login
Search: a189284 -id:a189284
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of permutations p of 1,2,...,n satisfying p(i+6)-p(i)<>6 for all 1<=i<=n-6.
+10
2
1, 1, 2, 6, 24, 120, 720, 4920, 37488, 319644, 3033264, 31784280, 364902480, 4538652840, 61102571376, 885045657564, 13722397569072, 226742901078120, 3977354871110160, 73816786920489720, 1444940702597713008, 29750236302549282948
OFFSET
0,3
COMMENTS
a(n) is also number of ways to place n nonattacking pieces rook + semi-leaper[6,6] on an n X n chessboard.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..24 (Updated Jan 19 2019)
Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 644.
FORMULA
Asymptotics (V. Kotesovec, Mar 2011): a(n)/n! ~ (1 + 11/n + 30/n^2)/e.
Generally (for this sequence is d=6): 1/e*(1+(2d-1)/n+d*(d-1)/n^2).
KEYWORD
nonn,hard
AUTHOR
Vaclav Kotesovec, Apr 19 2011
EXTENSIONS
Terms a(23)-a(24) from Vaclav Kotesovec, Apr 21 2012
STATUS
approved
Number of ways to place n nonattacking composite pieces rook + semi-rider[5,5] on an n X n chessboard.
+10
1
1, 2, 6, 24, 120, 696, 4572, 34260, 290328, 2751480, 28426056, 318900264, 3874868280, 50813711808, 716309557440, 10721493269568
OFFSET
1,2
COMMENTS
a(n) is also number of permutations p of 1,2,...,n satisfying p(j+5k)-p(j)<>5k for all j>=1, k>=1, j+5k<=n
For information about semi-pieces see semi-bishop (A187235) and semi-queen (A099152).
KEYWORD
nonn,hard
AUTHOR
Vaclav Kotesovec, Apr 29 2011
STATUS
approved

Search completed in 0.007 seconds