# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a010701 Showing 1-1 of 1 %I A010701 #108 Oct 29 2024 12:20:51 %S A010701 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %T A010701 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %U A010701 3,3,3,3,3,3,3,3,3,3,3,3,3 %N A010701 Constant sequence: the all 3's sequence. %C A010701 Decimal expansion of 1/3. - _Raymond Wang_, Mar 06 2010 %C A010701 Continued fraction expansion of (3+sqrt(13))/2. - _Bruno Berselli_, Mar 15 2011 %H A010701 Tanya Khovanova, Recursive Sequences. %H A010701 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1011. %H A010701 Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6 (2003), Article 03.1.6. %H A010701 Rick Mabry, Proof without words: 1/4+(1/4)^2+(1/4)^3+...=1/3, Math. Mag., Vol. 72, No. 1 (1999), p. 63. %H A010701 Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2. %H A010701 Index entries for linear recurrences with constant coefficients, signature (1). %H A010701 Index to divisibility sequences %F A010701 G.f.: 3/(1-x). - _Bruno Berselli_, Mar 15 2011 %F A010701 E.g.f.: 3*e^x. - _Vincenzo Librandi_, Jan 24 2012 %F A010701 a(n) = A040000(n) + A054977(n). - _Reinhard Zumkeller_, May 06 2012 %F A010701 a(n) = 3*A000012(n). - _Michel Marcus_, Dec 18 2015 %F A010701 a(n) = floor(1/(n - cot(1/n))). - _Clark Kimberling_, Mar 10 2020 %F A010701 Equals Sum_{k>=1} (1/4)^k (as a constant). - _Michel Marcus_, Jun 11 2020 %F A010701 Equals Sum_{k>=2} (k-1)/binomial(2*k,k) (as a constant). - _Amiram Eldar_, Jun 05 2021 %F A010701 Equals Sum_{k>=1} (-1)^(k+1)/2^k. - _Michal Paulovic_, Mar 02 2023 %e A010701 1/3 = 0.33333333333333333333333333333333333333333333... - _Bruno Berselli_, Mar 21 2014 %p A010701 evalf(1/3, 100); # _Michal Paulovic_, Mar 02 2023 %t A010701 Table[3, {100}] (* _Wesley Ivan Hurt_, Jul 16 2014 *) %o A010701 (Haskell) %o A010701 a010701 = const 3 %o A010701 a010701_list = repeat 3 -- _Reinhard Zumkeller_, May 07 2012 %o A010701 (Maxima) makelist(3, n, 0, 30); /* _Martin Ettl_, Nov 09 2012 */ %o A010701 (PARI) a(n)=3 \\ _Felix Fröhlich_, Jul 16 2014 %o A010701 (Python) %o A010701 def A010701(n): return 3 # _Chai Wah Wu_, Nov 10 2022 %Y A010701 Cf. A000012, A040000, A054977. %K A010701 nonn,cons,easy %O A010701 0,1 %A A010701 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE