# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a048994 Showing 1-1 of 1 %I A048994 #126 Sep 29 2024 10:29:58 %S A048994 1,0,1,0,-1,1,0,2,-3,1,0,-6,11,-6,1,0,24,-50,35,-10,1,0,-120,274,-225, %T A048994 85,-15,1,0,720,-1764,1624,-735,175,-21,1,0,-5040,13068,-13132,6769, %U A048994 -1960,322,-28,1,0,40320,-109584,118124,-67284,22449,-4536,546,-36,1,0,-362880,1026576,-1172700,723680,-269325,63273,-9450,870,-45,1 %N A048994 Triangle of Stirling numbers of first kind, s(n,k), n >= 0, 0 <= k <= n. %C A048994 The unsigned numbers are also called Stirling cycle numbers: |s(n,k)| = number of permutations of n objects with exactly k cycles. %C A048994 Mirror image of the triangle A054654. - _Philippe Deléham_, Dec 30 2006 %C A048994 Also the triangle gives coefficients T(n,k) of x^k in the expansion of C(x,n) = (a(k)*x^k)/n!. - _Mokhtar Mohamed_, Dec 04 2012 %C A048994 From _Wolfdieter Lang_, Nov 14 2018: (Start) %C A048994 This is the Sheffer triangle of Jabotinsky type (1, log(1 + x)). See the e.g.f. of the triangle below. %C A048994 This is the inverse Sheffer triangle of the Stirling2 Sheffer triangle A008275. %C A048994 The a-sequence of this Sheffer triangle (see a W. Lang link in A006232) %C A048994 is from the e.g.f. A(x) = x/(exp(x) -1) a(n) = Bernoulli(n) = A027641(n)/A027642(n), for n >= 0. The z-sequence vanishes. %C A048994 The Boas-Buck sequence for the recurrences of columns has o.g.f. B(x) = Sum_{n>=0} b(n)*x^n = 1/((1 + x)*log(1 + x)) - 1/x. b(n) = (-1)^(n+1)*A002208(n+1)/A002209(n+1), b = {-1/2, 5/12, -3/8, 251/720, -95/288, 19087/60480,...}. For the Boas-Buck recurrence of Riordan and Sheffer triangles see the Aug 10 2017 remark in A046521, adapted to the Sheffer case, also for two references. See the recurrence and example below. - _Wolfdieter Lang_, Nov 14 2018 %C A048994 Let G(n,m,k) be the number of simple labeled graphs on [n] with m edges and k components. Then T(n,k) = Sum (-1)^m*G(n,m,k). See the Read link below. Equivalently, T(n,k) = Sum mu(0,p) where the sum is over all set partitions p of [n] containing k blocks and mu is the Moebius function in the incidence algebra associated to the set partition lattice on [n]. - _Geoffrey Critzer_, May 11 2024 %D A048994 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833. %D A048994 L. Comtet, Advanced Combinatorics, Reidel, 1974; Chapter V, also p. 310. %D A048994 J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 93. %D A048994 F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226. %D A048994 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 245. %D A048994 J. Riordan, An Introduction to Combinatorial Analysis, p. 48. %H A048994 T. D. Noe, Rows n=0..100 of triangle, flattened %H A048994 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A048994 Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations, Journal of Integer Sequences, 17 (2014), #14.2.3. %H A048994 Fatima Zohra Bensaci, Rachid Boumahdi, and Laala Khaldi, Finite Sums Involving Fibonacci and Lucas Numbers, J. Int. Seq. (2024). See p. 9. %H A048994 R. M. Dickau, Stirling numbers of the first kind. [Illustrates the unsigned Stirling cycle numbers A132393.] %H A048994 Askar Dzhumadil'daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10. %H A048994 Bill Gosper, Colored illustrations of triangle of Stirling numbers of first kind read mod 2, 3, 4, 5, 6, 7. %H A048994 Gergő Nemes, An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind, J. Int. Seq. 14 (2011), #11.4.8. %H A048994 A. Hennessy and Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011), #11.8.2 (A-number typo A048894). %H A048994 NIST Digital Library of Mathematical Functions, Stirling Numbers %H A048994 Ken Ono, Larry Rolen, and Florian Sprung, Zeta-Polynomials for modular form periods, p. 6, arXiv:1602.00752 [math.NT], 2016. %H A048994 Ricardo A. Podestá, New identities for binary Krawtchouk polynomials, binomial coefficients and Catalan numbers, arXiv preprint arXiv:1603.09156 [math.CO], 2016. %H A048994 Ronald Read, An Introduction to Chromatic Polynomials, Journal of Combinatorial Theory, 4(1968)52-71. %H A048994 Wikipedia, Stirling numbers and exponential generating functions. %F A048994 s(n, k) = A008275(n,k) for n >= 1, k = 1..n; column k = 0 is {1, repeat(0)}. %F A048994 s(n, k) = s(n-1, k-1) - (n-1)*s(n-1, k), n, k >= 1; s(n, 0) = s(0, k) = 0; s(0, 0) = 1. %F A048994 The unsigned numbers a(n, k)=|s(n, k)| satisfy a(n, k)=a(n-1, k-1)+(n-1)*a(n-1, k), n, k >= 1; a(n, 0) = a(0, k) = 0; a(0, 0) = 1. %F A048994 Triangle (signed) = [0, -1, -1, -2, -2, -3, -3, -4, -4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; Triangle(unsigned) = [0, 1, 1, 2, 2, 3, 3, 4, 4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938. %F A048994 Sum_{k=0..n} (-m)^(n-k)*s(n, k) = A000142(n), A001147(n), A007559(n), A007696(n), ... for m = 1, 2, 3, 4, ... .- _Philippe Deléham_, Oct 29 2005 %F A048994 A008275*A007318 as infinite lower triangular matrices. - _Gerald McGarvey_, Aug 20 2009 %F A048994 T(n,k) = n!*[x^k]([t^n]exp(x*log(1+t))). - _Peter Luschny_, Dec 30 2010, updated Jun 07 2020 %F A048994 From _Wolfdieter Lang_, Nov 14 2018: (Start) %F A048994 Recurrence from the Sheffer a-sequence (see a comment above): s(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j, j)*Bernoulli(j)*s(n-1, k-1+j), for n >= 1 and k >= 1, with s(n, 0) = 0 if n >= 1, and s(0,0) = 1. %F A048994 Boas-Buck type recurrence for column k: s(n, k) = (n!*k/(n - k))*Sum_{j=k..n-1} b(n-1-j)*s(j, k)/j!, for n >= 1 and k = 0..n-1, with input s(n, n) = 1. For sequence b see the Boas-Buck comment above. (End) %F A048994 T(n,k) = Sum_{j=k..n} (-1)^(n-j)*A271705(n,j)*A216294(j,k). - _Mélika Tebni_, Feb 23 2023 %e A048994 Triangle begins: %e A048994 n\k 0 1 2 3 4 5 6 7 8 9 ... %e A048994 0 1 %e A048994 1 0 1 %e A048994 2 0 -1 1 %e A048994 3 0 2 -3 1 %e A048994 4 0 -6 11 -6 1 %e A048994 5 0 24 -50 35 -10 1 %e A048994 6 0 -120 274 -225 85 -15 1 %e A048994 7 0 720 -1764 1624 -735 175 -21 1 %e A048994 8 0 -5040 13068 -13132 6769 -1960 322 -28 1 %e A048994 9 0 40320 -109584 118124 -67284 22449 -4536 546 -36 1 %e A048994 ... - _Wolfdieter Lang_, Aug 22 2012 %e A048994 ------------------------------------------------------------------ %e A048994 From _Wolfdieter Lang_, Nov 14 2018: (Start) %e A048994 Recurrence: s(5,2)= s(4, 1) - 4*s(4, 2) = -6 - 4*11 = -50. %e A048994 Recurrence from the a- and z-sequences: s(6, 3) = 2*(1*1*(-50) + 3*(-1/2)*35 + 6*(1/6)*(-10) + 10*0*1) = -225. %e A048994 Boas-Buck recurrence for column k = 3, with b = {-1/2, 5/12, -3/8, ...}: %e A048994 s(6, 3) = 6!*((-3/8)*1/3! + (5/12)*(-6)/4! + (-1/2)*35/5!) = -225. (End) %p A048994 A048994:= proc(n,k) combinat[stirling1](n,k) end: # _R. J. Mathar_, Feb 23 2009 %p A048994 seq(print(seq(coeff(expand(k!*binomial(x,k)),x,i),i=0..k)),k=0..9); # _Peter Luschny_, Jul 13 2009 %p A048994 A048994_row := proc(n) local k; seq(coeff(expand(pochhammer(x-n+1,n)), x,k), k=0..n) end: # _Peter Luschny_, Dec 30 2010 %t A048994 Table[StirlingS1[n, m], {n, 0, 9}, {m, 0, n}] (* _Peter Luschny_, Dec 30 2010 *) %o A048994 (PARI) a(n,k) = if(k<0 || k>n,0, if(n==0,1,(n-1)*a(n-1,k)+a(n-1,k-1))) %o A048994 (PARI) trg(nn)=for (n=0, nn-1, for (k=0, n, print1(stirling(n,k,1), ", ");); print();); \\ _Michel Marcus_, Jan 19 2015 %o A048994 (Maxima) create_list(stirling1(n,k),n,0,12,k,0,n); /* _Emanuele Munarini_, Mar 11 2011 */ %o A048994 (Haskell) %o A048994 a048994 n k = a048994_tabl !! n !! k %o A048994 a048994_row n = a048994_tabl !! n %o A048994 a048994_tabl = map fst $ iterate (\(row, i) -> %o A048994 (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 0) %o A048994 -- _Reinhard Zumkeller_, Mar 18 2013 %Y A048994 See especially A008275 which is the main entry for this triangle. A132393 is an unsigned version, and A008276 is another version. %Y A048994 Cf. A008277, A039814-A039817, A048993, A084938. %Y A048994 A000142(n) = Sum_{k=0..n} |s(n, k)| for n >= 0. %Y A048994 Row sums give A019590(n+1). %Y A048994 Cf. A002209, A027641/A027642, A216294, A271705. %K A048994 sign,tabl,nice %O A048994 0,8 %A A048994 _N. J. A. Sloane_ %E A048994 Offset corrected by _R. J. Mathar_, Feb 23 2009 %E A048994 Formula corrected by _Philippe Deléham_, Sep 10 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE