login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a006882 -id:a006882
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (2n-1)!! * (2n+1)!!, where the double factorial is A006882.
+20
22
1, 3, 45, 1575, 99225, 9823275, 1404728325, 273922023375, 69850115960625, 22561587455281875, 9002073394657468125, 4348001449619557104375, 2500100833531245335015625, 1687568062633590601135546875, 1321365793042101440689133203125
OFFSET
0,2
COMMENTS
a(n) is the determinant of M(2n+1) where M(k) is the k X k matrix with m(i,j)=j if i+j=k m(i,j)=i otherwise. - Adapted to offset 0, Rainer Rosenthal, Jun 19 2024
In the following two comments on the calculation of the terms using permanents, offset 1 is assumed. In the corresponding PARI code, this is implemented with offset 0. - Hugo Pfoertner, Jun 23 2024
(-1)^n*a(n)/2^(2n-1) is the permanent of the (m X m) matrix {1/(x_i-y_j), 1<=i<=m, 1<=j<=m}, where x_1,x_2,...,x_m are the zeros of x^m-1 and y_1,y_2,...,y_m the zeros of y^m+1 and m=2n-1.
In 1881, R. F. Scott posed a conjecture that the absolute value of permanent of square matrix with elements a(i,j)= (x_i - y_j)^(-1), where x_1,...,x_n are roots of x^n=1, while y_1,...,y_n are roots of y^n=-1, equals a((n-1)/2)/2^n, if n>=1 is odd, and 0, if n>=2 is even. After a century (in 1979), the conjecture was proved by H. Minc. - Vladimir Shevelev, Dec 01 2013
a(n) is the number of permutations in S_{2n+1} in which all cycles have odd length. - José H. Nieto S., Jan 09 2012
Number of 3-bundled increasing bilabeled trees with 2n labels. - Markus Kuba, Nov 18 2014
a(n) is the number of rooted, binary, leaf-labeled topologies with 2n+2 leaves that have n+1 cherry nodes. - Noah A Rosenberg, Feb 12 2019
REFERENCES
Miklós Bóna, A walk through combinatorics, World Scientific, 2006.
LINKS
Cyril Banderier, Markus Kuba, and Michael Wallner, Analytic Combinatorics of Composition schemes and phase transitions with mixed Poisson distributions, arXiv:2103.03751 [math.PR], 2021.
Guo-Niu Han and Christian Krattenthaler, Rectangular Scott-type permanents, arXiv:math/0003072 [math.RA], 2000.
Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 17 Nov 2014.
MathOverflow, Geometric / physical / probabilistic interpretations of Riemann zeta(n>1)?, answer by Tom Copeland posted in Aug 2021.
Henryk Minc, On a conjecture of R. F. Scott (1881), Linear Algebra Appl., Vol. 28 (1979), pp. 141-153.
Theodoros Theodoulidis, On the Closed-Form Expression of Carson’s Integral, Period. Polytech. Elec. Eng. Comp. Sci., Vol. 59, No. 1 (2015), pp. 26-29.
Eric Weisstein's World of Mathematics, Struve function.
FORMULA
D-finite with recurrence a(n) = (4*n^2 - 1) * a(n-1) for all n in Z.
a(n) = A001147(n)*A001147(n+1).
E.g.f.: 1/(1-x^2)^(3/2) (with interpolated zeros). - Paul Barry, May 26 2003
a(n) = (2n+1)! * C(2n, n) / 2^(2n). - Ralf Stephan, Mar 22 2004.
Alternatingly signed values have e.g.f. sqrt(1+x^2).
a(n) is the value of the n-th moment of (1/Pi)*BesselK(1, sqrt(x)) on the positive part of the real line. - Olivier Gérard, May 20 2009
a(n) = -2^(2*n-1)*exp(i*n*Pi)*gamma(1/2+n)/gamma(3/2-n). - Gerry Martens, Mar 07 2011
E.g.f. (odd powers) tan(arcsin(x)) = Sum_{n>=0} (2n-1)!!*(2n+1)!!*x^(2*n+1)/(2*n+1)!. - Vladimir Kruchinin, Apr 22 2011
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - ((2*k+2)^2-1)/(1-x/(x - 1/G(k+1))); ( continued fraction ). - Sergei N. Gladkovskii, Jan 15 2013
a(n) = (2^(2*n+3)*Gamma(n+3/2)*Gamma(n+5/2))/Pi. - Jean-François Alcover, Jul 20 2015
Limit_{n->oo} 4^n*(n!)^2/a(n) = Pi/2. - Daniel Suteu, Feb 05 2017
From Michael Somos, May 04 2017: (Start)
a(n) = (2*n + 1) * A001818(n).
E.g.f.: Sum_{n>=0} a(n) * x^(2*n+1) / (2*n+1)! = x / sqrt(1 - x^2) = tan(arcsin(x)).
Given e.g.f. A(x) = y, then x * y' = y + y^3.
a(n) = -1 / a(-1-n) for all n in Z.
0 = +a(n)*(+288*a(n+2) -60*a(n+3) +a(n+4)) +a(n+1)*(-36*a(n+2) -4*a(n+3)) +a(n+2)*(+3*a(n+2)) for all n in Z. (End)
a(n) = Sum_{k=0..2n} (k+1) * A316728(n,k). - Alois P. Heinz, Jul 12 2018
From Amiram Eldar, Mar 18 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + L_1(1)*Pi/2, where L is the modified Struve function.
Sum_{n>=0} (-1)^n/a(n) = 1 - H_1(1)*Pi/2, where H is the Struve function. (End)
EXAMPLE
G.f. = 1 + 3*x + 45*x^2 + 1575*x^3 + 99225*x^4 + 9823275*x^5 + ...
M(5) =
[1, 2, 3, 1, 5]
[1, 2, 2, 4, 5]
[1, 3, 3, 4, 5]
[4, 2, 3, 4, 5]
[1, 2, 3, 4, 5].
Integral_{x=0..oo} x^3*BesselK(1, sqrt(x)) = 1575*Pi. - Olivier Gérard, May 20 2009
MAPLE
a:= n-> (d-> d(2*n-1)*d(2*n+1))(doublefactorial):
seq(a(n), n=0..15); # Alois P. Heinz, Jan 30 2013
# second Maple program:
A079484 := n-> LinearAlgebra[Determinant](Matrix(2*n+1, (i, j)-> `if`(i+j=2*n+1, j, i))): seq(A079484(n), n=0..14); # Rainer Rosenthal, Jun 18 2024
MATHEMATICA
a[n_] := (2n - 1)!!*(2n + 1)!!; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jan 30 2013 *)
PROG
(PARI) /* Formula using the zeta function and a log integral:*/
L(n)= intnum(t=0, 1, log(1-1/t)^n);
Zetai(n)= -I*I^n*(2*Pi)^(n-1)/(n-1)*L(1-n);
a(m)={my(n=m+1); round(real(-I*2^(2*n-1)*Zetai(1/2-n)*L(-1/2+n)/(Zetai(-1/2+n)*L(1/2-n))))};
/* Gerry Martens, Mar 07 2011, adapted to offset 0 by Hugo Pfoertner, Jun 19 2024 */
(Magma) I:=[1, 3]; [n le 2 select I[n] else (4*n^2-8*n+3)*Self(n-1): n in [1..20]]; // Vincenzo Librandi, Nov 18 2014
(PARI) {a(n) = if( n<0, -1 / self()(-1-n), (2*n + 1)! * (2*n)! / (n! * 2^n)^2 )}; /* Michael Somos, May 04 2017 */
(PARI) {a(n) = if( n<0, -1 / self()(-1-n), my(m = 2*n + 1); m! * polcoeff( x / sqrt( 1 - x^2 + x * O(x^m) ), m))}; /* Michael Somos, May 04 2017 */
(PARI) \\ using the Pochhammer symbol
a(n) = {my(P(x, k)=gamma(x+k)/gamma(x)); 4^n*round(P(1/2, n)*P(3/2, n))} \\ Hugo Pfoertner, Jun 20 2024
(PARI) \\ Scott's (1881) method
a(n) = {my(m=2*n+1, X = polroots(x^m-1), Y = polroots(x^m+1), M = matrix(m, m, i, j, 1/(X[i]-Y[j]))); (-1)^n * round(2^m * real(matpermanent(M)))}; \\ Hugo Pfoertner, Jun 23 2024
CROSSREFS
Bisection of A000246, A053195, |A013069|, |A046126|. Cf. A000909.
Cf. A001044, A010791, |A129464|, A114779, are also values of similar moments.
Equals the row sums of A162005.
Cf. A316728.
Diagonal elements of A306364 in even-numbered rows.
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 17 2003
EXTENSIONS
Simpler description from Daniel Flath (deflath(AT)yahoo.com), Mar 05 2004
STATUS
approved
Denominator of n!!/(n+1)!! (cf. A006882).
+20
10
1, 1, 1, 2, 3, 8, 15, 16, 35, 128, 315, 256, 693, 1024, 3003, 2048, 6435, 32768, 109395, 65536, 230945, 262144, 969969, 524288, 2028117, 4194304, 16900975, 8388608, 35102025, 33554432, 145422675, 67108864
OFFSET
0,4
COMMENTS
Also numerator of rational part of Haar measure on Grassmannian space G(n,1).
Also rational part of numerator of Gamma(n/2+1)/Gamma(n/2+1/2) (cf. A036039).
Let x(m) = x(m-2) + 1/x(m-1) for m >= 3, with x(1)=x(2)=1. Then the numerator of
x(n+2) equals the denominator of n!!/(n+1)!! for n >= 0, where the double factorials are given by A006882. - Joseph E. Cooper III (easonrevant(AT)gmail.com), Nov 07 2010, as corrected in Cooper (2015).
REFERENCES
D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.
LINKS
Joseph E. Cooper III, A recurrence for an expression involving double factorials, arXiv:1510.00399 [math.CO], 2015.
Svante Janson, On the traveling fly problem, Graph Theory Notes of New York Vol. XXXI, 17, 1996.
EXAMPLE
1, 1, (1/2)*Pi, 2, (3/4)*Pi, 8/3, (15/16)*Pi, 16/5, (35/32)*Pi, 128/35, (315/256)*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), 1/2*Pi^(1/2), 2/Pi^(1/2), 3/4*Pi^(1/2), 8/3/Pi^(1/2), 15/16*Pi^(1/2), 16/5/Pi^(1/2), ...
MAPLE
if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1, k)/4^k else k := (n-1)/2; 4^k/binomial(2*k, k); fi;
f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
MATHEMATICA
Table[ Denominator[ (n-2)!! / (n-1)!! ], {n, 0, 31}] (* Jean-François Alcover, Jul 16 2012 *)
Denominator[#[[1]]/#[[2]]&/@Partition[Range[-2, 40]!!, 2, 1]] (* Harvey P. Dale, Nov 27 2014 *)
PROG
(Haskell)
import Data.Ratio ((%), numerator)
a004731 0 = 1
a004731 n = a004731_list !! n
a004731_list = map numerator ggs where
ggs = 0 : 1 : zipWith (+) ggs (map (1 /) $ tail ggs) :: [Rational]
-- Reinhard Zumkeller, Dec 08 2011
(Python)
from sympy import gcd, factorial2
def A004731(n):
if n <= 1:
return 1
a, b = factorial2(n-2), factorial2(n-1)
return b//gcd(a, b) # Chai Wah Wu, Apr 03 2021
CROSSREFS
Cf. A001803, A004730, A006882 (double factorials), A036069.
KEYWORD
nonn,easy,nice,frac
STATUS
approved
Numerator of n!!/(n+1)!! (cf. A006882).
+20
7
1, 1, 2, 3, 8, 5, 16, 35, 128, 63, 256, 231, 1024, 429, 2048, 6435, 32768, 12155, 65536, 46189, 262144, 88179, 524288, 676039, 4194304, 1300075, 8388608, 5014575, 33554432, 9694845, 67108864, 300540195, 2147483648, 583401555, 4294967296, 2268783825
OFFSET
0,3
LINKS
Joseph E. Cooper III, A recurrence for an expression involving double factorials, arXiv:1510.00399 [math.CO], 2015.
Svante Janson, On the traveling fly problem, Graph Theory Notes of New York Vol. XXXI, 17, 1996.
FORMULA
Let y(m) = y(m-2) + 1/y(m-1) for m >= 2, with y(0)=y(1)=1. Then the denominator of y(n+1) equals the numerator of n!!/(n+1)!! for n >= 0, where the double factorials are given by A006882. [Reinhard Zumkeller, Dec 08 2011, as corrected in Cooper (2015)]
MATHEMATICA
Numerator[#[[1]]/#[[2]]&/@Partition[Range[0, 40]!!, 2, 1]] (* Harvey P. Dale, Jan 22 2013 *)
Numerator[CoefficientList[Series[(1 - Sqrt[1 - c^2] + ArcSin[c])/(c Sqrt[1 - c^2]), {c, 0, 39}], c]] (* Eugene d'Eon, Nov 01 2018 *)
PROG
(Haskell)
import Data.Ratio ((%), denominator)
a004730 n = a004730_list !! n
a004730_list = map denominator ggs where
ggs = 1 : 2 : zipWith (+) ggs (map (1 /) $ tail ggs) :: [Rational]
-- Reinhard Zumkeller, Dec 08 2011
(Magma) DoubleFactorial:=func< n | &*[n..2 by -2] >; [ Numerator(DoubleFactorial(n) / DoubleFactorial(n+1)): n in [0..35]]; // Vincenzo Librandi, Dec 03 2018
(Python)
from sympy import gcd, factorial2
def A004730(n):
a, b = factorial2(n), factorial2(n+1)
return a//gcd(a, b) # Chai Wah Wu, Apr 03 2021
CROSSREFS
Cf. A004731 (denominator), A006882 (double factorials).
KEYWORD
nonn,frac
STATUS
approved
Powerful(1) numbers (A001694) which are the sum of distinct double factorials (A006882).
+20
5
1, 4, 8, 9, 16, 25, 27, 49, 64, 72, 108, 121, 125, 128, 169, 392, 400, 432, 441, 500, 512, 961, 968, 972, 1125, 1331, 1352, 1444, 3844, 3888, 3969, 4225, 4232, 4356, 4900, 4913, 5184, 5292, 5324, 10404, 10800, 10952, 11449, 11881, 14283, 14400
OFFSET
1,2
COMMENTS
Double factorials 0!! and 1!! are not considered distinct. Note that double factorial (n!!) is different from (n!)!.
EXAMPLE
392 = 2^3*7^2 = 8!! + 4!!.
CROSSREFS
KEYWORD
nonn
AUTHOR
Giovanni Resta, Jan 28 2006
STATUS
approved
a(n) = (2n)!! mod (2n-1)!! where k!! = A006882(k).
+20
4
0, 2, 3, 69, 60, 4500, 104580, 186795, 13497435, 442245825, 13003053525, 64585694250, 3576632909850, 147580842959550, 5708173568847750, 27904470362393625, 2292043480058957625, 126842184377462428875, 6371504674680470700375, 312265748715684068930625
OFFSET
1,2
COMMENTS
(2n)!! is the product of first n even numbers, (2n-1)!! is the product of first n odd numbers.
FORMULA
a(n) = A006882(2*n) mod A006882(2*n-1).
EXAMPLE
a(3) = A006882(6) mod A006882(5) = 2*4*6 mod 1*3*5 = 48 mod 15 = 3.
MATHEMATICA
Table[Mod[(2n)!!, (2n-1)!!], {n, 20}] (* Harvey P. Dale, Sep 23 2020 *)
PROG
(Python)
o=e=1
for n in range(1, 99, 2):
o*=n
e*=n+1
print(str(e%o), end=', ')
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Nov 27 2013
STATUS
approved
Brilliant numbers (A078972) which are the sum of distinct double factorials (A006882).
+20
3
4, 6, 9, 10, 14, 15, 21, 25, 49, 121, 169, 403, 407, 437, 451, 493, 517, 551, 949, 961, 1003, 1007, 1067, 1073, 1079, 1121, 1333, 1343, 1349, 1357, 1387, 1403, 1457, 1501, 3869, 3901, 3953, 4331, 4891, 5183, 5293, 10403, 10807, 11413, 11449
OFFSET
1,1
COMMENTS
Double factorials 0!! and 1!! are not considered distinct. Note that double factorial (n!!) is different from (n!)!.
EXAMPLE
949 = 13*73 = 9!! + 3!! + 1!!.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Giovanni Resta, Jan 28 2006
STATUS
approved
Prime numbers which are the sum of distinct double factorials (A006882).
+20
3
2, 3, 5, 11, 13, 17, 19, 23, 29, 53, 59, 61, 67, 71, 73, 107, 109, 113, 131, 157, 163, 167, 173, 179, 181, 389, 397, 401, 409, 433, 443, 449, 457, 461, 491, 499, 503, 509, 541, 547, 557, 563, 947, 953, 971, 997, 1009, 1013, 1019, 1021, 1051, 1061, 1063
OFFSET
1,1
COMMENTS
Double factorials 0!! and 1!! are not considered distinct. Note that double factorial (n!!) is different from (n!)!.
EXAMPLE
947 is prime and 947 = 9!! + 2!!.
CROSSREFS
KEYWORD
nonn
AUTHOR
Giovanni Resta, Jan 28 2006
STATUS
approved
Semiprimes (A001358) which are the sum of distinct double factorials (A006882).
+20
3
4, 6, 9, 10, 14, 15, 21, 25, 26, 49, 51, 57, 58, 62, 65, 69, 74, 77, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 155, 158, 159, 161, 166, 169, 177, 178, 386, 393, 394, 395, 398, 403, 407, 411, 413, 437, 445, 446, 447, 451, 453, 458, 489, 493, 497
OFFSET
1,1
COMMENTS
Double factorials 0!! and 1!! are not considered distinct. Note that double factorial (n!!) is different from (n!)!.
EXAMPLE
384 = 2*19 = 8!!+2!!.
MATHEMATICA
Union[Select[Total/@Subsets[Range[10]!!, 10], PrimeOmega[#]==2&]] (* Harvey P. Dale, Aug 24 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Giovanni Resta, Jan 28 2006
STATUS
approved
a(n) = sigma(n!!) where n!! is A006882(n).
+20
3
1, 1, 3, 4, 15, 24, 124, 192, 1020, 1920, 12264, 23040, 159666, 322560, 2555280, 5041344, 40893840, 90744192, 761260368, 1814883840, 15732804296, 38900010240, 377587663200, 933600245760, 9087075973248, 23520702965760, 254438142416640
OFFSET
0,3
LINKS
FORMULA
a(n) = A000203(A006882(n)). - R. J. Mathar, Feb 07 2011
MATHEMATICA
Join[{1}, Array[DivisorSigma[1, #!! ]&, 50, 1]]
PROG
(PARI) a(n)=sigma(prod(i=0, (n-1)\2, n - 2*i )) \\ Charles R Greathouse IV, May 01 2016
CROSSREFS
Cf. A062569.
KEYWORD
nonn
AUTHOR
STATUS
approved
Product of first n odd numbers plus product of first n even numbers: (2n-1)!! + (2n)!!, where k!! = A006882(k).
+20
3
3, 11, 63, 489, 4785, 56475, 780255, 12348945, 220253985, 4370620275, 95498916975, 2278224696825, 58917607974225, 1641787169697675, 49040157044253375, 1563094742062478625, 52953322446161762625, 1899986948191060603875, 71977860935783603175375, 2870913642898706235455625
OFFSET
1,1
FORMULA
a(n) = A006882(2*n-1) + A006882(2*n).
a(n) = A001147(n) + A000165(n).
a(n) +(-4*n+3)*a(n-1) +2*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 23 2014
EXAMPLE
a(3) = 1*3*5 + 2*4*6 = 15 + 48 = 63.
MATHEMATICA
Table[n!!+(n+1)!!, {n, 1, 41, 2}] (* Harvey P. Dale, Jan 22 2019 *)
PROG
(Python)
o=e=1
for n in range(1, 99, 2):
o*=n
e*=n+1
print(str(e+o), end=', ')
(PARI) a(n)=prod(i=1, n, 2*i-1)+prod(i=1, n, 2*i) \\ Ralf Stephan, Nov 28 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Nov 27 2013
STATUS
approved

Search completed in 0.114 seconds