyperLogLog has a worst case time complexity of O(N) and worst case
memory complexity of Θ(log logN), as there is no need to store a list of unique values. Even for
large N > 109, estimates typically deviate by a maximum of 2% from the true counts as proven in
[10]. We provide an overview of the time and memory complexities of all methods in Tab. A.4.

Algorithm Time complexity Memory complexity
List of uniques O(N2) Θ(N)
Hash Table O(N) Θ(N)
HyperLogLog O(N) Θ(log logN)

Table A.4: Time and Memory complexities of different algorithms that count unique state-action
pairs.

A.6 Calculating Relative TQ and SACo

All necessary measurements for calculating the relative TQ and SACo are listed in this section. The
maximum returns attained by the online policy are listed in Tab. A.5, the average return attained by
the random policy in Tab. A.6. Furthermore, the maximum return and unique state-action pairs of
each dataset are given in Tab. A.7 and Tab. A.8.

Environment Maximum return of online policy gonline
Run 1 Run 2 Run 3 Run 4 Run 5

CartPole-v1 500.00 500.00 500.00 500.00 500.00
MountainCar-v0 −99.78 −102.07 −102.70 −100.19 −99.82
MiniGrid-LavaGapS7-v0 0.80 0.91 0.86 0.81 0.85
MiniGrid-Dynamic-Obstacles-8x8-v0 0.93 0.93 0.93 0.93 0.92
Breakout-MinAtar-v0 18.02 19.46 17.00 18.47 19.32
SpaceInvaders-MinAtar-v0 26.31 25.17 28.45 28.09 28.08

Table A.5: Maximum return of the policy trained online.

Environment Average return of the random policy grandom
Run 1 Run 2 Run 3 Run 4 Run 5

CartPole-v1 22.23 22.12 22.04 22.51 22.05
MountainCar-v0 −200.00 −200.00 −200.00 −200.00 −200.00
MiniGrid-LavaGapS7-v0 0.02 0.02 0.02 0.02 0.03
MiniGrid-Dynamic-Obstacles-8x8-v0 −1.00 −1.00 −1.00 −1.00 −1.00
Breakout-MinAtar-v0 0.51 0.51 0.51 0.51 0.51
SpaceInvaders-MinAtar-v0 2.84 2.83 2.84 2.85 2.85

Table A.6: Average return of the random policy.

13

Environment Dataset Average return of dataset trajectories gD
Run 1 Run 2 Run 3 Run 4 Run 5

CartPole-v1 Random 22.23 22.12 22.04 22.51 22.05
Mixed 27.47 27.15 26.79 26.87 26.17
Replay 208.05 249.72 201.13 215.27 201.98
Noisy 397.03 144.62 248.48 116.77 77.21
Expert 497.48 498.82 279.08 127.98 109.23

MountainCar-v0 Random −200.00 −200.00 −200.00 −200.00 −200.00
Mixed −176.36 −183.04 −179.71 −182.96 −181.01
Replay −159.69 −135.38 −135.44 −133.67 −136.20
Noisy −156.13 −164.55 −164.98 −155.13 −166.10
Expert −118.90 −135.23 −128.93 −134.63 −132.52

MiniGrid Random 0.02 0.02 0.02 0.02 0.03
-LavaGapS7-v0 Mixed 0.09 0.05 0.16 0.10 0.08

Replay 0.59 0.70 0.71 0.57 0.62
Noisy 0.61 0.56 0.70 0.70 0.65
Expert 0.63 0.42 0.75 0.70 0.57

MiniGrid-Dynamic Random −1.00 −1.00 −1.00 −1.00 −1.00
-Obstacles-8x8-v0 Mixed −0.87 −0.88 −0.82 −0.81 −0.99

Replay 0.58 0.71 0.53 0.57 0.46
Noisy −0.09 0.14 0.16 0.19 −0.42
Expert 0.89 0.89 0.92 0.93 0.00

Breakout-MinAtar-v0 Random 0.51 0.51 0.51 0.51 0.51
Mixed 0.80 0.81 0.80 0.80 0.81
Replay 9.53 10.04 8.92 9.25 9.72
Noisy 4.91 6.90 4.48 4.86 5.78
Expert 13.59 15.61 12.56 14.02 15.28

SpaceInvaders Random 2.84 2.83 2.84 2.85 2.85
-MinAtar-v0 Mixed 4.07 2.81 4.07 3.54 3.71

Replay 14.85 14.66 15.62 15.46 15.48
Noisy 9.71 3.22 11.46 11.16 13.32
Expert 14.26 2.28 16.65 14.21 18.96

Table A.7: Average return of dataset trajectories per environment and dataset creation setting for
every run.

14

Environment Dataset Unique state-action pairs of environment uD
Run 1 Run 2 Run 3 Run 4 Run 5

CartPole-v1 Random 55 916 52 888 58 127 52 100 54 085
Mixed 52 409 59 350 60 820 52 896 53 467
Replay 95 384 94 749 95 950 96 499 97 263
Noisy 70 710 64 392 78 952 53 173 51 771
Expert 15 496 43 860 30 434 19 349 14 909

MountainCar-v0 Random 3 315 3 294 3 448 3 015 3 212
Mixed 5 294 5 838 5 891 4 725 5 980
Replay 13 740 11 183 12 411 12 444 12 549
Noisy 14 669 14 187 14 138 12 934 14 575
Expert 2 947 3 768 3 709 2 432 4 123

MiniGrid Random 1 842 1 847 1 879 1 919 1 840
-LavaGapS7-v0 Mixed 1 819 1 813 1 827 1 866 1 808

Replay 1 368 1 394 1 343 1 401 1 421
Noisy 1 310 1 288 1 450 1 360 1 311
Expert 114 112 116 116 104

MiniGrid-Dynamic Random 41 497 40 791 40 843 41 591 41 110
-Obstacles-8x8-v0 Mixed 43 278 44 118 42 968 43 164 37 401

Replay 45 283 45 423 46 916 46 191 44 801
Noisy 46 571 49 191 45 526 44 998 40 115
Expert 38 704 42 140 36 202 35 331 14 435

Breakout-MinAtar-v0 Random 16 218 15 915 16 459 16 247 16 182
Mixed 18 351 18 608 20 175 18 179 19 166
Replay 62 737 54 810 91 183 61 433 59 980
Noisy 38 326 44 074 49 592 38 527 42 789
Expert 5 809 5 914 9 006 4 950 6 535

SpaceInvaders Random 935 920 920 093 925 641 934 557 933 024
-MinAtar-v0 Mixed 860 935 777 601 898 787 869 611 901 127

Replay 1 507 798 1 463 980 1 446 246 1 439 305 1 426 702
Noisy 933 016 582 548 1 053 096 955 208 1 057 379
Expert 250 085 8 163 407 306 239 007 409 359

Table A.8: Unique state-action pairs per environment and dataset creation setting for every run.

15

A.7 Performance of Offline Algorithms

Performances as fraction of the respective online policy for every algorithm with the respective
dataset settings are given in Tab. A.9 and Tab. A.10. The results pose averages over the different
dataset creation seeds and multiple runs carried out with each algorithm, compared to the respective
online policy used to create the dataset.

Dataset BC BVE MCE DQN QRDQN REM BCQ CQL CRR
CartPole-v1

Random 0.01
±0.00

0.96
±0.02

0.99
±0.01

0.61
±0.06

0.79
±0.14

0.83
±0.06

0.59
±0.07

0.65
±0.06

0.38
±0.03

Mixed 0.08
±0.04

0.86
±0.17

0.99
±0.02

0.67
±0.10

0.81
±0.12

0.73
±0.09

0.78
±0.12

0.73
±0.15

0.63
±0.19

Replay 0.54
±0.04

1.00
±0.00

0.97
±0.04

0.97
±0.04

1.00
±0.00

1.00
±0.00

0.99
±0.01

0.98
±0.02

0.98
±0.01

Noisy 0.51
±0.28

0.95
±0.06

0.88
±0.08

0.79
±0.12

0.96
±0.05

0.95
±0.10

0.82
±0.30

0.82
±0.28

0.87
±0.13

Expert 0.65
±0.36

0.67
±0.20

0.59
±0.15

0.73
±0.18

0.71
±0.24

0.53
±0.29

0.68
±0.37

0.71
±0.31

0.72
±0.33

MountainCar-v0

Random 0.00
±0.00

0.70
±0.03

0.14
±0.09

0.42
±0.06

0.35
±0.06

0.26
±0.06

0.42
±0.06

0.35
±0.07

0.41
±0.07

Mixed 0.10
±0.02

0.13
±0.08

0.52
±0.07

0.85
±0.07

0.80
±0.02

0.73
±0.04

0.90
±0.03

0.79
±0.03

0.78
±0.03

Replay 0.56
±0.20

0.15
±0.15

0.99
±0.07

0.86
±0.11

0.86
±0.10

0.81
±0.10

0.85
±0.05

0.92
±0.03

0.85
±0.05

Noisy 0.46
±0.03

0.33
±0.12

0.67
±0.15

0.86
±0.06

0.79
±0.05

0.80
±0.09

0.81
±0.05

0.91
±0.04

0.86
±0.06

Expert 0.79
±0.05

0.10
±0.09

0.43
±0.23

0.58
±0.30

0.61
±0.31

0.54
±0.29

0.80
±0.04

0.78
±0.07

0.78
±0.06

MiniGrid-LavaGapS7-v0

Random 0.11
±0.01

0.20
±0.03

0.30
±0.13

0.91
±0.12

0.86
±0.14

0.80
±0.13

0.88
±0.14

0.63
±0.14

1.09
±0.05

Mixed 0.21
±0.06

0.72
±0.22

0.85
±0.18

1.06
±0.11

1.03
±0.13

1.04
±0.13

0.75
±0.20

0.65
±0.13

1.11
±0.05

Replay 0.81
±0.08

1.07
±0.08

1.10
±0.06

0.91
±0.13

0.90
±0.12

0.90
±0.13

0.71
±0.07

0.43
±0.17

0.85
±0.04

Noisy 0.85
±0.12

0.82
±0.21

0.76
±0.10

0.57
±0.25

0.51
±0.26

0.53
±0.18

0.66
±0.13

0.65
±0.13

0.97
±0.12

Expert 0.65
±0.13

0.17
±0.19

0.10
±0.12

0.12
±0.09

0.10
±0.15

0.08
±0.13

0.65
±0.13

0.65
±0.13

0.60
±0.21

MiniGrid-Dynamic-Obstacles-8x8-v0

Random 0.02
±0.01

0.73
±0.06

0.80
±0.03

1.00
±0.00

1.00
±0.00

1.00
±0.00

1.00
±0.00

0.88
±0.04

0.72
±0.04

Mixed 0.17
±0.07

1.00
±0.01

0.99
±0.01

1.00
±0.00

1.00
±0.00

0.98
±0.05

0.90
±0.19

0.90
±0.19

0.94
±0.11

Replay 0.90
±0.04

1.00
±0.00

1.00
±0.00

0.99
±0.01

1.00
±0.01

1.00
±0.01

0.99
±0.01

0.98
±0.02

0.99
±0.01

Noisy 0.71
±0.09

0.96
±0.02

0.95
±0.03

0.90
±0.11

0.89
±0.14

0.90
±0.13

0.92
±0.15

0.93
±0.14

0.99
±0.01

Expert 0.90
±0.19

0.14
±0.14

0.10
±0.07

0.12
±0.09

0.11
±0.10

0.14
±0.19

0.90
±0.19

0.90
±0.19

0.82
±0.16

Table A.9: Performance as in equation 3 of algorithms averaged over dataset creation seeds and
offline runs, where ± captures the standard deviation. Results are for Classic Control and MiniGrid
environments on all nine algorithms.

16

Dataset BC DQN BCQ CQL
Breakout-MinAtar-v0

Random 0.02± 0.00 0.17± 0.02 0.16± 0.01 0.33± 0.02
Mixed 0.11± 0.01 0.13± 0.03 0.57± 0.23 0.30± 0.03
Replay 0.67± 0.05 0.39± 0.11 0.98± 0.03 0.88± 0.15
Noisy 0.43± 0.04 0.22± 0.04 0.83± 0.09 0.82± 0.16
Expert 0.82± 0.09 0.01± 0.01 0.81± 0.09 0.77± 0.15

SpaceInvaders-MinAtar-v0
Random 0.05± 0.01 1.18± 0.10 1.12± 0.09 1.24± 0.11
Mixed 0.08± 0.03 0.82± 0.35 0.69± 0.17 0.87± 0.20
Replay 0.62± 0.02 1.29± 0.07 1.25± 0.07 1.26± 0.07
Noisy 0.37± 0.16 1.16± 0.19 0.62± 0.33 0.96± 0.17
Expert 0.48± 0.26 0.02± 0.03 0.48± 0.27 0.49± 0.27

Table A.10: Performance as in equation 3 of algorithms averaged over dataset creation seeds and
offline runs, where ± captures the standard deviation. Results are for MinAtar environments on a
selection of four algorithms.

17

A.8 Illustration of State-Action Coverage on MountainCar

In Fig. A.1 we illustrate SACo on the example of the MountainCar-v0 environment. This envi-
ronment was chosen as the state-space is two-dimensional and thus provides axes with physical
meaning.

In this example, the dataset obtained through a random policy has only limited coverage of the whole
state-action space. This is the case, because the random policy is not able to transition far from the
starting position due to the environment dynamics.

Furthermore, the expert policies obtained in each independent run differ from one another in how
they steer the agent towards the goal, for instance, neglecting to use the action "Don’t accelerate" in
the first run.

Figure A.1: State-action space for different datasets created from the environment MountainCar-v0
under different dataset schemes for five independent runs. 10% of the datasets were sub-sampled for
plotting.

18

A.8.1 Performance per Dataset Generation Scheme

To obtain results per dataset generation scheme, the results for the five dataset creation runs per
scheme are averaged. Therefore, the relative TQ and SACo are averaged as well as the performance
for the respective algorithm on each dataset. Results are depicted in Fig. A.2.

0.0

0.2

0.4

0.6

0.8

1.0
BC BVE MCE

0.0

0.2

0.4

0.6

0.8

1.0
DQN QRDQN REM

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0
BCQ

0.2 0.4 0.6 0.8 1.0 1.2 1.4

CQL

0.2 0.4 0.6 0.8 1.0 1.2 1.4

CRR
0

20

40

60

80

100

120

Pe
rfo

rm
an

ce
 in

 %
 o

f O
nl

in
e

Po
lic

y
Relative State Action Coverage of Dataset

Re
la

tiv
e

Tr
aj

ec
to

ry
Q

ua
lit

y
of

 D
at

as
et

Figure A.2: Performance of algorithms compared to the online policy used to create the datasets,
with respect to the relative TQ and SACo of the dataset. Points denote the different datasets, where
BC, DQN, BCQ and CQL additionally include results on MinAtar environments. Relative TQ, SACo
and performance are averaged over results for each of the five dataset creation seeds.

19

	Introduction
	Datasets for Offline Reinforcement Learning
	Study Design
	Dataset Generation
	Evaluation Metrics
	Other Study Design Choices

	Analysis
	Appendix
	Introduction to the Appendix
	Environments
	Algorithms
	Implementation Details
	Network Architectures
	Online Training
	Offline Training
	Hardware and Software Specifications

	Counting Unique State-Action Pairs
	Calculating Relative TQ and SACo
	Performance of Offline Algorithms
	Illustration of State-Action Coverage on MountainCar
	Performance per Dataset Generation Scheme

