# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a317712 Showing 1-1 of 1 %I A317712 #17 Sep 07 2019 06:03:34 %S A317712 1,1,2,4,8,15,35,72,169,388,934,2234,5508,13557,33883,85017,215091, %T A317712 546496,1396524,3582383,9228470,23852918,61857180,160871716,419516462, %U A317712 1096671326,2873403980,7544428973,19847520789,52308750878,138095728065,365153263313,966978876376 %N A317712 Number of uniform rooted trees with n nodes. %C A317712 An unlabeled rooted tree is uniform if the multiplicities of the branches directly under any given node are all equal. %H A317712 Vaclav Kotesovec, Table of n, a(n) for n = 1..2250 (terms 1..200 from Andrew Howroyd) %H A317712 Gus Wiseman, All 72 uniform rooted trees with 8 nodes. %F A317712 a(n) ~ c * d^n / n^(3/2), where d = 2.774067238136373782458114960391469140405537808253... and c = 0.43338208953061974806801546569720246018271214... - _Vaclav Kotesovec_, Sep 07 2019 %e A317712 The a(5) = 8 uniform rooted trees: %e A317712 ((((o)))) %e A317712 (((oo))) %e A317712 ((o(o))) %e A317712 ((ooo)) %e A317712 (o((o))) %e A317712 (o(oo)) %e A317712 ((o)(o)) %e A317712 (oooo) %t A317712 purt[n_]:=Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],SameQ@@Length/@Split[#]&],{ptn,IntegerPartitions[n-1]}]; %t A317712 Table[Length[purt[n]],{n,10}] %o A317712 (PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} %o A317712 seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, sumdiv(n-1, d, t[d]))); v} \\ _Andrew Howroyd_, Aug 28 2018 %Y A317712 Cf. A000081, A001190, A004111, A072774, A301700, A317588. %Y A317712 Cf. A317705, A317707, A317708, A317709, A317710, A317711, A317717, A317718. %K A317712 nonn %O A317712 1,3 %A A317712 _Gus Wiseman_, Aug 05 2018 %E A317712 Term a(21) and beyond from _Andrew Howroyd_, Aug 28 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE