login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249982
T(n,k) is the number of length n+1 0..2*k arrays with the sum of the absolute values of adjacent differences equal to n*k.
13
4, 6, 10, 8, 24, 20, 10, 42, 88, 64, 12, 64, 208, 384, 136, 14, 90, 426, 1242, 1606, 466, 16, 120, 728, 3030, 6856, 7138, 1012, 18, 154, 1178, 6252, 22560, 43068, 31380, 3580, 20, 192, 1744, 11524, 55372, 168506, 245860, 141272, 7864, 22, 234, 2508, 19574, 123154
OFFSET
1,1
LINKS
FORMULA
Empirical for row n:
n=1: a(n) = 2*n + 2
n=2: a(n) = 2*n^2 + 8*n
n=3: a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6); also a polynomial of degree 3 plus a quasipolynomial of degree 1 with period 2
n=4: a(n) = (14/3)*n^4 + (56/3)*n^3 + (121/3)*n^2 - (5/3)*n + 2
n=5: [linear recurrence of order 10; also a polynomial of degree 5 plus a quasipolynomial of degree 3 with period 2]
n=6: a(n) = (1987/180)*n^6 + (2033/30)*n^5 + (2785/18)*n^4 + 226*n^3 - (3017/180)*n^2 + (697/30)*n
n=7: [order 14; also a polynomial of degree 7 plus a quasipolynomial of degree 5 with period 2]
EXAMPLE
Table starts:
.....4.......6........8........10.........12..........14..........16
....10......24.......42........64.........90.........120.........154
....20......88......208.......426........728........1178........1744
....64.....384.....1242......3030.......6252.......11524.......19574
...136....1606.....6856.....22560......55372......123154......237348
...466....7138....43068....168506.....508902.....1290856.....2886016
..1012...31380...245860...1293326....4598532....14027522....35380112
..3580..141272..1589346...9937894...43752328...152155572...446342246
..7864..635686..9213728..77372824..399919272..1672105528..5529256528
.28340.2890884.60568000.604180880.3872197278.18444783546.70948896558
Some solutions for n=5 k=4:
..8....5....0....8....3....7....1....0....8....1....1....1....0....0....2....4
..3....1....5....3....8....0....6....3....4....6....2....5....7....2....5....8
..8....6....3....8....0....7....3....2....8....0....6....3....1....8....7....7
..1....4....4....0....2....5....7....8....8....2....0....8....4....6....0....3
..1....8....0....1....4....3....1....1....1....0....5....2....6....0....0....0
..4....3....8....2....1....1....3....4....6....5....1....5....4....4....8....8
CROSSREFS
Row 1 is A004275(n+2).
Row 2 is A067728.
Sequence in context: A089546 A263483 A363700 * A292767 A117622 A188673
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 10 2014
STATUS
approved