login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233637
Number of (n+1) X (1+1) 0..2 arrays with every 2 X 2 subblock having the sum of the squares of the edge differences equal to 2.
1
24, 90, 324, 1188, 4320, 15768, 57456, 209520, 763776, 2784672, 10152000, 37012032, 134936064, 491944320, 1793505024, 6538675968, 23838382080, 86908819968, 316847932416, 1155148784640, 4211385163776, 15353663035392, 55975637053440
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 6*a(n-2).
Conjectures from Colin Barker, Oct 11 2018: (Start)
G.f.: 6*x*(4 + 7*x) / (1 - 2*x - 6*x^2).
a(n) = ((1-sqrt(7))^n*(-17+7*sqrt(7)) + (1+sqrt(7))^n*(17+7*sqrt(7))) / (2*sqrt(7)).
(End)
EXAMPLE
Some solutions for n=5:
..1..1....1..2....0..1....0..0....1..1....1..0....0..1....1..0....2..2....0..1
..1..2....1..2....0..1....1..0....2..1....1..1....1..1....1..0....2..1....0..1
..1..2....1..2....1..1....1..0....2..1....0..1....0..0....1..1....1..1....0..1
..2..2....2..2....0..1....1..0....2..1....1..1....1..0....2..1....0..1....1..1
..1..1....1..1....1..1....1..0....1..1....0..1....1..1....1..1....1..1....1..0
..2..1....0..0....0..1....1..1....0..0....0..0....0..1....2..2....1..2....1..0
CROSSREFS
Column 1 of A233644.
Sequence in context: A233644 A010012 A256718 * A179962 A076799 A297540
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 14 2013
STATUS
approved