login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) is the number of length n+1 0..2*k arrays with the sum of the absolute values of adjacent differences equal to n*k.
13

%I #12 Nov 12 2024 09:06:14

%S 4,6,10,8,24,20,10,42,88,64,12,64,208,384,136,14,90,426,1242,1606,466,

%T 16,120,728,3030,6856,7138,1012,18,154,1178,6252,22560,43068,31380,

%U 3580,20,192,1744,11524,55372,168506,245860,141272,7864,22,234,2508,19574,123154

%N T(n,k) is the number of length n+1 0..2*k arrays with the sum of the absolute values of adjacent differences equal to n*k.

%H R. H. Hardin, <a href="/A249982/b249982.txt">Table of n, a(n) for n = 1..6839</a>

%F Empirical for row n:

%F n=1: a(n) = 2*n + 2

%F n=2: a(n) = 2*n^2 + 8*n

%F n=3: a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6); also a polynomial of degree 3 plus a quasipolynomial of degree 1 with period 2

%F n=4: a(n) = (14/3)*n^4 + (56/3)*n^3 + (121/3)*n^2 - (5/3)*n + 2

%F n=5: [linear recurrence of order 10; also a polynomial of degree 5 plus a quasipolynomial of degree 3 with period 2]

%F n=6: a(n) = (1987/180)*n^6 + (2033/30)*n^5 + (2785/18)*n^4 + 226*n^3 - (3017/180)*n^2 + (697/30)*n

%F n=7: [order 14; also a polynomial of degree 7 plus a quasipolynomial of degree 5 with period 2]

%e Table starts:

%e .....4.......6........8........10.........12..........14..........16

%e ....10......24.......42........64.........90.........120.........154

%e ....20......88......208.......426........728........1178........1744

%e ....64.....384.....1242......3030.......6252.......11524.......19574

%e ...136....1606.....6856.....22560......55372......123154......237348

%e ...466....7138....43068....168506.....508902.....1290856.....2886016

%e ..1012...31380...245860...1293326....4598532....14027522....35380112

%e ..3580..141272..1589346...9937894...43752328...152155572...446342246

%e ..7864..635686..9213728..77372824..399919272..1672105528..5529256528

%e .28340.2890884.60568000.604180880.3872197278.18444783546.70948896558

%e Some solutions for n=5 k=4:

%e ..8....5....0....8....3....7....1....0....8....1....1....1....0....0....2....4

%e ..3....1....5....3....8....0....6....3....4....6....2....5....7....2....5....8

%e ..8....6....3....8....0....7....3....2....8....0....6....3....1....8....7....7

%e ..1....4....4....0....2....5....7....8....8....2....0....8....4....6....0....3

%e ..1....8....0....1....4....3....1....1....1....0....5....2....6....0....0....0

%e ..4....3....8....2....1....1....3....4....6....5....1....5....4....4....8....8

%Y Row 1 is A004275(n+2).

%Y Row 2 is A067728.

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 10 2014