OFFSET
0,4
COMMENTS
LINKS
Alois P. Heinz, Rows n = 0..50, flattened
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 132.
FORMULA
E.g.f.: exp(x/(1-x))/(1-x)^y.
From Peter Bala, Aug 23 2013: (Start)
Exponential Riordan array [exp(x/(1-x)), log(1/(1-x))].
The row polynomials R(n,y), n > = 0, satisfy the 2nd order recurrence equation R(n,y) = (2*n + y - 1)*R(n-1,y) - (n - 1)*(n + y - 2)*R(n-2,y) with R(0,y) = 1 and R(1,y) = 1 + y.
EXAMPLE
1;
1, 1;
3, 3, 1;
13, 14, 6, 1;
73, 84, 41, 10, 1;
501, 609, 325, 95, 15, 1;
MAPLE
gf := exp(x / (1 - x)) / (1 - x)^y:
serx := series(gf, x, 10): poly := n -> simplify(coeff(serx, x, n)):
seq(print(seq(n!*coeff(poly(n), y, k), k = 0..n)), n = 0..9); # Peter Luschny, Feb 23 2023
MATHEMATICA
nn=10; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; f[list_]:=Select[list, #>0&]; Map[f, Range[0, nn]!CoefficientList[Series[Exp[ x/(1-x)]/(1-x)^y, {x, 0, nn}], {x, y}]]//Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Sep 04 2012
STATUS
approved