OFFSET
0,3
COMMENTS
We can always extend the sequence with a power of 2 greater than any previous term, so the sequence is well defined.
For symmetry reasons, we obtain the same sequence when considering a clockwise or a counterclockwise square spiral, or when initially moving towards any unit direction.
LINKS
Rémy Sigrist, Table of n, a(n) for n = 0..10200
Rémy Sigrist, Colored representation of the spiral for -250 <= x <= 250 and -250 <= y <= 250 (where the hue is function of a(n) and black pixels indicate powers of 2)
Rémy Sigrist, PARI program for A336350
EXAMPLE
The spiral begins:
264------80--262144---81920----5120---32896----2560----8224-------7
| |
49152 8192----4100----2112-----288----1536-----130-------9 65552
| | | |
3072 514 256-----128------72------48-------5 4096 131072
| | | | | |
4608 160 17 8-------4-------2 64 2048 17408
| | | | | | | |
73728 6144 96 6 0-------1 24 1280 640
| | | | | | |
393216 16384 512 16-------3------12------32 192 2304
| | | | |
524288 32768 10------33-----144-----320----1024-----516 12288
| | |
1048576 13----1152-----768---10240---20480---65536------18---32800
|
19---65792---18432----9216---33280--655360--266240-2097152-1048584
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
AUTHOR
Rémy Sigrist, Jul 19 2020
STATUS
approved