login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236924
Number of integer solutions to a^2 + 2*b^2 + 2*c^2 + 4*d^2 = n.
16
1, 2, 4, 8, 8, 12, 16, 16, 24, 26, 24, 24, 32, 28, 32, 48, 24, 36, 52, 40, 48, 64, 48, 48, 96, 62, 56, 80, 64, 60, 96, 64, 24, 96, 72, 96, 104, 76, 80, 112, 144, 84, 128, 88, 96, 156, 96, 96, 96, 114, 124, 144, 112, 108, 160, 144, 192, 160, 120, 120, 192, 124, 128, 208, 24, 168, 192, 136, 144, 192, 192
OFFSET
0,2
LINKS
Olivia X. M. Yao, Ernest X. W. Xia, Combinatorial proofs of five formulas of Liouville, Discrete Math. 318 (2014), 1--9. MR3141622.
FORMULA
Yao and Xia give an explicit formula for a(n) due to Liouville.
G.f.: theta_3(q)*theta_3(q^2)^2*theta_3(q^4), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 03 2018
MAPLE
with(LinearAlgebra);
L:=proc(a, b, c, d, M) local n, hit, ul, vl, wl, xl, u, v, w, x, su, sv, sw, sx;
hit:=Array(0..M); ul:=floor(sqrt(M/a)); vl:=floor(sqrt(M/b));
wl:=floor(sqrt(M/c)); xl:=floor(sqrt(M/d));
for u from -ul to ul do
su:=a*u^2;
for v from -vl to vl do
sv:=su+b*v^2;
for w from -wl to wl do
sw:=sv+c*w^2;
for x from -xl to xl do
sx:=sw+d*x^2;
if sx <= M then hit[sx]:=hit[sx]+1; fi;
od; od; od; od;
[seq(hit[n], n=0..M)];
end;
L(1, 2, 2, 4, 60);
MATHEMATICA
CoefficientList[EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^2]^2*EllipticTheta[3, 0, q^4] + O[q]^100, q] (* Jean-François Alcover, Feb 15 2023, after Ilya Gutkovskiy *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 14 2014
STATUS
approved