login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a054785 -id:a054785
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).
(Formerly M2329 N0921)
+10
5156
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144
OFFSET
1,2
COMMENTS
Multiplicative: If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (this sequence) (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
A number n is abundant if sigma(n) > 2n (cf. A005101), perfect if sigma(n) = 2n (cf. A000396), deficient if sigma(n) < 2n (cf. A005100).
a(n) is the number of sublattices of index n in a generic 2-dimensional lattice. - Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001 [In the language of group theory, a(n) is the number of index-n subgroups of Z x Z. - Jianing Song, Nov 05 2022]
The sublattices of index n are in one-to-one correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} d = sigma(n), which is a(n). A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * Product_{p|n} (1+1/p), which is A001615. [Cf. Grady reference.]
Sum of number of common divisors of n and m, where m runs from 1 to n. - Naohiro Nomoto, Jan 10 2004
a(n) is the cardinality of all extensions over Q_p with degree n in the algebraic closure of Q_p, where p>n. - Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004. Cf. A100976, A100977, A100978 (p-adic extensions).
Let s(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) + a(n-15) - a(n-22) - a(n-26) + ..., then a(n) = s(n) if n is not pentagonal, i.e., n != (3 j^2 +- j)/2 (cf. A001318), and a(n) is instead s(n) - ((-1)^j)*n if n is pentagonal. - Gary W. Adamson, Oct 05 2008 [corrected Apr 27 2012 by William J. Keith based on Ewell and by Andrey Zabolotskiy, Apr 08 2022]
Write n as 2^k * d, where d is odd. Then a(n) is odd if and only if d is a square. - Jon Perry, Nov 08 2012
Also total number of parts in the partitions of n into equal parts. - Omar E. Pol, Jan 16 2013
Note that sigma(3^4) = 11^2. On the other hand, Kanold (1947) shows that the equation sigma(q^(p-1)) = b^p has no solutions b > 2, q prime, p odd prime. - N. J. A. Sloane, Dec 21 2013, based on postings to the Number Theory Mailing List by Vladimir Letsko and Luis H. Gallardo
Limit_{m->infinity} (Sum_{n=1..prime(m)} a(n)) / prime(m)^2 = zeta(2)/2 = Pi^2/12 (A072691). See more at A244583. - Richard R. Forberg, Jan 04 2015
a(n) + A000005(n) is an odd number iff n = 2m^2, m>=1. - Richard R. Forberg, Jan 15 2015
a(n) = a(n+1) for n = 14, 206, 957, 1334, 1364 (A002961). - Zak Seidov, May 03 2016
Also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) whose structure arises after the k-degree-zig-zag folding of every row of the diagram of the isosceles triangle A237593, where k is an angle greater than zero and less than 180 degrees. - Omar E. Pol, Jul 05 2016
Equivalent to the Riemann hypothesis: a(n) < H(n) + exp(H(n))*log(H(n)), for all n>1, where H(n) is the n-th harmonic number (Jeffrey Lagarias). See A057641 for more details. - Ilya Gutkovskiy, Jul 05 2016
a(n) is the total number of even parts in the partitions of 2*n into equal parts. More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 18 2019
From Jianing Song, Nov 05 2022: (Start)
a(n) is also the number of order-n subgroups of C_n X C_n, where C_n is the cyclic group of order n. Proof: by the correspondence theorem in the group theory, there is a one-to-one correspondence between the order-n subgroups of C_n X C_n = (Z x Z)/(nZ x nZ) and the index-n subgroups of Z x Z containing nZ x nZ. But an index-n normal subgroup of a (multiplicative) group G contains {g^n : n in G} automatically. The desired result follows from the comment from Naohiro Nomoto above.
The number of subgroups of C_n X C_n that are isomorphic to C_n is A001615(n). (End)
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 116ff.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 2nd formula.
G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 141, 166.
H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
Ross Honsberger, "Mathematical Gems, Number One," The Dolciani Mathematical Expositions, Published and Distributed by The Mathematical Association of America, page 116.
Kanold, Hans Joachim, Kreisteilungspolynome und ungerade vollkommene Zahlen. (German), Ber. Math.-Tagung Tübingen 1946, (1947). pp. 84-87.
M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
A. Lubotzky, Counting subgroups of finite index, Proceedings of the St. Andrews/Galway 93 group theory meeting, Th. 2.1. LMS Lecture Notes Series no. 212 Cambridge University Press 1995.
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.1, page 77.
G. Polya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ Press 1954, page 92.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Robert M. Young, Excursions in Calculus, The Mathematical Association of America, 1992 p. 361.
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 20000 terms from N. J. A. Sloane)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
B. Apostol and L. Petrescu, Extremal Orders of Certain Functions Associated with Regular Integers (mod n), Journal of Integer Sequences, 2013, # 13.7.5.
Joerg Arndt, On computing the generalized Lambert series, arXiv:1202.6525v3 [math.CA], (2012).
M. Baake and U. Grimm, Quasicrystalline combinatorics
C. K. Caldwell, The Prime Glossary, sigma function
Imanuel Chen and Michael Z. Spivey, Integral Generalized Binomial Coefficients of Multiplicative Functions, Preprint 2015; Summer Research Paper 238, Univ. Puget Sound.
D. Christopher and T. Nadu, Partitions with Fixed Number of Sizes, Journal of Integer Sequences, 15 (2015), #15.11.5.
J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012. - From N. J. A. Sloane, Dec 25 2012
Jason Earls, The Smarandache sum of composites between factors function, in Smarandache Notions Journal (2004), Vol. 14.1, page 243.
L. Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004-2009.
J. A. Ewell, Recurrences for the sum of divisors, Proc. Amer. Math. Soc. 64 (2) 1977.
F. Firoozbakht and M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors ..., J. Integer Seqs., Vol. 6, 2003.
Johan Gielis and Ilia Tavkhelidze, The general case of cutting of GML surfaces and bodies, arXiv:1904.01414 [math.GM], 2019.
J. W. L. Glaisher, On the function chi(n), Quarterly Journal of Pure and Applied Mathematics, 20 (1884), 97-167.
J. W. L. Glaisher, On the function chi(n), Quarterly Journal of Pure and Applied Mathematics, 20 (1884), 97-167. [Annotated scanned copy]
M. J. Grady, A group theoretic approach to a famous partition formula, Amer. Math. Monthly, 112 (No. 7, 2005), 645-651.
Masazumi Honda and Takuya Yoda, String theory, N = 4 SYM and Riemann hypothesis, arXiv:2203.17091 [hep-th], 2022.
Douglas E. Iannucci, On sums of the small divisors of a natural number, arXiv:1910.11835 [math.NT], 2019.
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113.
M. Maia and M. Mendez, On the arithmetic product of combinatorial species, arXiv:math.CO/0503436, 2005.
P. Pollack and C. Pomerance, Some problems of Erdős on the sum-of-divisors function, For Richard Guy on his 99th birthday: May his sequence be unbounded, Trans. Amer. Math. Soc. Ser. B 3 (2016), 1-26; errata.
Carl Pomerance and Hee-Sung Yang, Variant of a theorem of Erdős on the sum-of-proper-divisors function, Math. Comp. 83 (2014), 1903-1913.
J. S. Rutherford, The enumeration and symmetry-significant properties of derivative lattices, Act. Cryst. (1992) A48, 500-508. - N. J. A. Sloane, Mar 14 2009
J. S. Rutherford, The enumeration and symmetry-significant properties of derivative lattices II, Acta Cryst. A49 (1993), 293-300. - N. J. A. Sloane, Mar 14 2009
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 3.
Eric Weisstein's World of Mathematics, Divisor Function
Wikipedia, Divisor function
FORMULA
Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1). - David W. Wilson, Aug 01 2001
For the following bounds and many others, see Mitrinovic et al. - N. J. A. Sloane, Oct 02 2017
If n is composite, a(n) > n + sqrt(n).
a(n) < n*sqrt(n) for all n.
a(n) < (6/Pi^2)*n^(3/2) for n > 12.
G.f.: -x*deriv(eta(x))/eta(x) where eta(x) = Product_{n>=1} (1-x^n). - Joerg Arndt, Mar 14 2010
L.g.f.: -log(Product_{j>=1} (1-x^j)) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Dirichlet convolution of phi(n) and tau(n), i.e., a(n) = sum_{d|n} phi(n/d)*tau(d), cf. A000010, A000005.
a(n) is odd iff n is a square or twice a square. - Robert G. Wilson v, Oct 03 2001
a(n) = a(n*prime(n)) - prime(n)*a(n). - Labos Elemer, Aug 14 2003 (Clarified by Omar E. Pol, Apr 27 2016)
a(n) = n*A000041(n) - Sum_{i=1..n-1} a(i)*A000041(n-i). - Jon Perry, Sep 11 2003
a(n) = -A010815(n)*n - Sum_{k=1..n-1} A010815(k)*a(n-k). - Reinhard Zumkeller, Nov 30 2003
a(n) = f(n, 1, 1, 1), where f(n, i, x, s) = if n = 1 then s*x else if p(i)|n then f(n/p(i), i, 1+p(i)*x, s) else f(n, i+1, 1, s*x) with p(i) = i-th prime (A000040). - Reinhard Zumkeller, Nov 17 2004
Recurrence: n^2*(n-1)*a(n) = 12*Sum_{k=1..n-1} (5*k*(n-k) - n^2)*a(k)*a(n-k), if n>1. - Dominique Giard (dominique.giard(AT)gmail.com), Jan 11 2005
G.f.: Sum_{k>0} k * x^k / (1 - x^k) = Sum_{k>0} x^k / (1 - x^k)^2. Dirichlet g.f.: zeta(s)*zeta(s-1). - Michael Somos, Apr 05 2003. See the Hardy-Wright reference, p. 312. first equation, and p. 250, Theorem 290. - Wolfdieter Lang, Dec 09 2016
For odd n, a(n) = A000593(n). For even n, a(n) = A000593(n) + A074400(n/2). - Jonathan Vos Post, Mar 26 2006
Equals the inverse Moebius transform of the natural numbers. Equals row sums of A127093. - Gary W. Adamson, May 20 2007
A127093 * [1/1, 1/2, 1/3, ...] = [1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, ...]. Row sums of triangle A135539. - Gary W. Adamson, Oct 31 2007
a(n) = A054785(2*n) - A000593(2*n). - Reinhard Zumkeller, Apr 23 2008
a(n) = n*Sum_{k=1..n} A060642(n,k)/k*(-1)^(k+1). - Vladimir Kruchinin, Aug 10 2010
Dirichlet convolution of A037213 and A034448. - R. J. Mathar, Apr 13 2011
G.f.: A(x) = x/(1-x)*(1 - 2*x*(1-x)/(G(0) - 2*x^2 + 2*x)); G(k) = -2*x - 1 - (1+x)*k + (2*k+3)*(x^(k+2)) - x*(k+1)*(k+3)*((-1 + (x^(k+2)))^2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2011
a(n) = A001065(n) + n. - Mats Granvik, May 20 2012
a(n) = A006128(n) - A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A196020(n,k). - conjectured by Omar E. Pol, Feb 02 2013, and proved by Max Alekseyev, Nov 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A000330(k)*A000716(n-A000217(k)). - Mircea Merca, Mar 05 2014
a(n) = A240698(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
a(n) = Sum_{d^2|n} A001615(n/d^2) = Sum_{d^3|n} A254981(n/d^3). - Álvar Ibeas, Mar 06 2015
a(3*n) = A144613(n). a(3*n + 1) = A144614(n). a(3*n + 2) = A144615(n). - Michael Somos, Jul 19 2015
a(n) = Sum{i=1..n} Sum{j=1..i} cos((2*Pi*n*j)/i). - Michel Lagneau, Oct 14 2015
a(n) = A000593(n) + A146076(n). - Omar E. Pol, Apr 05 2016
a(n) = A065475(n) + A048050(n). - Omar E. Pol, Nov 28 2016
a(n) = (Pi^2*n/6)*Sum_{q>=1} c_q(n)/q^2, with the Ramanujan sums c_q(n) given in A054533 as a c_n(k) table. See the Hardy reference, p. 141, or Hardy-Wright, Theorem 293, p. 251. - Wolfdieter Lang, Jan 06 2017
G.f. also (1 - E_2(q))/24, with the g.f. E_2 of A006352. See e.g., Hardy, p. 166, eq. (10.5.5). - Wolfdieter Lang, Jan 31 2017
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(n) + A162296(n).
a(n) = A092261(n) * A295294(n). [This can be further expanded, see comment in A291750.] (End)
a(n) = A000593(n) * A038712(n). - Ivan N. Ianakiev and Omar E. Pol, Nov 26 2017
a(n) = Sum_{q=1..n} c_q(n) * floor(n/q), where c_q(n) is the Ramanujan's sum function given in A054533. - Daniel Suteu, Jun 14 2018
a(n) = Sum_{k=1..n} gcd(n, k) / phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 21 2018
a(n) = (2^(1 + (A000005(n) - A001227(n))/(A000005(n) - A183063(n))) - 1)*A000593(n) = (2^(1 + (A183063(n)/A001227(n))) - 1)*A000593(n). - Omar E. Pol, Nov 03 2018
a(n) = Sum_{i=1..n} tau(gcd(n, i)). - Ridouane Oudra, Oct 15 2019
From Peter Bala, Jan 19 2021: (Start)
G.f.: A(x) = Sum_{n >= 1} x^(n^2)*(x^n + n*(1 - x^(2*n)))/(1 - x^n)^2 - differentiate equation 5 in Arndt w.r.t. x, and set x = 1.
A(x) = F(x) + G(x), where F(x) is the g.f. of A079667 and G(x) is the g.f. of A117004. (End)
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
With the convention that a(n) = 0 for n <= 0 we have the recurrence a(n) = t(n) + Sum_{k >= 1} (-1)^(k+1)*(2*k + 1)*a(n - k*(k + 1)/2), where t(n) = (-1)^(m+1)*(2*m+1)*n/3 if n = m*(m + 1)/2, with m positive, is a triangular number else t(n) = 0. For example, n = 10 = (4*5)/2 is a triangular number, t(10) = -30, and so a(10) = -30 + 3*a(9) - 5*a(7) + 7*a(4) = -30 + 39 - 40 + 49 = 18. - Peter Bala, Apr 06 2022
Recurrence: a(p^x) = p*a(p^(x-1)) + 1, if p is prime and for any integer x. E.g., a(5^3) = 5*a(5^2) + 1 = 5*31 + 1 = 156. - Jules Beauchamp, Nov 11 2022
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = A319462. - Vaclav Kotesovec, May 07 2023
EXAMPLE
For example, 6 is divisible by 1, 2, 3 and 6, so sigma(6) = 1 + 2 + 3 + 6 = 12.
Let L = <V,W> be a 2-dimensional lattice. The 7 sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V,2W>, <2V+W,2W>, <2V,2W+V>. Compare A001615.
MAPLE
with(numtheory): A000203 := n->sigma(n); seq(A000203(n), n=1..100);
MATHEMATICA
Table[ DivisorSigma[1, n], {n, 100}]
a[ n_] := SeriesCoefficient[ QPolyGamma[ 1, 1, q] / Log[q]^2, {q, 0, n}]; (* Michael Somos, Apr 25 2013 *)
PROG
(Magma) [SumOfDivisors(n): n in [1..70]];
(Magma) [DivisorSigma(1, n): n in [1..70]]; // Bruno Berselli, Sep 09 2015
(PARI) {a(n) = if( n<1, 0, sigma(n))};
(PARI) {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) /(1 - p*X))[n])};
(PARI) {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k)^2, x * O(x^n)), n))}; /* Michael Somos, Jan 29 2005 */
(PARI) max_n = 30; ser = - sum(k=1, max_n, log(1-x^k)); a(n) = polcoeff(ser, n)*n \\ Gottfried Helms, Aug 10 2009
(MuPAD) numlib::sigma(n)$ n=1..81 // Zerinvary Lajos, May 13 2008
(SageMath) [sigma(n, 1) for n in range(1, 71)] # Zerinvary Lajos, Jun 04 2009
(Maxima) makelist(divsum(n), n, 1, 1000); \\ Emanuele Munarini, Mar 26 2011
(Haskell)
a000203 n = product $ zipWith (\p e -> (p^(e+1)-1) `div` (p-1)) (a027748_row n) (a124010_row n)
-- Reinhard Zumkeller, May 07 2012
(Scheme) (definec (A000203 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (- (expt p (+ 1 e)) 1) (- p 1)) (A000203 (A028234 n)))))) ;; Uses macro definec from https://oeis.org/wiki/Memoization#Scheme - Antti Karttunen, Nov 25 2017
(Scheme) (define (A000203 n) (let ((r (sqrt n))) (let loop ((i (inexact->exact (floor r))) (s (if (integer? r) (- r) 0))) (cond ((zero? i) s) ((zero? (modulo n i)) (loop (- i 1) (+ s i (/ n i)))) (else (loop (- i 1) s)))))) ;; (Stand-alone program) - Antti Karttunen, Feb 20 2024
(GAP)
A000203:=List([1..10^2], n->Sigma(n)); # Muniru A Asiru, Oct 01 2017
(Python)
from sympy import divisor_sigma
def a(n): return divisor_sigma(n, 1)
print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jan 03 2021
(Python)
from math import prod
from sympy import factorint
def a(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items())
print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
(APL, Dyalog dialect) A000203 ← +/{ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð, (⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} ⍝ Antti Karttunen, Feb 20 2024
CROSSREFS
See A034885, A002093 for records. Bisections give A008438, A062731. Values taken are listed in A007609. A054973 is an inverse function.
For partial sums see A024916.
Row sums of A127093.
Cf. A009194, A082062 (gcd(a(n),n) and its largest prime factor), A179931, A192795 (gcd(a(n),A001157(n)) and largest prime factor).
Cf. also A034448 (sum of unitary divisors).
Cf. A007955 (products of divisors).
A001227, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
Cf. A054533.
KEYWORD
easy,core,nonn,nice,mult
STATUS
approved
Sum of odd divisors of n.
(Formerly M3197 N1292)
+10
273
1, 1, 4, 1, 6, 4, 8, 1, 13, 6, 12, 4, 14, 8, 24, 1, 18, 13, 20, 6, 32, 12, 24, 4, 31, 14, 40, 8, 30, 24, 32, 1, 48, 18, 48, 13, 38, 20, 56, 6, 42, 32, 44, 12, 78, 24, 48, 4, 57, 31, 72, 14, 54, 40, 72, 8, 80, 30, 60, 24, 62, 32, 104, 1, 84, 48, 68, 18, 96, 48, 72, 13, 74, 38, 124
OFFSET
1,3
COMMENTS
Denoted by Delta(n) or Delta_1(n) in Glaisher 1907. - Michael Somos, May 17 2013
A069289(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A001227 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
For the g.f.s given below by Somos Oct 29 2005, Jovovic, Oct 11 2002 and Arndt, Nov 09 2010, see the Hardy-Wright reference, proof of Theorem 382, p. 312, with x^2 replaced by x. - Wolfdieter Lang, Dec 11 2016
a(n) is also the total number of parts in all partitions of n into an odd number of equal parts. - Omar E. Pol, Jun 04 2017
It seems that a(n) divides A000203(n) for every n. - Ivan N. Ianakiev, Nov 25 2017 [Yes, see the formula dated Dec 14 2017].
Also, alternating row sums of A126988. - Omar E. Pol, Feb 11 2018
REFERENCES
J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 496, pp. 69-246, Ellipses, Paris, 2004.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003, p. 312.
F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg 1994 p 133.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 187.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Francesca Aicardi, Matricial formulas for partitions, arXiv:0806.1273 [math.NT], 2008.
M. Baake and R. V. Moody, Similarity submodules and root systems in four dimensions, arXiv:math/9904028 [math.MG], 1999; Canad. J. Math. 51 (1999), 1258-1276.
J. A. Ewell, On the sum-of-divisors function, Fib. Q., 45 (2007), 205-207.
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
Heekyoung Hahn, Convolution sums of some functions on divisors, arXiv:1507.04426 [math.NT], 2015.
Kaya Lakein and Anne Larsen, A Proof of Merca's Conjectures on Sums of Odd Divisor Functions, arXiv:2107.07637 [math.NT], 2021.
Mircea Merca, The Lambert series factorization theorem, The Ramanujan Journal, January 2017, also here
Mircea Merca, Congruence identities involving sums of odd divisors function, Proceedings of the Romanian Academy, Series A, Volume 22, Number 2/2021, pp. 119-125.
H. Movasati and Y. Nikdelan, Gauss-Manin Connection in Disguise: Dwork Family, arXiv:1603.09411 [math.AG], 2016.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
N. J. A. Sloane, Transforms
H. J. Stephen Smith, Report on the Theory of Numbers. — Part VI., Report of the 35 Meeting of the British Association for the Advancement of Science (1866). See p. 336.
Eric Weisstein's World of Mathematics, Odd Divisor Function
Eric Weisstein's World of Mathematics, Partition Function Q
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
FORMULA
Inverse Moebius Transform of [0, 1, 0, 3, 0, 5, ...].
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s)).
a(2*n) = A000203(2*n)-2*A000203(n), a(2*n+1) = A000203(2*n+1). - Henry Bottomley, May 16 2000
a(2*n) = A054785(2*n) - A000203(2*n). - Reinhard Zumkeller, Apr 23 2008
Multiplicative with a(p^e) = 1 if p = 2, (p^(e+1)-1)/(p-1) if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n} (-1)^(d+1)*n/d. - Vladeta Jovovic, Sep 06 2002
Sum_{k=1..n} a(k) is asymptotic to c*n^2 where c=Pi^2/24. - Benoit Cloitre, Dec 29 2002
G.f.: Sum_{n>0} n*x^n/(1+x^n). - Vladeta Jovovic, Oct 11 2002
G.f.: (theta_3(q)^4 + theta_2(q)^4 -1)/24.
G.f.: Sum_{k>0} -(-x)^k / (1 - x^k)^2. - Michael Somos, Oct 29 2005
a(n) = A050449(n)+A050452(n); a(A000079(n))=1; a(A005408(n))=A000203(A005408(n)). - Reinhard Zumkeller, Apr 18 2006
From Joerg Arndt, Nov 09 2010: (Start)
G.f.: Sum_{n>=1} (2*n-1) * q^(2*n-1) / (1-q^(2*n-1)).
G.f.: deriv(log(P)) = deriv(P)/P where P = Product_{n>=1} (1 + q^n). (End)
Dirichlet convolution of A000203 with [1,-2,0,0,0,...]. Dirichlet convolution of A062157 with A000027. - R. J. Mathar, Jun 28 2011
a(n) = Sum_{k = 1..A001227(n)} A182469(n,k). - Reinhard Zumkeller, May 01 2012
G.f.: -1/Q(0), where Q(k) = (x-1)*(1-x^(2*k+1)) + x*(-1 +x^(k+1))^4/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) = Sum_{k=1..n} k*A000009(k)*A081362(n-k). - Mircea Merca, Feb 26 2014
a(n) = A000203(n) - A146076(n). - Omar E. Pol, Apr 05 2016
a(2*n) = a(n). - Giuseppe Coppoletta, Nov 02 2016
a(n) = n * [x^n] log((-1; x)_inf), where (a; q)_inf is the q-Pochhammer symbol. - Vladimir Reshetnikov, Nov 21 2016
From Wolfdieter Lang, Dec 11 2016: (Start)
G.f.: Sum_{n>=1} x^n*(1+x^(2*n))/(1-x^(2*n))^2, from the second to last equation of the proof to Theorem 382 (with x^2 -> x) of the Hardy-Wright reference, p. 312.
a(n) = Sum_{d|n} (-d)*(-1)^(n/d), from the g.f. given above by Jovovic, Oct 11 2002. See also the a(n) version given by Jovovic, Sep 06 2002.
(End)
a(n) = A000203(n)/A038712(n). - Omar E. Pol, Dec 14 2017
a(n) = A000203(n)/(2^(1 + (A183063(n)/A001227(n))) - 1). - Omar E. Pol, Nov 06 2018
a(n) = A000203(2n) - 2*A000203(n). - Ridouane Oudra, Aug 28 2019
From Peter Bala, Jan 04 2021: (Start)
a(n) = (2/3)*A002131(n) + (1/3)*A002129(n) = (2/3)*A002131(n) + (-1)^(n+1)*(1/3)*A113184(n).
a(n) = A002131(n) - (1/2)*A146076; a(n) = 2*A002131(n) - A000203(n). (End)
a(n) = A000203(A000265(n)) - John Keith, Aug 30 2021
EXAMPLE
G.f. = x + x^2 + 4*x^3 + x^4 + 6*x^5 + 4*x^6 + 8*x^7 + x^8 + 13*x^9 + 6*x^10 + 12*x^11 + ...
MAPLE
A000593 := proc(n) local d, s; s := 0; for d from 1 by 2 to n do if n mod d = 0 then s := s+d; fi; od; RETURN(s); end;
MATHEMATICA
Table[a := Select[Divisors[n], OddQ[ # ]&]; Sum[a[[i]], {i, 1, Length[a]}], {n, 1, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
f[n_] := Plus @@ Select[ Divisors@ n, OddQ]; Array[f, 75] (* Robert G. Wilson v, Jun 19 2011 *)
a[ n_] := If[ n < 1, 0, Sum[ -(-1)^d n / d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
a[ n_] := If[ n < 1, 0, DivisorSum[ n, -(-1)^# n / # &]]; (* Michael Somos, May 17 2013 *)
a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
a[ n_] := If[ n < 1, 0, Times @@ (If[ # < 3, 1, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger @ n)]; (* Michael Somos, Aug 15 2015 *)
Array[Total[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] &, {75}] (* Michael De Vlieger, Apr 07 2016 *)
Table[SeriesCoefficient[n Log[QPochhammer[-1, x]], {x, 0, n}], {n, 1, 75}] (* Vladimir Reshetnikov, Nov 21 2016 *)
Table[DivisorSum[n, #&, OddQ[#]&], {n, 80}] (* Harvey P. Dale, Jun 19 2021 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(d+1) * n/d))}; /* Michael Somos, May 29 2005 */
(PARI) N=66; x='x+O('x^N); Vec( serconvol( log(prod(j=1, N, 1+x^j)), sum(j=1, N, j*x^j))) /* Joerg Arndt, May 03 2008, edited by M. F. Hasler, Jun 19 2011 */
(PARI) s=vector(100); for(n=1, 100, s[n]=sumdiv(n, d, d*(d%2))); s /* Zak Seidov, Sep 24 2011*/
(PARI) a(n)=sigma(n>>valuation(n, 2)) \\ Charles R Greathouse IV, Sep 09 2014
(Haskell)
a000593 = sum . a182469_row -- Reinhard Zumkeller, May 01 2012, Jul 25 2011
(Sage) [sum(k for k in divisors(n) if k % 2) for n in (1..75)] # Giuseppe Coppoletta, Nov 02 2016
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[j*x^j/(1+x^j): j in [1..2*m]]) )); // G. C. Greubel, Nov 07 2018
(Magma) [&+[d:d in Divisors(n)|IsOdd(d)]:n in [1..75]]; // Marius A. Burtea, Aug 12 2019
(Python)
from math import prod
from sympy import factorint
def A000593(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if p > 2) # Chai Wah Wu, Sep 09 2021
CROSSREFS
Cf. A000005, A000203, A000265, A001227, A006128, A050999, A051000, A051001, A051002, A078471 (partial sums), A069289, A247837 (subset of the primes).
KEYWORD
nonn,core,easy,nice,mult
STATUS
approved
Sum of divisors of 2*n.
+10
32
3, 7, 12, 15, 18, 28, 24, 31, 39, 42, 36, 60, 42, 56, 72, 63, 54, 91, 60, 90, 96, 84, 72, 124, 93, 98, 120, 120, 90, 168, 96, 127, 144, 126, 144, 195, 114, 140, 168, 186, 126, 224, 132, 180, 234, 168, 144, 252, 171, 217, 216, 210, 162, 280, 216, 248, 240, 210
OFFSET
1,1
COMMENTS
a(n) is also the total number of parts in all partitions of 2*n into equal parts. - Omar E. Pol, Feb 14 2021
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..20000 [First 1000 terms from Harry J. Smith]
FORMULA
a(n) = A000203(2*n). - R. J. Mathar, Apr 06 2011
a(n) = A000203(n) + A054785(n). - R. J. Mathar, May 19 2020
From Vaclav Kotesovec, Aug 07 2022: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) * (3 - 2^(1-s)).
Sum_{k=1..n} a(k) ~ 5 * Pi^2 * n^2 / 24. (End)
From Miles Wilson, Sep 30 2024: (Start)
G.f.: Sum_{k>=1} k*x^(k/gcd(k, 2))/(1 - x^(k/gcd(k, 2))).
G.f.: Sum_{k>=1} k*x^(2*k/(3 + (-1)^k))/(1 - x^(2*k/(3 + (-1)^k))). (End)
MATHEMATICA
lst={}; Do[AppendTo[lst, DivisorSigma[1, n]], {n, 2, 6!, 2}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 20 2008 *)
DivisorSigma[1, 2*Range[60]] (* Harvey P. Dale, Jun 08 2022 *)
PROG
(PARI) vector(66, n, sigma(2*n, 1))
(PARI) for (n=1, 1000, write("b062731.txt", n, " ", sigma(2*n)) ) \\ Harry J. Smith, Aug 09 2009
(MuPAD) numlib::sigma(2*n)$ n=0..81 // Zerinvary Lajos, May 13 2008
(Magma) [SumOfDivisors(2*n): n in [1..70]]; // Vincenzo Librandi, Oct 31 2014
CROSSREFS
Sigma(k*n): A000203 (k=1), A144613 (k=3), A193553 (k=4, even bisection), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A008438, A074400, A182818, A239052 (odd bisection), A326124 (partial sums), A054784, A215947, A336923, A346870, A346878, A346880, A355750.
Row 2 of A319526. Column & Row 2 of A216626. Row 1 of A355927.
Shallow diagonal (2n,n) of A265652. See also A244658.
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jul 11 2001
EXTENSIONS
Zero removed and offset corrected by Omar E. Pol, Jul 17 2009
STATUS
approved
a(n) = 1 if sigma(2n) - sigma(n) is a power of 2, otherwise 0.
+10
10
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1
COMMENTS
a(n) = 1 if n is a squarefree product of Mersenne primes (A000668) multiplied by a power of 2, otherwise 0.
c(n) = a(n)*A000035(n) is the characteristic function of A046528.
FORMULA
a(n) = A209229(A062731(n)-A000203(n)).
a(n) = 1 iff A336922(n) = 0, i.e., when A331410(n) is equal to A005087(n).
From Antti Karttunen, Jan 08 2023: (Start)
Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = A209229(p+1) if e = 1, and 0 if e > 1.
Multiplicative with a(p^e) = [p==2] + (A036987(p)*[e==1]), where [ ] is the Iverson bracket.
a(n) = A209229(A002131(n)) = A209229(A054785(n)).
(End)
PROG
(PARI)
A209229(n) = (n && !bitand(n, n-1));
A336923(n) = A209229(sigma(n+n)-sigma(n));
(PARI) A336923(n) = { my(f=factor(n)); prod(k=1, #f~, (2==f[k, 1] || A209229(f[k, 1]+1)*(1==f[k, 2]))); }; \\ Antti Karttunen, Jan 06 2023
CROSSREFS
Characteristic function of A054784.
Cf. also A336477 (analogous sequence for Fermat primes).
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Aug 09 2020
EXTENSIONS
Keyword:mult added by Antti Karttunen, Jan 06 2023
STATUS
approved
Expansion of Product_{n>=1} ((1 + (2*x)^n)/(1 - (2*x)^n))^(1/2).
+10
9
1, 2, 6, 20, 54, 156, 444, 1192, 3174, 8620, 22516, 58392, 151996, 387352, 984888, 2507088, 6270854, 15659724, 39067588, 96454072, 237663444, 584266696, 1425921992, 3470869296, 8431325916, 20380759544, 49122457608, 118178637040, 283150466232, 676768288176
OFFSET
0,2
LINKS
FORMULA
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} 2^(k-1) * A054785(k) * a(n-k) for n > 0.
a(n) ~ 2^(n - 21/8) * exp(Pi*sqrt(n/2)) / n^(7/8). - Vaclav Kotesovec, Apr 21 2018
MATHEMATICA
CoefficientList[Series[Sqrt[QPochhammer[-1, 2*x] / (2*QPochhammer[2*x])], {x, 0, 30}], x] (* Vaclav Kotesovec, Apr 21 2018 *)
PROG
(Ruby)
def s(n)
s = 0
(1..n).each{|i| s += i if n % i == 0}
s
end
def A303307(n)
ary = [1]
a = (0..n).map{|i| 2 ** (i - 1) * (s(2 * i) - s(i))}
(1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}
ary
end
p A303307(100)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 21 2018
STATUS
approved
O.g.f.: exp( Sum_{n>=1} (sigma(2*n^2)-sigma(n^2)) * x^n/n ).
+10
7
1, 2, 6, 18, 42, 102, 238, 522, 1130, 2394, 4926, 9978, 19890, 38942, 75254, 143598, 270506, 504126, 929926, 1698322, 3074010, 5516898, 9820550, 17349554, 30430610, 53007162, 91734262, 157771538, 269734714, 458542822, 775281982, 1303971722, 2182227546, 3634444634
OFFSET
0,2
COMMENTS
Compare g.f. to the formula for Jacobi theta_4(x) given by:
_ theta_4(x) = exp( Sum_{n>=1} -(sigma(2*n)-sigma(n))*x^n/n )
where theta_4(x) = 1 + Sum_{n>=1} 2*(-x)^(n^2).
Here sigma(n) = A000203(n) is the sum of divisors of n.
LINKS
FORMULA
O.g.f.: exp( Sum_{n>=1} A054785(n^2)*x^n/n ), where exp( Sum_{n>=1} A054785(n)*x^n/n ) = 1/(1+2*Sum_{n>=1} (-x)^(n^2)), which is the g.f. of A015128.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 18*x^3 + 42*x^4 + 102*x^5 + 238*x^6 +...
where
log(A(x)) = 2*x + 8*x^2/2 + 26*x^3/3 + 32*x^4/4 + 62*x^5/5 + 104*x^6/6 +...+ A195585(n)*x^n/n +...
MATHEMATICA
nmax = 40; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2*n^2] - DivisorSigma[1, n^2])*(x^n/n), {n, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m^2)-sigma(m^2))*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 20 2011
STATUS
approved
O.g.f.: exp( Sum_{n>=1} -(sigma(2*n^2) - sigma(n^2)) * (-x)^n/n ).
+10
7
1, 2, -2, 2, 10, -10, 6, 10, -22, 58, -58, 10, 114, -210, 270, -242, 74, 382, -930, 1474, -1542, 1010, 446, -2798, 5682, -7718, 8030, -5182, -998, 11126, -23802, 35626, -42246, 39450, -20810, -15546, 69514, -133770, 194918, -234106, 227410, -147706, -19738, 282234
OFFSET
0,2
COMMENTS
Compare to the Jacobi theta_3 function:
1 + 2*Sum_{n>=1} x^(n^2) = exp( Sum_{n>=1} -(sigma(2*n) - sigma(n))*(-x)^n/n ).
Here sigma(n) = A000203(n) is the sum of divisors of n.
LINKS
FORMULA
O.g.f.: exp( Sum_{n>=1} -A054785(n^2)*(-x)^n/n ), where A054785(n^2) = A195585(n).
EXAMPLE
O.g.f.: A(x) = 1 + 2*x - 2*x^2 + 2*x^3 + 10*x^4 - 10*x^5 + 6*x^6 + 10*x^7 +...
where
log(A(x)) = 2*x - 8*x^2/2 + 26*x^3/3 - 32*x^4/4 + 62*x^5/5 - 104*x^6/6 + 114*x^7/7 - 128*x^8/8 + 242*x^9/9 - 248*x^10/10 + 266*x^11/11 - 416*x^12/12 +...+ -A054785(n^2)*(-x)^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, -(sigma(2*m^2)-sigma(m^2))*(-x)^m/m)+x^2*O(x^n)), n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 17 2012
STATUS
approved
Expansion of Product_{n>=1} ((1 - (2*x)^n)/(1 + (2*x)^n))^(1/2).
+10
7
1, -2, -2, -4, 6, 4, 12, 56, 134, -108, 196, 328, -484, -88, -3752, -18576, 16838, -16460, -95340, -24408, -201036, -472584, 565544, 1424144, 1843356, -6632568, 10365224, 2317008, 49620088, 130484688, -4419664, 631241440, 761908550, -29690892, 329427380, -8889717144, 23673793860
OFFSET
0,2
LINKS
FORMULA
a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} 2^(k-1) * A054785(k) * a(n-k) for n > 0.
PROG
(Ruby)
def s(n)
s = 0
(1..n).each{|i| s += i if n % i == 0}
s
end
def A303306(n)
ary = [1]
a = (0..n).map{|i| 2 ** (i - 1) * (s(2 * i) - s(i))}
(1..n).each{|i| ary << -(1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}
ary
end
p A303306(100)
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 21 2018
STATUS
approved
O.g.f.: exp( Sum_{n>=1} (sigma(2n)-sigma(n))^2 * x^n/n ).
+10
4
1, 4, 16, 64, 208, 656, 1984, 5632, 15520, 41476, 107312, 271232, 670464, 1622160, 3854208, 9003264, 20696640, 46895248, 104827472, 231353984, 504592448, 1088323584, 2322683072, 4908033280, 10273819136, 21313971876, 43843093488
OFFSET
0,2
COMMENTS
Here sigma(n) = A000203(n) is the sum of divisors of n. Compare g.f. to the formula for Jacobi theta_4(x) given by:
. theta_4(x) = exp( Sum_{n>=1} (sigma(n)-sigma(2n))*x^n/n )
where theta_4(x) = 1 + Sum_{n>=1} 2*(-x)^(n^2).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..400 from Paul D. Hanna)
EXAMPLE
G.f.: A(x) = 1 + 4*x + 16*x^2 + 64*x^3 + 208*x^4 + 656*x^5 +...
log(A(x)) = 4*x + 16*x^2/2 + 64*x^3/3 +...+ A054785(n)^2*x^n/n +...
MATHEMATICA
nmax = 30; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2*k] - DivisorSigma[1, k])^2 * x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 26 2019 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m)-sigma(m))^2*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 30 2010
STATUS
approved
O.g.f.: exp( Sum_{n>=1} -(sigma(2*n^3) - sigma(n^3)) * (-x)^n/n ).
+10
4
1, 2, -6, 12, 38, -108, 148, 168, -922, 2294, -2656, -1732, 17908, -44516, 60896, -6936, -206474, 650848, -1181394, 1146324, 865832, -6609592, 16632596, -26643544, 22498916, 23275482, -144152248, 349896736, -563311472, 532552508, 233516176, -2378435472, 6264582710
OFFSET
0,2
COMMENTS
Compare to the Jacobi theta_3 function:
1 + 2*Sum_{n>=1} x^(n^2) = exp( Sum_{n>=1} -(sigma(2*n) - sigma(n))*(-x)^n/n ).
Here sigma(n) = A000203(n), the sum of the divisors of n.
LINKS
FORMULA
O.g.f.: exp( Sum_{n>=1} -A054785(n^3)*(-x)^n/n ).
EXAMPLE
O.g.f.: A(x) = 1 + 2*x - 6*x^2 + 12*x^3 + 38*x^4 - 108*x^5 + 148*x^6 + 168*x^7 +...
where
log(A(x)) = 2*x - 8*x^2/2 + 26*x^3/3 - 32*x^4/4 + 62*x^5/5 - 104*x^6/6 + 114*x^7/7 - 128*x^8/8 + 242*x^9/9 - 248*x^10/10 + 266*x^11/11 - 416*x^12/12 +...+ -(-1)^n*A054785(n^3)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, -(sigma(2*m^3)-sigma(m^3))*(-x)^m/m)+x^2*O(x^n)), n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 21 2013
STATUS
approved

Search completed in 0.023 seconds